Verifying Dynamic Aspects of UML Models

Mathias Soeken

Robert Wille

Rolf Drechsler

Institute of Computer Science, University of Bremen
28359 Bremen, Germany
{msoeken,rwille,drechsle} @informatik.uni-bremen.de

Abstract—The Unified Modeling Language (UML) as a de-
facto standard for software development finds more and more
application in the design of systems which also contain hardware
components. Guaranteeing the correctness of a system specified
in UML is thereby an important as well as challenging task.
In recent years, first approaches for this purpose have been
introduced. However, most of them focus only on the static view
of a UML model.

In this paper, an automatic approach is presented which checks
verification tasks for dynamic aspects of a UML model. That
is, given a UML model as well as an initial system state, the
approach proves whether a sequence of operation calls exists so
that a desired behavior is invoked. The underlying verification
problem is encoded as an instance of the satisfiability problem
and subsequently solved using a SAT Modulo Theory solver.
An experimental evaluation confirms the applicability of the
proposed approach.

I. INTRODUCTION

The Unified Modeling Language (UML) is considered as a
de-facto standard for software development [1]. By providing
several diagram types, it enables the specification of com-
plex systems on different levels of abstraction. This includes
the global view on the system as a whole as well as the
detailed description of one particular component. With in-
creasing complexity of today’s hardware systems, researchers
also investigated the integration of UML in the design of
hardware, e.g. embedded systems [2], [3]. In the context of
hardware/software co-design, systems are specified first on
a high level of abstraction, before partitioned into respective
hardware- and software-components in a later step.

A UML model includes constructs such as classes, associ-
ations, attributes, or operations in order to specify a system.
Moreover, the Object Constraint Language (OCL) [4] is used
to extend a UML model by additional textual constraints that
define further properties and relations between the respective
parts of the model. Analogously, pre- and post-conditions can
be added to an operation specifying (1) the requirements in
which an operation can be called and (2) the desired system
state after the execution of the operation. As a result, static
system states and dynamic sequences of operations can be
modeled.

A crucial requirement in the design process of a complex
system is its verification aimed to ensure the correctness.
However, with increasing design complexity, it is decisive
how and when verification is firstly being employed. Due to
shortening time-to-market demands, design flaws need to be
detected as early as possible. Being an abstract methodology
for specifying systems, UML serves as a good starting point.

First verification approaches considering the static view of
a UML model have already been introduced in the recent past.

978-3-9810801-7-9/DATE11/(©2011 EDAA

These approaches consider verification tasks such as consis-
tency, independence, and consequences [5]. Amongst others,
enumerative methods (e.g. [6]), theorem provers (e.g. [7]),
Constraint-Satisfaction-Problem (CSP) solvers (e.g [8]), and
Boolean satisfiability (SAT) (e.g. [9]) have been applied for
this purpose. However, in all these approaches, operations in
the UML model (i.e. the dynamic view of a specification) are
not considered. In contrast, [10] and [11] present approaches
for the validation of dynamic aspects in UML models. But
here, only the consistency between both, a given class diagram
and a given sequence diagram, have been considered. Hence,
verification tasks in the absence of a concrete instantiation can-
not be checked. Another approach based on CSP is presented
in [12]. This approach considers the behavioral aspects of a
UML model by automatically checking properties on opera-
tions such as executability or determinism. However, only a
single operation call is considered in at most two consecutive
system states. That is, only the (static) system states before
and after an operation call are checked, respectively.

In this paper, we introduce an approach that automatically
addresses verification tasks for the dynamic view of a given
specification. In contrast to previous methods, sequences of
operation calls can be handled. Therefore, starting from an
initial system state these sequences of operations are deter-
mined automatically in order to prove certain verification tasks
such as the reachability of an operation or the generation of a
particular system state. In contrast to similar techniques such
as Bounded Model Checking [13], where the actual imple-
mentation of the operations is required, our approach implies
the behavior using its respective pre- and post-conditions. That
allows the detection of critical design flaws in the specification
before a concrete implementation of the model is generated.

The respective verification tasks are encoded as an instance
of the satisfiability problem. This satisfiability problem is then
formulated as a SAT Modulo Theory (SMT) instance and
subsequently solved by an SMT solver.

The resulting solution space of the respective problem
instances is too large to efficiently apply enumerative ap-
proaches and, therefore, making a manual consideration of
these verification tasks infeasible. In contrast, we demonstrate
in an experimental evaluation that the verification tasks can be
solved within reasonable run-time when applying the proposed
method.

The remainder of the paper is structured as follows. Once
the needed background is provided in Section II, the problem
formulation is given in Section III. Section IV presents the
proposed approach. Initially the general idea is introduced
followed by a more detailed description of the respective
encoding. Experiments in Section V show the applicability
of the proposed approach. Finally, the paper is concluded in
Section VI.

Client Host
B 0.8 Command 1.2 e
req: String — ack: String
clients hosts
process()

T T

inv: ack.isDefined()%

context Host::process()
pre: clients->size() > 0
post: clients@pre->at(0).req =
implies ack = "good"

"exit"

Fig. 1. UML class diagram

II. PRELIMINARIES

To keep the paper self contained, definitions used in the
remainder of this paper are detailed in this section. First,
the notion of different UML concepts and diagram types is
introduced. Then, the satisfiability problem is reviewed in
Section II-B.

A. UML Models and OCL Expressions

In the most recent version of the UML standard, several
concepts and respective diagram types are provided. However,
in this paper we focus on three diagram types, namely the
class diagram, the object diagram, and the sequence diagram.
A class diagram comprises a UML model, which can be used
e.g. to describe the structure of a system. An instantiation of
a UML model is called a system state and is visualized by an
object diagram. A system state provides a static view on the
model. In addition, a sequence diagram provides the dynamic
view on the model. It illustrates possible transitions between
different system states, which can be reached by invoking the
operations specified in the UML model.

Definition 1 (Class Diagrams): The main constructs in a
class diagram are classes and attributes. Classes describe the
kind of information in a system and how this information is
structured. Attributes define the single data elements out of
which a class is composed. Besides attributes, a class can
contain operations, which process the information by usually
modifying the values of the attributes. Classes can be con-
nected using associations to describe a relation between them.
Each class connected to the association is called association-
end, and each association-end is annotated with a role-name
and a multiplicity. The multiplicities classify the relation, e.g. a
1-to-1, a 1-to-many, or a many-to-many relation.

Example 1: A UML class diagram is depicted in Fig. 1. It
consists of the classes Client and Host. Each class consists
of one attribute, req (request) and ack (acknowledge), respec-
tively, which can be assigned a string value. Further, the class
Host contains the operation process.

Both classes are related by an association called Command.
Given its multiplicities, this association establishes that each
host is connected to at most eight clients, and that each client
has to be connected to at least one, but at most two hosts. W

Definition 2 (OCL expressions): Using OCL expressions,
textual constraints as invariants as well as pre- and post-
conditions can be added to a class diagram. Invariants restrict
the set of valid system states by enforcing specific system
properties. On the other hand, pre- and post-conditions can
be added to an operation to constrain the circumstances in
which it can be called and to describe the system state after
the execution, respectively.

clientl: Client host: Host client2: Client

Command Command

req = “date” ack = “good” req = “exit”

Fig. 2. UML object diagram

Example 2: In the class diagram in Fig. 1, an invariant is
used to express that the attribute ack of the Host class must
always be defined. Furthermore, a pre-condition requires a host
to be connected to at least one client before the operation
process can be called. After this operation has been called, it
has to be assured that the attribute ack is set to “good” in
case the previous command was “exit”. []

Definition 3 (Object Diagrams): Object diagrams represent
a concrete system state of a UML model. The main construct
in an object diagram is an object, which is an instantiation of
a class given in the class diagram. The attributes of the object
are determined from the class and assigned concrete values.
Finally, /inks in an object diagram represent instantiations of
an association.

Example 3: An object diagram can be seen in Fig. 2. It
represents a valid system state with respect to the UML
model defined by the class diagram in Fig. 1, whereby host is
connected to two clients, i.e. client] and client2. |

Definition 4 (Sequence Diagrams): A sequence diagram
models the dynamic behavior of a UML model. It expresses
the invocation of operation calls by objects and, thus, model
interactivity between them. Since each operation call may
affect the values of the attributes in the objects as well as the
links between them, each sequence diagram captures several
system states.

The set OP denotes all possible operations which can be
invoked in a sequence diagram, i.e. all possible operations
for each instantiated object. In this work, we model sequence
diagrams in which each object calls its operations by itself.

B. Boolean Satisfiability and SAT Modulo Theories

The satisfiability problem (SAT) is the problem of determin-
ing whether there exists a satisfying assignment for a given
function.

Definition 5 (Boolean Satisfiability): Given a function
f:B™ — B with B = {0,1}, the function f is satisfiable,
if and only if there exists an assignment o € B™ such that
f(a) = 1. In this case, « is called a satisfying assignment.
Otherwise, f is unsatisfiable. Usually, the satisfiability check
is conducted on a function in conjunctive normal form.
Although the SAT problem is NP-complete [14], much re-
search was dedicated to the investigation of SAT solvers in
the recent decades [15], [16], [17]. Thus, many hard instances
of practical problems are transformed into SAT problems and
afterwards solved efficiently [18]. Furthermore, researchers
combined Boolean satisfiability with problem descriptions on
higher levels of abstraction, for example arithmetic or bit-
vector logic, resulting in a technique called SAT Modulo
Theories (SMT) [19]. Instead of having the function given in
its conjunctive normal form, SMT allow complex expressions
e.g. composed of arithmetic operations. In [20], it has been
demonstrated that problems having a more complex structure
tend to be solved more efficiently when retaining the level of
abstraction in the solving process.

In this work, we transform the considered problem into an
SMT instance consisting of bit-vector expressions called SMT
constraints. This instance is afterwards solved by an SMT
solver.

Button

context requesting()

counter: Integer | — — — — pre: tl.pedLight = false
post: tl.request = true
requesting() post: counter = counter@pre + 1
button | 2 - -
lich context switchPedLight ()
ight | 1 pre: request = true
. - post: pedLight != pedLight@pre
TrafficLight e post: request = false
pedLight: Boolean
carLight: Boolean | context switchCarLight ()
request: Boolean post: carLight != carLight@pre
switchPedLight() “~<_| inv: not (pedLight = true and
switchCarLight() carLight = true)
(a) UML class diagram
b1: Button b1l: Button

tl: TrafficLight

tl: TrafficLight

counter: 0 [~ counter: 1 ™~

pedLight = false
b2: Button —| carLight = true
— request = false

pedLight = true
b2: Button —{ carLight = false
request = false

counter: 0 counter: 0

(b) Initial system state (c) Derived system state

Fig. 3. Sample scenario

III. PROBLEM FORMULATION

This section briefly illustrates the problem considered in
this paper. Given a class diagram together with an initial
system state, the invocation of operations leads to different
sequences of operation calls and system states, respectively.
Pre- and post-conditions related to each operation define the
effect of operation calls employing the design by contract-
approach [21]. More precisely, in order to invoke a certain
operation, the respective pre-conditions have to be satisfied.
Further, after an operation call, the following system state
is assumed to fulfill the post-conditions of the respective
operation.

However, it is not trivial to generate sequence diagrams
(i.e. sequences of operation calls) confirming the correct
behavior of certain corner-case scenarios. Moreover, to ensure
that a desired behavior is possible (or not) with the UML
model at hand is a cumbersome verification task.

Example 4: Consider the class diagram given in Fig. 3(a),
which is used to illustrate possible verification tasks in the
remainder of this paper. The diagram specifies a simple
traffic light preemption. If the attribute carLight (pedLight)
is assigned to True, cars (pedestrians) are allowed to go.
Otherwise, they are supposed to wait. By the invariant in
the class diagram (denoted by inv), it should be ensured
that the traffic lights for both, cars and pedestrians, are never
“green” at the same time. Finally, cars are allowed to pass
as long as no pedestrian requests to cross the street (i.e. no
pedestrian invokes the requesting operation). This is specified
in the respective pre- and post-conditions of the operations'.
Fig. 3(b) shows an initial system state. [|
A serious design flaw is evident in this example. In order
to reach a system state where pedestrians get a “green”
light, first requesting has to be invoked (assigning request to
True). Due to the invariant, switchCarLight has to be executed
next in order to set carLight to False. Finally, the call of
switchPedLight leads to the desired system state (also depicted

IThe OCL keyword @pre is referring to the value of the respective
expression before the operation call takes place.

in Fig. 3(c)). However, no further operation calls can be per-
formed in this state since (1) the pre-conditions of requesting
and switchPedLight fail and (2) the call of switchCarLight
would lead to a system state which contradicts the invariant.
Thus, the system got stuck in a deadlock situation. In order to
provide a correct specification for a system to be implemented,
it is essential to detect such unwanted behavior prior to the
implementation.
Besides that, other important verification tasks might be:

o Are all operations reachable (i.e. is it possible to invoke
each operation at least once within a period of time)?

o Can a certain system state be generated (e.g. is it possible
to get a “green” light for the pedestrians)?

« Is the system safe (e.g. is there a sequence of operation
calls leading to a system state where both lights are
“green”)?

In summary, having a class diagram along with an initial state,
it is important to check whether the specified system exhibits
certain behaviors. While these checks can be performed prior
to the implementation of the system, often this is a manual
and therefore time-consuming process — in particular for larger
models. Thus, in this paper we address the following problem:

How can we automatically check whether a wanted
or unwanted behavior for a given UML class dia-
gram and a given initial state exists?

IV. CHECKING THE CORRECT BEHAVIOR
USING SATISFIABILITY SOLVERS

In order to automatically solve verification tasks as the ones
sketched in the previous section, we suggest the usage of
satisfiability solvers. In the following, the proposed approach
is described. The general idea is sketched first, followed by a
description of the concrete encoding.

A. General Idea

To automatically check the correctness of a specification
with respect to certain corner-cases or behaviors (e.g. deadlock
situations and reachability of operations), all possible execu-
tion scenarios (i.e. all possible sequence diagrams) have to
be considered. However, due to the infinite number of such
scenarios, this is obviously not feasible. Thus, we suggest an
iterative approach instead, whereby the number of considered
operation calls is limited by a value k. As a result, given a class
diagram, an initial system state, and the respective verification
task, we check whether the desired behavior can be obtained
within & steps (i.e. within k& operation calls). If that is the
case, a sequence diagram confirming the correct behavior can
be constructed. Otherwise, the designer may increase the value
of k to solve the task considering a longer period of time. Note
that in previous work considering the consistency of operation
calls verification tasks for £ = 1 have been conducted.

However, checking the verification task with such a restric-
tion is expensive. In the worst case, |OP|* possibilities have to
be considered, where O P is the number of possible operations
to be called in a certain system state. Thus, in order to solve
the problem, we make use of satisfiability solvers, for which
efficient and sophisticated solving engines are available.

The main flow is shown in Fig. 4. Given the above men-
tioned inputs, we construct the problem of obtaining a desired
behavior within k steps as a satisfiability instance. If the
resulting instance is determined satisfiable by a respective

Sequence Diagram
Y

sat
1

4>’ Satisfiability Problem ‘

Class Diagram

Object Diagram

Verification Task
Depth k&

unsat
-~ 41 ——

Fig. 4. General flow

solver, a valid sequence diagram demonstrating the behavior
can be derived from the solution. If in contrast the instance is
unsatisfiable, it has been proven that no such scenario within &
steps exists.

B. Structure of the Satisfiability Instance

Given the main flow as a basis, the open question is how
to encode the satisfiability problem. In the following, the
proposed encoding is described by means of Example 4 from
Section III. Fig. 5 shows the components, which are already
available for this purpose, independently of the considered
verification task. These components include

o the initial system state (denoted by o) including the
values for all attributes,

o the k operation calls to be
by opg, op1,...,0pk—1 € OP), and

o the k system states (denoted by o1, 09, ..
from the respective operation calls.

defined (denoted

.,0) derived

Besides these components, the OCL expressions in a class
diagram have to be considered. OCL expressions appear in
terms of the invariants Z as well as the pre- and post-conditions
of the chosen operations. Therefore, the following syntax is
applied:

Definition 6 (Evaluation of OCL expression): For a system
state o and an OCL expression ¢, the evaluation of ¢ in o is
denoted by o(y). Furthermore, o(®) := A\ .4 0(¢) denotes
the evaluation of all expressions in ®.

Definition 7: For an operation op defined in the class dia-

gram, the pre- and post-conditions of op are denoted by <,
and >, respectively. Furthermore, the invariants in a class
diagram are denoted by Z.
Given these definitions, the problem mentioned above can be
reduced to the question of whether it is possible to choose the
operation calls opy, . ..,opr—1 € OP, such that (1) all system
states satisfy the invariants, (2) the respective pre- and post-
conditions match with the respective system states, and (3) the
considered behavior is obtained. Formally, is it possible to
choose the operation calls opy, . .., 0pg—1, such that

k—1
F=No@ A N (@1(<op) A i1 (Bop)) AT
t=0

t=0

is satisfiable, whereby 7 denotes the respective verification
task to be proven. If this is the case, a sequence diagram can
be obtained from the assignments to opg, opi, ..., OPk—1-
Otherwise, it has been proven that no such behavior is possible
considering the given class diagram with its invariants and pre-
and post-conditions.

However, in order to solve this satisfiability problem, f
has to be encoded so that it can be handled by an SMT
solver. In the following sections, the concrete encodings of the
needed components, i.e. system states (including invariants),
the selection of the operations (including the restrictions
implied by the pre- and post conditions), as well as the actual
verification task, are described in detail.

C. Encoding of System States and their OCL Invariants

The encoding of the system states is inspired by [9], where
Boolean satisfiability has been applied in order to determine
a valid system state (in terms of an object diagram) from a
given class diagram. To this end, an encoding of objects (and
their attribute assignments) as well as of links between them
has been introduced, respectively.

Encoding 1 (Attributes): Let c be a class in a UML model,
for which the system state o; with 0 < ¢ < k should be
generated. Then, for each attribute ¢ and for each object o
in 0y, a bit-vector a3, € BM4(M1 is created. The assignment
to dy , represents the assignment to the respective attribute
of the object o in the system state o,. The value of n is
the number of possible values that the attribute a can be
assigned to (including L, representing the undefined value).
To ensure that @5 ; can only be assigned to legal values, the
constraint @5 , < bv(n) is added to the instance, whereby
bv : Ng — B* returns the bit-vector expansion of an integer
value. .
Links are encoded in a similar way. Th_c?refore, new variables \
are introduced, whereby the bits of A represent the possible
links in an object diagram. The assignment to these bits defines
whether a link does exist or does not exist.

Example 5: Fig. 6(a) shows the variables and the con-
straints needed to encode a system state o; which is de-
rived from the class diagram introduced in Example 4. In
this object diagram, one object for the class TrafficLight
and two objects for the class Button are instantiated’. A
satisfying assignment of this instance is shown in Fig. 6(b).
This assignment represents the system state depicted in
Fig. 6(c). |
Besides the basic structure, also the additional OCL invariants
have to be considered. To this end, all specified invariants have

2Note that the Boolean attributes are encoded by an &-variable of size 2
in order to encode the Boolean values False (represented by 002) and True
(represented by 012), as well as the undefined value _L (represented by 102).
As a result, the constraints & < 112 are added to exclude the forth possible
assignment 112, which does not represent a valid value.

oo g1 Ok

b1: Button - b1: Button - b1: Button -

tl: TrafficLight tl: TrafficLight tl: TrafficLight
counter = 0 counter = ? counter = ?

pedLight = false | — pedLight = ? RO > pedLight = ?
b2: Button |—| carLight = true opo =7 [p2. Button — carLight =? op1 =7 opk—1 =7 [p2: Button — carlight =7

request = false request = ? request = ?
counter = 0 counter = ? counter = ?

Fig. 5. Structure of the satisfiability instance

—tl

a i = 012
~t1 2 ~b1l 32 pedLight,t
®pedLight,t €B Xcounter, t EB &ZlmrLi het = 0la
b ~b2 32 _oF ght,
FoarLight,t € B A lounter,t € B a0,
—tl 2 /‘\‘bl]El Abique Lt
arequest,t €B ight,t € Xcounter,t — 102
Tt IBZ /‘\‘bz IBI _59 5
Abutton,t € light,t € Aoounter,: = 10102

Y+l
—tl —t]1 >\ — 112
OpedLight, ¢ < 11lo QcarLight, < 112 Xlﬁ;\tton,t)
it) _
Arequest,t <1l X{:ght,t 12

> =1,

(a) Bit-vector variables and constraints light, ¢

(b) Satisfying assignment

b1: Button

tl: TrafficLight
counter = 2 [~

pedLight = True
b2: Button |— carLight = True
. request = False

counter = 10
(c) Derived object diagram

Fig. 6. Encoding of a system state

to be encoded into a logical equivalent using the introduced
variables & and A.

Example 6: In case of the traffic light preemption, the OCL
invariant

not (pedLight = true and carLight = true)

has to be considered. This can be encoded by adding the
constraint

—tl _ —tl _
- (apedLight,t =012 A QcarLight,t — 012)

to the instance. Therewith, the assignment
from Fig. 6(b) is not satisfiable any longer
and the solver has to determine another solu-
tion (e.g. with 07gedLight,t = 00, and d’ZLrLight’t =01,). =

Analogously, other OCL constraints (e.g. further logical and
arithmetic expressions, collections such as sets, bags, se-
quences, or ordered sets, as well as statements like forAll
and includes) can be encoded.

D. Encoding of Operation Calls

With the encoding of the system states, the respective
operation calls can be encoded. Therefore, new variables and
further constraints are introduced:

Encoding 2 (Operation Calls): For each step t
with 0<t<k, a bitvector J; € BMIOPDT js created,
representing the operation call at this step. Depending on the
assignment to o, the respective pre-conditions (for the system
state o) and post-conditions (for the system state o;y1) have
to be enforced. Therefore, the constraint

k—1
/\ /\ (G =enc(op)) = (enc(o¢(<pp)) A enc(oi+1(B>op)))
t=0 opeOP

is added to the instance, whereby enc(op) represents a dis-
tinct binary representation of the operation op, i.e. a number
from 0 to |OP| — 1. Further, enc(o:(<lop)) (enc(oi1(B>op)))
represents the encoding of the respective pre-condition (post-
condition). The latter encoding is analogously to the encoding
of the invariants outlined above. Finally, to ensure that only le-
gal values can be assigned to &, the constraint Wy < bv(JOP|)
is added to the instance.

Example 7: Reconsider the traffic light example from
Fig. 3(a) and the a-variables shown in Fig. 6(a) intro-
duced to encode the respective system states. Furthermore,

let enc(requesting) = 102 be the binary encoding of the
operation requesting of object bl. To encode the respective
pre- and post-conditions for that operation in step ¢, the
constraint

= __ —tl _ .
(e =102) = O‘pledLighc,t =002 (tl.pedLight = false)
~t —
AN a{)elquest,tJrl = Olbgl (tl.request = true)
A Acounter,t+1 — Xcounter,t + 12
(counter = counter@pre + 1)
is added to the instance. |

In other words, depending on the assignment to ¢, constraints
derived from the respective pre- and post-conditions of the
considered operation are implied. Similar constraints are added
for the remaining operations.

E. Encoding of the Verification Task

Finally, the desired verification task has to be encoded. This
can be done in various ways depending on the respective goal.
The general procedure is hereby to pre-define the respective
variables in order to enforce the desired behavior. For example:

o To check whether a certain operation op € OP is reach-

able, the constraint \/,’:01 (&; = enc (op)) (enforcing that
in at least one step op is called) is added to the instance.

o To check whether a certain system state can be generated,

the assignments to the respective @-variables have to be
enforced for at least one system state. In the traffic light
example, to ensure that it is possible to kget a “green” light
for the pedestrians, the constraint Vtzo(&gedLighmt =
012) is added to the instance.

In combination with the encodings introduced above, a satis-
fying assignment can then be determined only if the desired
behavior is possible. More complex verification tasks can be
defined analogously.

F. Solving the Instance

Given the encodings presented above, a satisfiability in-
stance is being constructed, which can be handled by a solving
engine, if respective variables and encodings are transformed
into a proper format. In this paper, we applied an SMT solver
using the bit-vector logic theory QF_BV. The QF_BV theory
provides syntactical equivalences for the bit-vector operations
used above.

Having the resulting instance available, the solver tries to
determine an assignment to the ¢, variables which satisfies
all constraints. If this is possible, the respective operation
calls and the resulting system states (including values of
attributes and links) can be obtained by the assignments to the
respective @-, -, and A-variables. In contrast, if no satisfying
assignment can be found, it has been proven that the desired
behavior is not possible considering the underlying class
diagram as well as the respective invariants and conditions.

V. EXPERIMENTAL EVALUATION

In order to evaluate the proposed approach, all concepts
introduced above have been implemented and applied to three
UML models in different setups and with different verification
tasks. The results of this experimental evaluation are described
in the present section. The respective SMT instances were
transformed to a file in the SMT-LIB format and solved with
the SMT solver Boolector [22]. The experiments were carried

TABLE I
CONSIDERED MODELS

Name #CI #Attr # Assoc #Op #Pre #Post #Inv
Switch 2 4 3 4 7 25 3
Simple CPU 6 9 6 5 8 9 8
Traffic Control 3 6 1 5 13 46 7
TABLE II
EXPERIMENTAL RESULTS
Name Task #0bj Depth Status Run-time
Switch Reachability 25 23 sat 49.7
Switch Reachability 25 22 unsat 50.0
Switch Reachability 25 50 sat 621.7
Switch Reachability 9 103 sat 147.5
Switch Reachability 9 102 unsat 90.4
Simple CPU State Gen. 13 100 sat 1.3
Simple CPU State Gen. 13 100 unsat 0.4
Traffic Control Reachability 6 5 sat 0.0
Traffic Control Reachability 24 10 sat 1.6
Traffic Control State Gen. 9 30 unsat 0.1
Traffic Control State Gen. 9 100 unsat 0.4

out on a 2.26 GHz Intel Core2 Duo with 3 GB main memory
running Linux 2.6.

Due to page limitations, the considered models are not
described in detail but briefly summarized in Table I. In
the columns, the name of the respective benchmarks as well
as the number of classes, attributes, associations, operations,
pre-conditons, post-conditions, and invariants are listed. The
Switch model specifies a protocol, where clients can exchange
data between each other (controlled by a common host).
Further, a simple CPU including a program counter, a control
unit, and an arithmetic logic unit, is modeled in the benchmark
denoted by Simple CPU. Finally, the Traffic Control is an
extension of the traffic light example in Fig. 3(a) with a yellow
phase and suitable for a crossing.

On these models (in different configurations), two verifica-
tion tasks have been performed. First, it is checked whether
a certain operation is reachable (referred to as Reachability).
Next, it is checked whether a certain system state can be
generated (referred to as State Gen.). The results are listed
in Table II. In the first columns, the name and the respective
verification task is given, followed by the number of objects,
the depth, the result (i.e. satisfiable or unsatisfiable), and the
required run-time in seconds.

As can be seen, the verification tasks can be solved within
seconds, and no task needed more time than 650 seconds to
complete. In the experiments, both the number of objects and
the depth have been adjusted in order to evaluate the scalability
of the proposed approach. Although the run-time increases
as expected, verification tasks up to 100 steps can still be
considered and solved with moderate computational effort.

VI. CONCLUSION

In this paper an approach has been presented that auto-
matically solves verification tasks for the dynamic view of
a UML class diagram including operations with pre- and
post-conditions. Sequences of operation calls including their
implications on successive system states have been considered.
Therefore, the respective system states, operation calls, and the
actual verification task have been encoded as an instance of

the satisfiability problem. The approach has been experimen-
tally evaluated in a case study, which demonstrates that the
considered verification tasks can be checked efficiently.

REFERENCES

[1] J. Rumbaugh, I. Jacobson, and G. Booch, Eds., The Unified Modeling
Language reference manual. Essex, UK: Addison-Wesley Longman
Ltd., 1999.

[2] Y. Vanderperren, W. Miiller, and W. Dehaene, “UML for electronic
systems design: a comprehensive overview,” Design Automation for
Embedded Systems, vol. 12, no. 4, pp. 261-292, 2008.

[3] G. Martin and W. Miiller, UML for SOC Design. Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 2005.

[4] J. Warmer and A. Kleppe, The Object Constraint Language: Precise
modeling with UML. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1999.

[5] M. Gogolla, M. Kuhlmann, and L. Hamann, “Consistency, Independence
and Consequences in UML and OCL Models,” in TAP, ser. Lecture
Notes in Computer Science, C. Dubois, Ed., vol. 5668. Springer, 2009,
pp. 90-104.

[6] M. Gogolla, F. Biittner, and M. Richters, “USE: A UML-based specifi-
cation environment for validating UML and OCL,” Science of Computer
Programming, vol. 69, no. 1-3, pp. 27-34, 2007.

[7] M. Kyas, H. Fecher, F. S. de Boer, J. Jacob, J. Hooman, M. van der
Zwaag, T. Arons, and H. Kugler, “Formalizing UML Models and OCL
Constraints in PVS,” Electronic Notes in Theoretical Computer Science,
vol. 115, pp. 3947, 2005.

[8] J. Cabot, R. Clarisd, and D. Riera, “Verification of UML/OCL Class
Diagrams using Constraint Programming,” Apr. 2008, pp. 73-80.

[9] M. Soeken, R. Wille, M. Kuhlmann, M. Gogolla, and R. Drechsler,
“Verifying UML/OCL models using Boolean satisfiability,” in Design,
Automation and Test in Europe. 1EEE Computer Society, 2010, pp.
1341-1344.

[10] A. Baruzzo and M. Comini, “Static Verification of UML Model Consis-
tency,” in Proc. 3rd Workshop Model Design and Validation, Oct. 2006,
pp- 111-126.

[11] X.Li, Z. Liu, and J. He, “Consistency checking of UML requirements,”
in ICECCS. IEEE Computer Society, 2005, pp. 411-420.

[12] J. Cabot, R. Clarisé, and D. Riera, “Verifying UML/OCL Operation Con-
tracts,” in Integrated Formal Methods, ser. Lecture Notes in Computer
Science, M. Leuschel and H. Wehrheim, Eds., vol. 5423. Springer,
2009, pp. 40-55.

[13] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic Model
Checking without BDDs,” in Tools and Algorithms for the Construction
and Analysis of Systems, ser. Lecture Notes in Computer Science,
R. Cleaveland, Ed., vol. 1579. Springer, 1999, pp. 193-207.

[14] S. A. Cook, “The complexity of theorem-proving procedures,” in
STOC’71: Proceedings of the third annual ACM symposium on Theory
of computing. New York, NY, USA: ACM, 1971, pp. 151-158.

[15] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an Efficient SAT Solver,” in Design Automation
Conference. ACM, 2001, pp. 530-535.

[16] E. I. Goldberg and Y. Novikov, “BerkMin: A Fast and Robust Sat-
Solver,” in Design, Automation and Test in Europe. 1EEE Computer
Society, 2002, pp. 142-149.

[17] N. Eén and N. Sorensson, “An Extensible SAT-solver,” in SAT, ser.
Lecture Notes in Computer Science, E. Giunchiglia and A. Tacchella,
Eds., vol. 2919. Springer, 2003, pp. 502-518.

[18] M. Ganai and A. Gupta, SAT-Based Scalable Formal Verification Solu-
tions (Series on Integrated Circuits and Systems). Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 2007.

[19] A. Armando, C. Castellini, and E. Giunchiglia, “Sat-based procedures
for temporal reasoning,” in 5th European Conference on Planning, ser.
Lecture Notes in Computer Science, S. Biundo and M. Fox, Eds., vol.
1809. Springer, 1999, pp. 97-108.

[20] R. Wille, D. GroBe, M. Soeken, and R. Drechsler, “Using Higher
Levels of Abstraction for Solving Optimization Problems by Boolean
Satisfiability,” in IEEE Computer Society Annual Symposium on VLSI.
IEEE Computer Society, 2008, pp. 411-416.

[21] R. Wieringa, “A Survey of Structured and Object-Oriented Soft-
ware Specification Methods and Techniques,” ACM Computer Surveys,
vol. 30, no. 4, pp. 459-527, 1998.

[22] R. Brummayer and A. Biere, “Boolector: An Efficient SMT Solver for
Bit-Vectors and Arrays,” in Tools and Algorithms for the Construction
and Analysis of Systems, ser. Lecture Notes in Computer Science,
S. Kowalewski and A. Philippou, Eds., vol. 5505. Springer, 2009,
pp. 174-177.

