Debugging HDL Designs Based on Functional
Equivalences with High-Level Specifications

Alexander Finder*
final @informatik.uni-bremen.de
*University of Bremen
28359 Bremen, Germany

Abstract—The increasing complexity of circuits and systems
is forcing design specifications to software-like programming
languages like C. Since the conversion from software to hardware
is a difficult task solved manually, bugs are frequently introduced
in the HDL design. Sophisticated automated error localization
and correction techniques, i.e. debugging, are a challenge.

In this paper a new automated method is presented for
debugging hardware implementations when a software-like spec-
ification in C is given. Based on functional equivalences between
software and hardware, error localization and correction are
automated. We present experimental results for different types
of designs and different types of faults.

I. INTRODUCTION

The increasing complexity of circuits and systems forces
designers to move to higher software-like programming lan-
guages above the Register Transfer Level (RTL), like Em-
bedded System Languages (ESL) or C/C++ [1]. Thus, often
a “golden model” is written in software or software-like
languages, like ANSI-C. The typical approach is then to
convert this ”golden model” used as the specification into
an implementation in HDL, like VHDL or Verilog. Since
there are many differences between hardware and software, a
correct conversion from software to hardware turns out to be
a difficult task. For instance, in hardware designs computation
is inherently parallel. Clocking synchronizes the interaction
between computational units that run in parallel. Verifying
the resulting hardware descriptions becomes an essential task.
Moreover, debugging a hardware implementation manually is
time consuming and costly. Up to 80% of the overall design
cost are due to verification [2] and often more than 60% of
today’s verification effort is consumed by debugging.

In this paper we present a new debugging approach for
hardware descriptions using reference implementations either
in software or HDL. The proposed method focuses on de-
bugging untimed C programs versus timed HDL designs.
Symbolic co-simulation is applied for error localization and
error correction, exploiting functional equivalences between
two descriptions. To correct an erroneous implementation, the
specification is used to find corrections by replacing parts of
the implementation with parts of the specification.

The methodology proposed in this paper is not restricted to
specifications in C. Rather, each combination of C programs
and HDL descriptions can be handled. Even an HDL imple-
mentation may serve as specification to correct a C program
handled as implementation or two HDL descriptions can be
considered.

Our implementation has no dynamic memory model such
that neither pointers nor flexible sized arrays in C are sup-
ported. We also deem recursion and the usage of external
libraries as unnecessary for our purposes, as the C program

This work was supported in part by the European Union (Project DIA-
MOND, FP7-2009-1ST-4-248613).

Jan-Philipp Witte*
jpwitte @informatik.uni-bremen.de

Gorschwin Fey*!
Goerschwin.Fey @dlr.de
fGerman Aerospace Center

28359 Bremen, Germany

only serves as a specification for an HDL implementation. In
general, we expect a similar way of implementation, i.e. the
same algorithms, within the different abstraction levels of a
design such that data and control paths are similar. This allows
to utilize functional matching to reduce the complexity of
equivalence checking as known from combinational equiv-
alence checking [3] and to use this information for debug
automation.

The contributions of this paper are:

o An algorithm tightly integrating verification and debug-

ging.

e A new error localization and error correction technique

based on functional equivalences.

The remainder of this paper is organized as follows: In
Section II related work is reviewed. Section III introduces
terminology and definitions and shows the transformation of
a C program to an FSM. In Section IV the SEC approach is
described. The principle of debugging faulty implementations
based on functional equivalences is explained in Section V.
Experimental results are presented in Section VI. The paper
is concluded in Section VII.

II. RELATED WORK

Several approaches have been proposed to verify system-
level specifications versus HDL descriptions [1], [4], [5], [6].
Vasudevan et al. apply equivalence checking [4] to verify
system-level design descriptions against their implementa-
tions in RTL. However, a cycle-accurate behavior of both
descriptions is assumed. In [1] a Bounded Model Checking
(BMC) technique has been proposed that takes a C program
and a Verilog implementation. The original C program is
instrumented to describe the cycle-accurate behavior of the
Verilog implementation. The approach is limited as loops
always have to be unwound for a fixed number of times. If the
required limit is unknown, it has to be determined gradually or
using more sophisticated techniques, like in advanced compiler
or synthesis optimization [7]. The authors in [5] target only
model checking of C programs. For this purpose, C programs
are modeled in the form of FSMs and model checked using
techniques based on Boolean Satisfiability (SAT) and Binary
Decision Diagrams. The extension of the model checking
procedure to hardware designs was out of scope. Koelbl et
al. [6] discuss solver technology for system-level to RTL
equivalence checking. First, both models (system-level and
RTL) are converted to a formal representation which is a
word-level Data Flow Graph (DFG). Next, the two DFGs
are combined for the equivalence check. For the proof engine
the DFGs have to be combined such that timing differences
are eliminated, which means that the problem is reduced to a
cycle-accurate equivalence check.

All methods mentioned above use a monolithic approach
where two design descriptions as a whole are checked for

equivalence. In general, verifying and diagnosing the full
designs is very difficult due to capacity limitations of the
reasoning engine. Various optimizations were proposed to
reduce the verification problem. One optimization approach
to reduce the size of the problem instance, is to extend the
verification algorithm by cutpoint detection [8], [9], [10].
Cutpoints represent parts within two designs (e.g., the specifi-
cation and the implementation) which are functionally equiv-
alent. The verification procedure then can be improved by
using the cutpoints as new starting points or reducing the
verification problem by merging the functionally equivalent
structures [3]. For many designs functional equivalences are
only detectable under certain conditions, e.g., a loop condition
has to be fulfilled. In [11] a first attempt is proposed to verify
conditionally functional equivalent designs using an invariant
generation framework. However, all these methods apply only
error detection but not error localization and correction.

In order to localize and correct an erroneous design, error
detection is only the first step. For hardware or software, there
exist several debugging methodologies [12], [13], [14], [15],
[16], [17], [18], [19]. The approach in [16] simplifies a failing
test case to a minimal test case that still produces the failure by
successive testing. An automated fault localization algorithm
based on SAT has been introduced by Smith et al. [15]. In [17]
faulty components are determined with respect to formal
properties. However, in all these methods the specification
is always only used for error detection and localization but
never for error correction. Jobstman et al. [12] transform
an erroneous design to a game and compute a correction
as a strategy in this game. The tool in [13] removes parts
of the software that are assumed to be erroneous and then
tries to synthesize an implementation for these missing parts
such that the specification is satisfied. A very simple but fast
approach for design error correction is mutation [14] where the
incorrect program is repeatedly mutated in different ways and
every mutant is checked for correctness. Hoffmann and Kropf
described in [18] an approach for automatic error correction of
combinational circuits on gate-level using symbolic methods.
The tool in [19] applies counterexample-guided resynthesis
of erroneous circuits on gate-level based on simulation. To
perform the analysis no specification is needed but only
input stimuli with expected output responses. However, all of
these techniques focus only on the correction of a design at
one particular description level and do not exploit functional
equivalences between an erroneous hardware implementation
and its high-level reference specification.

III. PRELIMINARIES

In order to model C programs and corresponding HDL im-
plementations deterministic Finite State Machines (FSMs) are
used. An FSM is defined as a quintuple M = (1, S, Sy, 0, F'),
where [is the finite, nonempty input alphabet, S is a finite,
nonempty set of states, Sy is a finite set of initial states,
So C S, 6 is the state-transition function: 6 : S x I — S,
and F is the set of final states, F' C S.

Each state s € S is represented by a valuation of a finite
set of state variables {v1,...,v,}, where |s| = n. The state-
transition function § determines the next state of a machine
M based on its inputs and the current state. Considering C
programs and HDL implementations, each application of §
transfers the current state of the program (circuit) to the next
state. In other words, § encodes the assignment statements
of the C program and the combinational part of the circuit,

respectively. To indicate the time step we use the superscript
t, like e.g., st denotes the state s at time step t.

Functional equivalences between two FSMs M, and M;
are considered as cutpoints. A cutpoint c is given by a tuple

(vfM , vé ...) of state variables associated to a time step, where
0 1

k k l ! : ;
Vi, € Sug, and vy, € sy, are functionally equivalent at

the respective time step. We define a partial order for pairs
of state variables associated to time steps (vF vl) and
Mg’ "IMy

(UZLMO ? U;I;vfl) as
(k l

i va1

) < (,Uu o

Mg U IMy

yo (k<u)V(kE=uAl<w).

The first pair (v}, . véMl) in a set of pairs C' is defined by

V(U?AIO ’ H;UMl) eC: (vfj\lo ’ Uéhll) S (U;LMO ’ U;‘iwl)

To compare a specification given in C with an implemen-
tation in VHDL or Verilog, we use FSMs as a common inter-
mediate representation for these descriptions. Modeling both
descriptions as FSMs enables us to check C programs which
do not have to be cycle-accurate with respect to their hardware
implementations. Hence, specification and implementation do
not need to use the same number of time cycles for the
computation. In addition, loops do not have to be unwounded
in advance but this is done implicitly when unrolling the FSM
such that the depth does not have to be determined gradually
or be computed using more sophisticated techniques. Since
the modeling of synchronous sequential circuits as FSMs is
well-known, we only describe how we model a C program as
an FSM, similar to [5].

To create an FSM M from an ANSI C program P, which
serves as the specification, each method of P is split into
a finite set of nonempty basic blocks B and transformed to
Static Single Assignment (SSA)-form [20]. Each basic block
b; € B consists of a sequence of assignment statements that
is followed either by a conditional jump or a direct jump to
another basic block b;. All statements within a basic block are
executed sequentially without interruption. Each basic block
has only one entry point and one exit point. There are two
special blocks in each method of P, the first block bepiry is
the entry point and a common return block b..;: is the exit
point.

In SSA-form statements in P are split into statements with
three operands at the maximum and each variable is assigned
exactly once. Each occurrence of an existing variable in P is
assigned to a unique version number in SSA-form. If a variable
in P is written in different blocks, a so-called PHI-function
determines which one should be used in the current block.

Example 1. In Figure 1 a C program is shown and its
corresponding SSA-form in Figure 2. The original program
is split into four basic blocks (bb_2 to bb_5). A temporary
variable T is introduced to store the result. Each occurrence
of the new variable and the input variables (a and b) on
the left side of an assignment statement is made unique by
incrementing the index of the affected variable. In bb_5 the
PHI-function determines which version of T should be taken
for the return value.

In order to transform a program P to an FSM M, we
provide each method of P with a program counter PC to
control the state transitions of M. By this, the execution of
each basic block b € B of P represents a state transition such
that all variable changes within a basic block are mapped to
a state s € S of M. Since each variable of a basic block b

PC=0
b entry

max (int a, int b){
int T;
<bb_2>:
if (a_2 > b_3)
goto <bb_3>;
int max(int a, int b){ else
if(a > b) goto <bb_4>;
return a; <bb_3>:
else T 4 = a_2;
return b; — goto <bb_5>; —
} <bb_4>:
T_5 = b_3;
: <b§7?>i = PHI <T_4(3), T_5(4)> return T_1;
_ _ ;T
Fig. 1. C program. return T 1;
}
Fig. 2. SSA form.
Fig. 3. Finite state machine.
is mapped to a unique version number in the SSA-form, each given by 7s,pcc = 1 or 75y, = 1. In this case, only the

SSA-variable is directly mapped to a state variable v} of a

state s°. The value assigned to the state variable is implied by
the PC that substitutes the functionality of the PHI-function.

Example 2. In Figure 3 the FSM M for the program in
Figure 2 is shown. Each basic block of Figure 2 is mapped to a
state in M. Additionally, the basic blocks beyiry and begq: are
added representing the entry and exit point of method max ().

Typically the specification and the implementation need
different numbers of transitions to produce the same results.
To resolve this, we add a special so-called ready state variable
TSspec t0 the FSM representation of the specification which
defines when a final state s* € F is reached. The variable
TSspec 1S Set t0 7Sgpec = 1 when PC' reaches the last basic
block of P and otherwise to 7ss,.. = 0. Similarly, the
implementation has an appropriate variable 75;,,,;,; = 1 or a
fixed number of transitions that has to be specified by the user.

Example 3. In Figure 3 a final state is reached if PC =5
where the ready signal rs = 1. This signals that the compu-
tation has been completed. In this case, e.g., the return value
is handled as an output variable which can be compared to
the corresponding output variable of the implementation.

IV. VERIFICATION

Our correction procedure is tightly integrated with the ver-
ification procedure exploiting functional equivalences, called
cutpoints.

A. Sequential Equivalence Checking

The FSMs modeled for a C program and the correspond-
ing HDL implementation serve as a starting point for ver-
ification and diagnosis. For a sequential equivalence check
of the primary outputs only final states have to be veri-
fied to be equivalent. After the creation of the two FSMs
Mspec (Ispeca Sspem S()Speca 63})6(:3 Espec) and Mimpl =
(Limpts Simpts 90,1 > Oimpts Fimpt) for SEC the inputs of the
specification have to be mapped to the inputs of the implemen-
tation. This is either done automatically if variable names are
matching or has to be done manually, otherwise. The inputs of
both descriptions are set to be equal. Analogously, we proceed
with the outputs.

The idea for the equivalence checking algorithm is as
follows: Both FSMs are unrolled in parallel and in each time
step it is checked if one of the FSMs can reach a final state

other FSM is traversed further to find the corresponding final
state. If for both FSMs a final state has been found, these are
checked for equivalence. If the final states are not equivalent, a
counterexample is returned; otherwise the algorithm continues.
As reasoning engine for SEC a SAT- or SMT-solver can be
used.

B. Finding cutpoints

To reduce the state space to be verified, cutpoints between
the specification and the implementation are determined. A
set of cutpoints C' is given by pairs of state variables (vfsmc,
v;mm) which have the same value under equal input assign-
ments. We use these cutpoints to simplify the verification

problem in two aspects:

« Additional constraints are added to the problem instance
to be solved by the SAT- or SMT-solver which, though
enlarging the verification instance, reduce the search
space. These constraints force identical values to the pair
of state variables of each cutpoint.

o Cutpoints found can be used as new starting points,
removing the input cone. Due to reachability aspects, in
our approach, only the input cone of the implementation
is removed in order to avoid the creation of unreachable
states. By this, we assure that only parts of the implemen-
tation are removed that have no further effect on parts of
the circuit which are not covered by the output cone of the
cutpoints. Removing the input cone reduces the problem
instance to be verified.

Since we keep the input cone of the specification false
negatives are avoided which could occur otherwise, if the
cutpoints are used as new starting points.

To find potential cutpoints, random input simulation is
applied in a first step. Both descriptions are simulated for a
given number n of time steps in parallel with identical random

input values in the first cycle. Each state variable vfsw of each
state s‘;pec in Mgpec is compared with every state variable
v in each state sj, ., in Minp for equivalence. State

jmnpl 7
variables v? o are assigned to equivalence classes

tspec’ impl
where all Variables] are collected which have the same value.
Variables vfs or v;‘imp . which have different values, are split
into different equivalence classes. After n simulation runs only
state variables that remain in the same equivalence class, are

considered as potential cutpoints.

Cutpoints Repair candidates

Specification I-)

—>

kK

Implementation

<TIv— <<SIv—

'1>

}/'t -

Fig. 4. Principle of correction based on functional equivalences

Because every state variable in the specification is compared
to state variables in the implementation for every time-step in
the simulation, there may be many potential cutpoints. The
reason is that a variable often keeps its value over many time-
steps. For two variables, which have more than one potential
cutpoint, there is only the first chosen for verification.

Example 4. If two variables have the same value for five
time steps in a sequence, there are 25 cutpoints determined
by simulation between these variables. Thus, out of the 25
potential cutpoints only the first one is chosen.

Because the results may differ for various numbers of
simulation runs and the randomly generated input values,
the potential cutpoints chosen for verification may differ. In
general, the number of potential cutpoints is significantly
reduced with the approach of selecting only one cutpoint in a
sequence of potential cutpoints, e.g., from more than 340k to
less than 40 for the tcas benchmark (see Section VI).

Since simulation is not complete, the set of cutpoints C
found has to be verified in a next step which is integrated
into the SEC procedure described above. Always when a state
is unrolled which has one or more state variables marked as
potential cutpoints by simulation, the cutpoints are verified
using a formal reasoning engine. This results in a set of
verified cutpoints Cyepified-

V. CORRECTION

In this section we describe our approach for an auto-
mated localization and correction of bugs integrated into the
verification procedure. Figure 4 illustrates the principle. If
the implementation is not equivalent to the specification, the
proposed technique for finding cutpoints computes a frontier
of cutpoints. The cutpoint frontier is a subset Cy C C of
all verified cutpoints Cyerifieq computed by the algorithm
described in Section IV-B. The two state variables in any pair
(v;?spﬁc , v;*mpl) € Cy have no further state variables of verified
cutpoints in their output cone.

Next the set of repair candidates rc € RC is computed
where a repair candidate is a tuple (v’ v,i _)» i.e. replace
variable v;? ~ from the 1mplementat10n with variable VL.,
from the spemﬁcatlon In order to find a repair candidate
rc for the implementation, we start with the first cutpoint
(vlgpﬁc,v;fmp[) € Cy which has no further cutpoints ¢ €

veri fwd within its output cone. We get the first cutpomt

éec, s pl) with respect to the partial order of the cutpoints
in

Slnce the specification and the implementation should be
functionally equivalent further cutpoints in subsequent time
steps are expected Starting with the first variable, all state
variables v within the output cone of v~ are considered
as repair candidates rc € RC. To correct the 1mplementat10n
variables vlimpl are subsequently substituted by state variables

Algorithm 1 Correction

1: const maxDepth
2: FSM Mpec, Mimpi
3: C = getCutpoints(Mspec, Mimpt), Coerifiea = 0
4: for i = 0...maxDepth and
not allFlnaIStatesReached(Mspcc, M;mp) do
Cherified-add(verifyCutpoints((v? o ytmpz)))
if canReachReady(Mp.., 7) then
for j = i...maxDepth do '
Coerifiea-add(verifyCutpoints((v3- N
9: if canReachReady(M;,p1, 7) then

A

0...7
Yimpl

)

10: if notEquivalent(Mpec, 1, Mimpi, j, C) then

11: C¢ = computeCutpointFrontier(Cyerified)

12: RC = computeRepairCandidates(C)

13: for all (v;! v) in RC do

14: if VerlfyRepaerandldate((vl) Vk,pe.)) then
15: updateCutpoints(C)

16: break

17: end if

18: end for

19: end if

20: end if

21: end for

22: end if

23: end for

V%.,.. Of the specification such that v’ = v; . The re-

placement procedure starts with the first variable in the output
cone of the cutpoint variable vfspec. Then again simulation is
performed to decide if new cutpoints can be computed. If this
is not the case, the repair candidate rc = (v} ., vg) is
discarded and the procedure is repeated for the next repair
candidate. Finally, the repair candidates are verified. If the
verification of a repair fails, the next repair candidate in RC' is
chosen. In case that the verification holds, a valid repair with
respect to the repair candidate rc is found and applied to the
implementation. Finally, the set of cutpoints is updated with
respect to the change in the implementation and the method
proceeds as before.

A. Algorithm

The entire debugging procedure is sketched in Algorithm 1.
First, a set of cutpoints C between Mype. and My, is
computed using simulation. Next, the verification is started
with the two nested loops in Lines 4 and 7. These loops are
executed as long as there are further final states, or the given
maximal depth is reached. We determine if all final states have
already been covered by property checking whether there exist
input assignments for which no final state, i.e. 75spec=1 OF
TSimpl = 1, has been reached yet. For each step, both FSMs
are checked for final states in Lines 6 and 9. In addition, in
each time step we check whether there are cutpoints until that
time step and verify all cutpoints (v, vy) wheret <i

spec rmp
and v <7 in Line 5 (and v < j in Line 8) starting with the
first cutpoint.

If there is a counterexample in the verification step (Line
10), which uses the currently verified cutpoints as additional
constraints, the repair is started. To get a repair, we compute
the cutpoint frontier C¢ for all verified cutpoints Cyepificd
in function computeCutpointFrontier () in Line 11
as explained above. Next, we compute the set of repair

candidates RC in Line 12 which are pairs of variables
(vi > Vk.,..) in the output cone of variables in C'y. For this
we combine each state variable v;” ~ of the implementation
with each state variable v7 in the specification. Next, each
repalr candidate is evaluated by simulation. If a replacement
of v/ ~ by aw; leads to further cutpoints between both
descrlptlons the repalr candidate is kept within RC'. Otherwise
it is discarded. By default, we consider all combinations of
state variables between the specification and the implementa-
tion within five time steps as possible repair candidates but
the search space is adjustable by the user.

Beginning with the first repair candidate (v;! vy) we
formally check whether it is a valid repair (Llnes 13- 18) In
this case, we apply the repair to the implementation and update
the set of cutpoints (Line 15) based on the changed behavior of
the implementation. This is done by applying again simulation
for cutpoint detection and adding all new cutpoints to C'. The
algorithm proceeds with Line 7. The method terminates either
when all final states of both descriptions have been verified,
the maximal depth has been reached, or when no repair could
be found.

B. Discussion

The algorithm depends on the existence of functional
equivalences between two descriptions. Otherwise an accurate
computation for a repair becomes difficult and the algorithm
most probably would end up with a repair at the primary
outputs. However, typically functional equivalences between a
specification and an implementation are present if no different
implementations for an algorithm are used.

As user-defined parameter for the methodology we have
the maximal depth, which serves as an upper bound for how
many steps the FSMs should be verified at the maximum.
In addition, the parameter is used for cutpoint detection to
have an upper bound for simulation. In case of a hardware
implementation with constant runtime, an additional parameter
can be given to the procedure, which defines when a final state
is reached for the implementation. Furthermore, the number
of simulation runs can be given, or specific input stimuli
to support simulation in cutpoint detection. For instance,
while detecting repair candidates we apply the counterexample
determined by the formal engine and additional stimuli which
are similar. This is done to create a cutpoint frontier close to
the fault within the implementation.

If a repair is found, the implementation is not resynthesized
by replacing parts of the implementation with parts from the
specification. Instead, a suggestion is given, how to fix the
implementation of the design, e.g., "replace the computation of
signal s in the implementation by the computation of variable
v from the specification”. By this means, the proposed repair
algorithm is not restricted to a particular subset of fault types.

VI. EXPERIMENTAL RESULTS

The experiments have been carried out on an Intel(r)
Core(tm) i5-2500K processor with 8 GB of memory. For
verification, the SAT-solver MiniSat2 [21] has been used as
the underlying reasoning engine. We restricted the equivalence
check for all benchmarks to a time limit of 60 minutes per
instance. For the cutpoint detection described in Section IV-B,
100 simulation runs have been carried out for each design. In
order to create FSMs out of the C programs considered, we
need the corresponding SSA-forms. For this purpose, we hook

TABLE I

BENCHMARKS
name LOC #reg #gates unroll depth
spec impl
pipeline3 28 56 11 3704 10
pipeline6 43 95 20 7119 15
tcas 175 175 37 17488 39

dlx-decode 23 23 25 3904 17

TABLE I
CUTPOINT DETECTION

benchmark #potential cp #selected cp simulation #cp verification

time time
pipeline3 296 9 1s 8 16s
pipeline6 920 13 Is 12 1200s
tcas 346643 38 8s 28 132s
dix-decode 21296 40 1s 37 15s

into the internal data structure of the GNU Compiler Collection
(GCC), called GIMPLE [22].

The presented procedures have been evaluated on three
different sets of benchmarks. The first set contains two
pipelines with different numbers of stages in the hardware
implementation. Circuit pipeline3 is a 3 stage pipeline
with one addition, one comparison and dependent on the result
either another addition or subtraction per stage: pipeline6
has the same structure but contains 6 stages. The second
set contains an implementation from the Siemens benchmark
suite [23] of the Traffic Collision Avoidance System (TCAS).
This benchmark is a simplified version of TCAS II which can
give an up or down resolution advisory to an aircraft pilot to
avoid collisions between aircrafts. The third set consists of a
DLX microprocessor instruction set architecture based on the
WinDLX [24]. In particular, the decode step is examined,
which is implemented with shift and bitwise operators and can
distinguish between three different types of instructions. The
32-bit wide input instruction is decomposed into two, four, or
five parts, dependent on the type of instruction.

Table I gives an overview of the specifications and imple-
mentations. Column LOC contains the Lines Of Code for the
C specification (spec) and the HDL implementation (imp1l).
In column #reg the number of registers and in #gates the
number of gates in the synthesized hardware implementation
are shown. Column unroll depth gives the number of
states, the FSM has to be unrolled at the minimum to reach
all final states. Since specification and implementation are in
C for tcas, the number of code lines is equal. A simple
transformation of the tcas design in a gate-level netlist
resulted in 37 flip flops and more than 17k gates.

In Table II we show how many cutpoints are detected
by our procedure described in Section IV-B. In column
#potential cp the number of potential cutpoints detected
by simulation are given. Column #selected cp shows the
number of cutpoints selected for verification (see Example 4 in
Section IV-B). In column simulation time the runtime of
the simulation-based cutpoint detection is given. In the last two
columns of Table II the number of verified cutpoints (#cp) and
the verification time for the verification procedure are shown.
The runtime for finding cutpoints always lies between 1 and
9 seconds. Most of the cutpoints found by simulation were
verified to be real cutpoints, i.e. the implementation and the
specification are equivalent at these points. However, for t cas
10 of 38 cutpoints have been sorted out during verification.
The verification time for all cutpoints lies between 15 seconds
(d1x—decode) and 20 minutes (pipeline6).

TABLE III
RUNTIMES FOR EQUIVALENCE CHECK

benchmark time
pipeline3 8s
pipeline6 974s
tcas 169s

dlx-decode 25s

TABLE IV
CORRECTION
benchmark #rep. cand. repair time
tcasl 19 20s
tcas3 7 8s
tcas4 6 7s
tcas12 3 Ss
tcas22 6 Ts
tcas28 108 102s
tcas29 1 2s
tcas30 1 3s
tcas41 6 Ts
pipeline3a 1 3s
pipeline3b 1 3s
pipeline6a 7 22s
pipeline6b 4 15s
dlx-decodel 57 470s
dlx-decode2 82 737s

Next, in Table III runtimes for the equivalence check of
correct versions for the benchmarks in Table I are shown.
If erroneous implementations are considered for debugging,
the first counterexample has always been returned in a few
seconds.

In Table IV experimental results for the correction algorithm
described in Section V are shown. In column #rep. cand.
the number of repair candidates is shown which have been
tried for a potential repair (see Algorithm 1) until a valid repair
has been found. The repair time, given in the last column,
represents the time to find a repair for correcting a design.

For the t cas benchmark from Siemens faulty versions are
included within the benchmark suite which are considered to
be realistic design errors. In Table IV we provide results for
a selection of faulty versions. In each case single operator
faults or operand faults are repaired. Versions with multiple
faults exceeded the runtime limit for the debugging method.
Better heuristics for the cutpoint detection step can speed
up this process. For the pipeline benchmarks in each case
two faulty versions (a and b) have been created where the
faults have been injected randomly. Similarly we proceeded for
the d1x—-decode method where we also randomly injected
faults. Because most of the work is done in parallel in the
decode method, the cutpoint frontier is wide spread, such
that the runtime strongly depends on the order in which the
candidates are selected. Consequently, although the benchmark
is not so large, it has the highest repair time.

The repair candidates for the faulty designs are chosen
subsequently from the variables in the output cone of the
cutpoint frontier as sketched in Algorithm 1. For each of
the designs a repair has been computed within less than 13
minutes. In most cases even less than a minute is needed in
order to provide a suggestion to the designer how to fix the
implementation given in HDL by providing the corresponding
code of the specification.

VII. CONCLUSION

Verifying hardware implementations versus software speci-
fications is a hard problem. This work shows how to exploit
functional equivalences (cutpoints) between the specification
and implementation for error localization and correction. The
proposed methodology successfully computed repairs on dif-

ferent sets of benchmarks and different types of faults in a
range of few seconds to less than 15 minutes.

REFERENCES

[1]1 E. Clarke, D. Kroening, and K. Yorav, “Behavioral consistency of C
and Verilog programs using bounded model checking,” in Proceedings
of Design Automation Conference, 2003, pp. 368-371.

[2] H. Foster, “Assertion-based verification: Industry myths to realities (in-
vited tutorial),” in Proceedings of International Conference on Computer
Aided Verification, 2008, pp. 5-10.

[3] A. Kuehlmann and F. Krohm, “Equivalence checking using cuts and
heaps,” in Proceedings of Design Automation Conference, 1997, pp.
263-268.

[4] S. Vasudevan, J. Abraham, V. Viswanath, and J. Tu, “Automatic de-

composition for sequential equivalence checking of system level and

RTL descriptions,” in Proceedings of Formal Methods and Models for

Co-Design, 2006, pp. 71-80.

F. Ivanicic, I. Shlyakhter, A. Gupta, M. K. Ganai, V. Kahlon, C. Wang,

and Z. Yang, “Model checking c¢ programs using f-soft,” in Proceedings

of International Conference on Computer Design, 2005, pp. 297-308.

A. Koelbl, R. Jacoby, H. Jain, and C. Pixley, “Solver technology for

system-level to RTL equivalence checking,” in Proceedings of Design,

Automation Test in Europe Conference, 2009, pp. 196-201.

[71 S. Gupta, T. Kam, M. Kishinevsky, S. Rotem, N. Savoiu, N. Dutt,

R. Gupta, and A. Nicolau, “Coordinated transformations for high-level

synthesis of high performance microprocessor blocks,” in Proceedings

of Design Automation Conference, 2002, pp. 898-903.

B. Alizadeh and M. Fujita, “Automatic merge-point detection for se-

quential equivalence checking of system-level and RTL descriptions,”

in Proceedings of International Conference on Automated Technology

for Verification and Analysis, 2007, pp. 129-144.

[9] X. Feng and A. Hu, “Early cutpoint insertion for high-level software vs.

RTL formal combinational equivalence verification,” in Proceedings of

Design Automation Conference, 2006, pp. 1063—-1068.

C. Karfa, C. Mandal, D. Sarkar, S. Pentakota, and C. Reade, “A

formal verification method of scheduling in high-level synthesis,” in

Proceedings of International Symposium on Quality Electronic Design,

2006, pp. 71-78.

J. Baumgartner, H. Mony, M. Case, J. Sawada, and K. Yorav,

“Scalable conditional equivalence checking: An automated invariant-

generation based approach,” in Proceedings of International Conference

on Computer-Aided Design, 2009, pp. 120 —127.

B. Jobstmann, S. Staber, A. Griesmayer, and R. Bloem, “Finding and

fixing faults,” Journal of Computer and System Sciences, vol. 78, no. 2,

pp. 441-460, 2012.

A. Solar-Lezama, L. Tancau, R. Bodik, V. Saraswat, and S. A. Seshia,

“Combinatorial sketching for finite programs,” in Proceedings of Archi-

tectural Support for Programming Languages and Operating Systems,

2006, pp. 404-415.

V. Debroy and W. E. Wong, “Using mutation to automatically suggest

fixes for faulty programs,” in Proceedings of International Conference

on Software Testing, Verification and Validation, 2010, pp. 65-74.

A. Smith, A. Veneris, M. Ali, and A. Viglas, “Fault diagnosis and

logic debugging using Boolean satisfiability,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 24,

no. 10, pp. 1606-1621, 2005.

A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing

input,” IEEE Transactions on Software Engineering, vol. 28, no. 2, pp.

183-200, 2002.

G. Fey, S. Staber, R. Bloem, and R. Drechsler, “Automatic fault

localization for property checking,” IEEE Transactions on Computer-

Aided Design, vol. 27, no. 6, pp. 1138-1149, 2008.

D. W. Hoffmann and T. Kropf, “Efficient design error correction of dig-

ital circuits,” in Proceedings of International Conference on Computer

Design, 2000, pp. 465-472.

K.-h. Chang, I. L. Markov, and V. Bertacco, “Fixing design errors with

counterexamples and resynthesis,” /IEEE Transactions on Computer-

Aided Design, vol. 27, no. 1, pp. 184-188, 2008.

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck,

“Efficiently computing static single assignment form and the control

dependence graph,” ACM Transactions on Programming Languages and

Systems, vol. 13, no. 4, pp. 451490, 1991.

N. Eén and N. Sorensson, “An extensible SAT-solver,” in Proceedings

of International Conference on Theory and Applications of Satisfiability

Testing, 2003, pp. 502-518.

Free Software Foundation, Inc., GNU Compiler Collection (GCC)

Internals, http://gcc.gnu.org/onlinedocs/gecint/, 2010.

H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled experi-

mentation with testing techniques: An infrastructure and its potential

impact,” Empirical Software Engineering, vol. 10, no. 4, pp. 405435,

2005.

WinDLX Home Page. (2012) http://cs.uns.edu.ar/ jechaiz/arquitec-

tura/windlx/DLXinst.html.

[5

[ty

[6

=

[8

=

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]
[23]

[24]

