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Abstract—Different kinds of decision diagrams have played
key roles in advancements for the synthesis of reversible circuits
in the recent past. In this work, decision diagrams are used
to efficiently debug reversible circuits in cases when they do
not match their intentional specification. It can automatically be
checked whether the faulty circuit is almost equal to a given
function, i.e. it can realize the function by slightly modifying the
circuit, e.g. by adding or changing a gate. For this purpose, πDDs
are used which allow for a compact representation of a set of
permutations.

I. INTRODUCTION

Reversible logic serves as underlying technology for many
technologies such as quantum computation [1], optical com-
puting [2], and low power design [3], [4]. It is based on the
principle that every operation must be reversible such that
it can be executed in both directions. Besides computing an
output pattern for an input assignment, a reversible function
can also determine the inputs for a given output. Based on
different gate libraries many models have been proposed to
describe reversible circuits that realize reversible functions
e.g. for its use in quantum computers or low power CMOS
designs [5].

Throughout the recent years, significant achievements were
often achieved by utilizing decision diagrams of different kind.
Decision diagrams offer a compact representation for Boolean
functions and matrices and have been widely applied in the
design of reversible circuits. As examples, Binary Decision
Diagrams (BDDs) have been applied for exact, heuristic,
and hierarchical synthesis of both reversible and irreversible
functions [6], [7], [8]. As an alternative to BDDs, the applica-
tion of Kronecker functional decision diagrams, an extension
of BDDs, has lead to further improvements [9]. Quantum
Multiple-valued Decision Diagrams (QMDDs) [10], enabling
a compact representation for complex matrices, have been
used for both equivalence checking [11] and synthesis of large
reversible functions ensuring a minimal number of lines [12].
Similar data-structures have efficiently been applied for the
simulation and verification of quantum circuits [13], [14]. In
fact, decision diagrams have been the key methodology for
breakthroughs in the design of reversible circuits. BDDs al-
lowed synthesis of minimal circuits for a significant amount of

functions [6] and they enabled the synthesis of large Boolean
functions with more than 100 variables [7]. For the latter case,
the main problem of the algorithm is the huge amount of
additional lines which impedes the practical applicability of
that approach. However, the problem of additional lines in
the synthesis of large functions has been solved again with
decision diagrams, in particular using QMDDs [12].

However, while BDDs and QMDDs offer a compact repre-
sentation for functions and matrices, the recently introduced
πDDs [15] allow for a compact representation of permu-
tations. Hence, they are an interesting extension to the set
of considered decision diagrams in the design of reversible
circuits. Since reversible functions constitute permutations
on the input assignments, they can naturally be expressed
using this data structure. In fact, πDDs do not only allow a
compact representation for single permutations, but for a set of
permutations. Therefore, they can particularly be applied for
many problems where the above mentioned data structures are
not advantageous.

The application of πDDs in the design flow for reversible
circuits has been briefly investigated in [16] by conducting
small experiments in order to show for which tasks πDDs
may be beneficial and for which not. It turns out that πDDs are
not advantageous in comparison to other data structures when
being applied for synthesis of reversible circuits. In fact, they
often perform significantly worse as the πDD representation
for many reversible functions is exponential, as an example
already such an elementary circuit as the inverter. As a result,
large functions do not profit from πDDs. However, when
considering several functions at once, πDDs demonstrate their
strength.

This fact is exploited in the approach that is proposed in
the present paper. A method is illustrated for debugging of
reversible circuits [17] in cases when the circuit does not
match the intended specification, i.e. the reversible function
to be synthesized. If the circuit matches the function by
applying a slight modification, e.g. by adding a new gate at
an arbitrary position, we call the circuit almost-equal with
respect to the considered function. Two algorithms have been
developed where one algorithm solves the problem using a
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Fig. 1. Reversible circuit

naïve approach and the other one utilizes πDDs. The method
based on πDDs clearly outperforms the naïve approach and
illustrates the potential of this new data structure for specific
tasks in the design flow of reversible functions. Although in
this paper missing gate faults are considered, the algorithm can
be extended to similar scenarios as well, e.g. a wrong gate, or
gates that are interchanged. Furthermore, the proposed algo-
rithm based on πDDs is generic such it can easily be extended
to other possibly gate libraries, e.g. multiple-valued ones, since
permutations are used as the underlying representation. Every
reversible gate represents a permutation independently on the
base of the respective logic.

Related work can be found in connection with the test of
reversible circuits (see e.g. [18]), however, the corresponding
algorithms start from a given circuits whereas in the case
of debugging arbitrary circuits need to be analyzed. Other
debugging work has been proposed, e.g. in [19]. Here, the
authors present an algorithm that can fix faulty circuits by
replacing a gate with a new sub-circuit that can consist of
more than a single gate.

The paper is structured as follows. The next section provides
the background, while the problem formulation is illustrated
in Section III. Section IV explains the proposed algorithms
in order to solve the problem and possible extensions to
other logics and gate libraries are illustrated in Section V.
Experimental results are given in Section VI and the paper
concludes with Section VII.

II. PRELIMINARIES

A. Reversible Functions and Circuits

A function f : IBn → IBn is called reversible if it is
bijective, i.e. for each output pattern it is always possible to de-
termine the corresponding input pattern. As a result, reversible
functions represent permutations on the set 0, . . . , 2n − 1.
Reversible functions can be realized using reversible circuits.

Reversible circuits differ from conventional circuits, since
e.g. fanout and feedback are not directly allowed. Usually, they
are built as a cascade of reversible gates including e.g. the
Toffoli gate, the Fredkin gate, or the Peres gate. In this paper,
we focus on circuits composed of Toffoli gates. Given a set
of variables X = x1, . . . , xn a Toffoli gate is a tuple (C, t)

with C ⊂
⋃
x∈X{x, x} such that ∀x ∈ X : {x, x} 6⊂ C being

the set of control lines and t ∈ X with {t, t} ∩ C = ∅ being
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Fig. 2. πDD

the target line of the gate. A Toffoli gate inverts the target
line if, and only if, all control lines xi (xi) are set to 1 (0).
Positive (negative) literals in C are called positive (negative)
control lines.

Example 1: Fig. 1 shows a reversible circuit with three
lines and composed of four gates. The target lines are denoted
by , while a represents a positive control line and a
represents a negative control line. For example, assigning the
input pattern 001 to the circuit results in the output pattern 101.
Due to the reversibility, this computation can be performed in
both directions.

B. πDDs

A πDD [15] is a decision diagram that allows for a compact
and canonical representation for sets of permutations. πDDs
are derived from ZDDs [20], a decision diagram that offers
a compact representation of sets. πDDs exploit that any
permutation can be decomposed uniquely into a sequence of
transpositions that swap two items. For example, the permuta-
tion (3, 5, 2, 1, 4) can be decomposed into a set of transposi-
tions τ(2,1)τ(3,2)τ(4,1)τ(5,4). This can be interpreted as follows:
First the items 5 and 4 are swapped, then 4 with 1 and so on
until the identity permutation πe = (1, 2, 3, 4, 5) is obtained.
The canonical property of the sequence of transpositions is
guaranteed by always swapping the item with the highest
absolute value first.

According to this principle, the vertices in πDDs are la-
beled using the respective transposition (in comparison, in
ZDDs the vertices are labeled using the set element). The
terminal vertices 1 and 0 represent the set containing the
identity permutation πe and the empty set ∅, respectively.
As an example, Fig. 2 illustrates a πDD that represents the
permutations πe, (2, 1), (1, 3, 2). Traversing this πDD from the
top to the bottom leads to the transpositions to be applied so
that eventually the identity permutation results.

Several operations can be carried out efficiently on πDDs
e.g. counting the number of permutations which is equiva-
lent to counting the number of 1-paths in BDDs or ZDDs.
Furthermore, calculating the Cartesian product P ∗ Q =

{αβ | α ∈ P, β ∈ Q} is efficient, which is the set of all
possible composite permutations chosen from P and Q. In



TABLE I
PERMUTATIONS FOR ALL POSITIVELY CONTROLLED TOFFOLI GATES ON 3 LINES
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fact, calculating on πDDs is performed by adding the number
of vertices although the number of elements is multiplied [15].

C. Gate Libraries

Reversible gates and reversible circuits realize reversible
functions and a reversible function in turn represents a per-
mutation. As a consequence, we can compare circuits and
functions using their respective permutations. To exploit the
properties of πDDs, it is important to consider several func-
tions at once, as it is for example the case in gate libraries. We
refer to the gate library that consists of all positively controlled
Toffoli gates as Tn with

Tn =

n−1⋃
t=0

2n−1⋃
µ=0

Tt,µ

where Tt,µ is the permutation that is realized by a Toffoli gate
with target line t and control lines µ. Here, the control lines of
a gate are represented as the binary expansion of µ excluding
the target line.

Table I lists all permutations for positively controlled Toffoli
gates acting on 3 lines. For the sake of an improved readability,
transpositions τ(x,y) are written

(
x
y

)
.

III. PROBLEM FORMULATION

In this work we are considering a debugging task that checks
whether a faulty circuit is almost-equal to a given function
based on a specific fault model. For illustration purposes,
functions are considered that do not fulfill their functional
specification due to a missing gate, however, the proposed
techniques can be extended in order to work other fault models
and therefore with other definitions of almost-equality as well.
These definitions can e.g. include a wrong gate (due to a
missing control) or gates that have been interchanged.

≡ f ?? ? ? ? ?

Fig. 3. Problem formulation

The problem formulation is exemplary illustrated by means
of Fig. 3 using the circuit in Fig. 1. Given a circuit with n

lines and d gates the possible search space is (d + 1) · |Ln|
where Ln is a gate library on n lines. That is, before each
gate and also after the last gate, one gate from the gate library
can possibly be inserted. As an example, |Tn| = n · 2n−1 for
the case of positive controlled Toffoli gates.

A naïve algorithm that solves the problem of determining
whether a circuit is almost-equal to a given function is exhaus-
tively iterating the search space by inserting a gate at each
possible position and then checks the circuit and the function
for equality. This procedure is very time consuming in case
the circuit is not almost-equal to the function, otherwise the
run-time depends on the position in which the missing gate
must be inserted.

We are proposing an alternative method that is making use
of πDDs. After the πDD has been built, it is sufficient to call
one operation on it to decide whether the circuit is almost-
equal to the given function or not. Of course, the complexity
is shifted to building the πDD, however, the run-time is
significantly shorter in comparison to the naïve approach as
the experimental results will show. Furthermore, no difference
in run-time is observed when comparing almost-equal circuits
to non almost-equal circuits. Hence, the algorithm is also more
robust with respect to the result.

IV. ALGORITHMS

This section describes both algorithms that have been de-
veloped in order to determine whether some faulty circuit G is
almost-equal to a given function f . First, the naïve approach
that exhaustively inserts gates at any possible position is
presented while the πDD-based approach is explained and
illustrated by means of examples afterwards.

A. Naïve Approach

The naïve approach takes all Toffoli gates for n lines and
insert them one by one at all the possible positions in the
circuit and then checks whether the circuit G realizes the
considered function f , e.g. by simulation. It can be formalized
as follows.
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Algorithm N (Naïve Approach). Given a reversible func-
tion f : IBn → IBn and a circuit G = g1 . . . gd, such that G is
not a representation of f , this algorithm determines whether
there is a gate ĝ which can be inserted at any position in G

such that the modified G represents f . If such a gate ĝ exists,
then G is almost-equal to f .

N1. [Initialization.] Set p← 0.

N2. [Loop over Tn.] For any gate ĝ ∈ Tn, perform step N3.

N3. [Insert ĝ.] Set G′ ← g1 . . . gpĝgp+1 . . . gd. If G′ realizes f ,
terminate and return true.

N5. [Next position?] If p < d, set p ← p + 1 and return to
step N1, otherwise terminate and return false.

Clearly, Algorithm N is not efficient, which becomes evident
in particular in step N2 since the size of the Toffoli gate library
is exponential with respect to the number of lines. As a result,
the above mentioned technique is not applicable to circuits of
a larger scale.

B. πDD-based Approach

In this section, an alternative is presented which makes use
of πDDs, an efficient data structure for sets of permutations.
Using πDDs allows for constructing and considering several
reversible functions or circuits at once using operations that
can be carried out efficiently on the data structure.

The idea is illustrated by means of Fig. 4 which is based
on Fig. 3. At each position where a gate could be missed,
a πDD is inserted that represents all possible gates, in this
case all Toffoli gates, that could be inserted to fix the circuit.
Combining all combinations into a single πDD, it allows for
the consideration of all possible represented functions at once.

Given a circuit G = g1 . . . gd consisting of n lines where
each gate gi can be described by its permutation πgi and a
function f represented by πf , checking whether G is almost-
equal to f can be solved using πDDs by checking if πf ∈ F ,
where

F =

d⋃
p=0

(
{πg1 . . . πgp} ∗ Tn ∗ {πgp+1

. . . πgd}
)
. (1)

That is, for each position p = 0, . . . , d a set of function is
created by making use of the Cartesian product on πDDs, and
all these resulting sets are joined via union.

Example 2: Fig. 5 shows a circuit with three Toffoli gates.
By applying the πDD-based approach on this circuit, the

Fig. 5. Example circuit for the application of the πDD approach

function

F = (T3 ∗ T1,0 ∗ T2,1 ∗ T0,3)∪
(T1,0 ∗ T3 ∗ T2,1 ∗ T0,3)∪
(T1,0 ∗ T2,1 ∗ T3 ∗ T0,3)∪
(T1,0 ∗ T2,1 ∗ T0,3 ∗ T3)

is obtained.

V. EXTENSION OF THE πDD-BASED APPROACH

This section briefly illustrates how the above described
algorithm based on πDDs can be extended in order to both
support alternative gate libraries and alternative debugging
problems.

A. Alternative Gate Libraries

Since reversible gates represent reversible functions which
in turn represent permutations, the algorithm can readily be
extended to support alternative gate libraries. Since the gate
library is represented as a πDD in Eq. (1), it just needs to be
replaced accordingly. In this way, also multiple-valued gate li-
braries can be considered. As an example, the Muthukrishnan-
Stroud gate [21], which realizes a ternary reversible function,
is represented by the permutation

(0, 1, 2, 4, 5, 3, 8, 6, 7,

10, 11, 9, 14, 12, 13, 15, 16, 17,

20, 18, 19, 21, 22, 23, 25, 26, 24)

which can be realized as a πDD.

B. Alternative Debugging Problems

Similarly, other debugging problems can be considered
when adjusting Eq. (1). If e.g. almost-equality is defined
according to a missing control fault, the equation is written

F =

d⋃
p=1

(
{πg1 . . . πgp−1} ∗Πgp ∗ {πgp+1 . . . πgd}

)
.

where Πgp is a πDD that represents a set of permutations
resulting from removing a control line from gp.

VI. EXPERIMENTAL EVALUATION

We have implemented both algorithms in C++ on top of
RevKit [22] and the SAPPOROBDD package. The experi-
ments were carried out on a 3.10 GHz Intel Core i5 machine
running Linux 2.6.32. In order to evaluate the algorithm,
random circuits consisting of n = 2, 3, 4 lines and d =
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Fig. 6. Direct comparison of approaches

20, . . . , 1000 gates have been created. For each circuit two
experiments have been made:
• It has been checked against a function which is almost-

equal (AE). These functions have been created by ran-
domly deleting a gate from the circuit and simulating it
afterwards.

• It has been checked against functions which is not almost-
equal (NAE).

The missing gate fault has been chosen as respective debug-
ging problem and all positive controlled Toffoli gates are used
as gate library.

The results are represented graphically by means of Figs. 6
and 7. The x-axis and y-axis represent the number of gates d
and the run-time in seconds, respectively. In Fig. 6 the
approaches are directly compared and it can be seen that
the πDD-based approach (blue line) clearly outperforms the
naïve approach (red line). Only in the case of not almost-equal
circuits on 2 lines, the πDD-based approach is slower than the
naïve approach, but already for 3 lines, this relation has been
turned and the πDD-based approach is significantly faster.

Fig. 7 displays the same results but represents the data
in a different manner. Here, for each approach, i.e. naïve
and πDD-based, and for each considered number of lines,
both the results for the almost-equal and for the not almost-
equal experiments are plotted into the same graph. The plots
illustrate that the proposed πDD-based approach is robust with
respect to the outcome of the algorithm, i.e. whether the circuit
is almost-equal or is not almost-equal to the given function.
In contrast, the naïve approach is not robust, since in case

the function is almost-equal, the algorithm may stop earlier.
The main differences between both algorithms is that the
πDD-based approach requires the most computational effort
in an initialization phase that is the same in both cases,
whereas basically no initialization phase is required by the
naïve approach and all computational effort is spent in the
exhaustive search.

In order to estimate the complexity we have performed
regression analysis on the results and determined that the best
fit was given a polynomial regression fit of degree 2 which is
also indicated by the thick gray plot in Fig. 7. Hence, also the
complexity of both approaches is very likely to be quadratic
with respect to the number of gates. In fact, from the naïve
approach it can also be directly determined that the complexity
must be quadratic by analyzing Algorithm N.

VII. CONCLUSIONS

In this paper, we have presented a debugging approach
that makes use of πDDs. For this purpose, it is exploited
that πDDs can represent a set of permutations and since
reversible functions represent permutations, πDDs can be used
to efficiently represent several reversible functions and circuits
at once. As a result, faults in circuits, e.g. due to a missing
gate or a missing control line, can efficiently be detected.
Experiments have shown their applicability and demonstrate
that they are more scalable than naïve approaches. Since the
presented algorithm is based on permutations, it can be tailored
to work with any reversible gate library. Further, also other
debugging problems can be addressed.
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Fig. 7. Robustness analysis

In future work we want to consider such additional fault
models and gate libraries. Also, we like to extract heuristics
from the exact πDD problem formulation in order to accelerate
the algorithm. This can e.g. be done by restricting the elements
of the gate library.
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