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Abstract—Simulation-based verification is still the most fre-
quently used technique when complex designs are to be verified.
Stimuli are thereby generated and applied in order to sufficiently
trigger and, by this, verify a set of considered scenarios. In gen-
eral, a scenario can be triggered in various fashions. To ensure a
high verification quality, each of these fashions should adequately
be covered. However, to the best of our knowledge, this has
not appropriately been addressed thus far, i.e. existing stimuli
generation is mainly performed without an explicit consideration
of the possible fashions in which a scenario might be triggered.
To improve this, three approaches are proposed in this work.
While examples illustrate their advantages, a case study confirms
that, using the proposed approaches, very compact sets of stimuli
satisfying this coverage requirement can efficiently be generated.

I. INTRODUCTION

Functional verification, i.e. validating the functional correct-
ness of a Design Under Verification (DUV), is continuously
playing an important role in the design of highly integrated
Systems on Chips (SoCs) or Networks on Chips (NoCs) in
the semiconductor industry. Formal methods (see e.g. [1], [2])
consider a design’s functionality exhaustively. However, they
are limited by high computational costs. Hence, simulation-
based approaches (see e.g. [3]) are still the most frequently
used techniques when complex designs are to be verified.
Stimuli are thereby generated and applied to the DUV. Then,
the responses of the DUV are compared to the expected results.

To efficiently obtain a high verification quality, simulation-
based approaches aim for adequately verifying specific, e.g.
hard-to-reach, behaviours, while randomly considering the
global functionality of the DUV. For this purpose, scenarios
which specify these behaviours are usually provided (see
e.g. [4]). Then, the goal of verification is to sufficiently trigger
these scenarios with as few stimuli as possible.

To achieve this goal, advanced coverage analysis (see
e.g. [5], [6], [7]) has been presented in the past. Besides unveil-
ing verification gaps, e.g. insufficiently covered scenarios, they
analyse and provide hints on how to trigger those scenarios.
Then, in cooperation with modern stimuli generators (see
e.g. [8], [9], [10]), this information can be exploited to generate
particular stimuli covering these gaps and, by this, guide the
subsequent verification in order to improve the coverage.

Although these methods have been well acknowledged, they
inherit certain disadvantages, e.g. scenarios are considered as
sufficiently covered when they have been triggered a certain
amount of times. This is a weak criterion. Since a scenario

can be triggered in various fashions, fashions should also be
considered to improve the coverage. Nevertheless, to the best
of our knowledge, this has not properly been addressed thus
far. In particular, dedicated stimuli generations have not yet
been introduced and, meanwhile, existing methods have been
proven to be incapable to deliver a satisfied result (see e.g.
[11]). This is discussed in more detail in Section II.

Motivated by this, three approaches are proposed in this
work, which generate dedicated stimuli explicitly addressing
all fashions in which a scenario might be triggered:
• Naive Approach: It is first tried to sufficiently cover all

cases with one stimulus only. If no such a stimulus exists,
the number of stimuli to be generated is increased by 1.
This is iterated until a number of stimuli satisfying the
coverage requirement can be derived. The problems are
encoded as instances of Boolean satisfiability and, then,
solved using off-the-shelf solvers.

• Advanced Approach: From a number of stimuli satisfying
the coverage requirement, it is first tried to cover all cases
with one stimulus less. If such a set of stimuli still exists,
the number of stimuli to be generated is further decreased
by 1. This is repeated, e.g. until the proposed number
of stimuli always violate the coverage requirement. This
allows for a simplified encoding and, thus, accelerates the
solving process.

• Problem Partitioning: A set of stimuli is searched aiming
for sufficiently covering a part of cases first. After it has
been derived, a next set of stimuli is searched with the
same goal but considering the remaining cases only. This
continues until all cases have been covered. To ensure
the compactness, each set of stimuli is searched using
the advanced approach.

A case study illustrates the advantages and disadvantages
of these approaches. While the naive approach suffers from
high computational costs, a minimal set of stimuli satisfying
the coverage requirement is obtained. In contrast, the other
approaches do not ensure minimality, but still generate a
compact set of stimuli in reasonable run-time.

The remainder of this paper is structured as follows: First,
the addressed problem is motivated and defined in the next
section. Then, the general ideas of the proposed approaches
are sketched in Section III followed by a detailed description
of their implementations in Section IV. Finally, a summary
of the conducted case study is provided in Section V and
conclusions are given in Section VI.



II. PROBLEM FORMULATION

A. Motivation

In simulation-based verification, a set of scenarios is usually
provided which specifies certain behaviours, e.g. hard-to-reach
behaviours, to be verified. In the paper, the term scenario is
formally defined as follows:

Definition 1. A scenario Si (0 ≤ i < n) is a Boolean
function over variables from the set of DUV signals. For
the specification of a scenario, a constraint is formulated by
using the typical HDL operators such as logic AND, logic OR,
arithmetic operators, or relational operators. In the following,
scenarios and constraints are used interchangeably. The set of
scenarios is denoted by S = {S0, . . . , Sn−1}.

Example 1. Consider a simplified Memory Management Unit
(MMU) with primary outputs mem req (memory request)
and mem rw (memory read or write). Possible scenarios are
for instances S0 = ((mem req = 1) ∧ (mem rw = 0))
(specifying a memory read access) and S1 = ((mem req =
1) ∧ (mem rw = 1)) (specifying a memory write access).

Then, stimuli are subsequently generated and applied to
the DUV. Scenarios are expected to be triggered by them, so
that, the respective behaviours can be verified. To efficiently
obtain a high verification quality, scenarios should sufficiently
be triggered by a compact set of stimuli. Obviously, this goal
depends on (1) an appropriate definition of what is meant by
“sufficient” and (2) a proper stimuli generation dedicated to
such a kind of sufficiency. While this has been considered in
simulation-based verification, existing methods inherit some
disadvantages and, in certain cases, are incapable to deliver a
satisfying result. This is discussed next.

B. Related Work

In general, scenarios are considered sufficiently covered,
e.g. when they have been triggered a certain amount of times.
Beyond that, stimuli generators (see e.g. [8], [9], [10]) have
been presented aiming to keep the number of stimuli as small
as possible. The approach presented in [10] even allows for
deriving a minimal set of stimuli.

Nevertheless, a scenario can be triggered in several fashions.
Generating a set of stimuli, which triggers a scenario several
times but always in the same fashion, does not significantly
improve the coverage. Instead, all scenarios should be trig-
gered in various fashions. For this purpose, the work [11]
has proposed to explicitly determine all possible fashions in
which a scenario can be triggered and, afterwards, use this
information for stimuli generation. The term fashion is thereby
formally defined as case.

Definition 2. A case cSi

l (0 ≤ l < m) of the scenario Si is a
Boolean function over a (minimal) set of primary inputs and
flip flops including their assignments which propagate through
the DUV and trigger Si. In the following, the set of cases of
a scenario Si is denoted by CSi = {cSi

0 , . . . , cSi
m−1}.

Example 2. Consider again the MMU from Example 1 with
additional primary inputs mem ack (memory acknowledge),
re req (read request), we req (write request), and the flip flop
state. According to the specification, a memory read access
is performed, i.e. the scenario S0 is triggered, if
• the MMU is in state ”idle” and a read request is pending,
• the MMU is in state ”read” and a read request as well

as a memory acknowledge are pending, or
• the MMU is in state ”write” and a read request as well

as a memory acknowledge are pending.
Hence, there exist three cases for S0:

1) cS0
0 : (state = idle) ∧ (re req = 1)

2) cS0
1 : (state = read)∧ (re req = 1)∧ (mem ack = 1)

3) cS0
2 : (state = write)∧(re req = 1)∧(mem ack = 1)

Similarly, the following cases for S1 can be derived:
1) cS1

0 : (state = idle) ∧ (we req = 1) ∧ (re req = 0)
2) cS1

1 : (state = read) ∧ (we req = 1) ∧ (re req = 0) ∧
(mem ack = 1)

3) cS1
2 : (state = write) ∧ (we req = 1) ∧ (re req =

0) ∧ (mem ack = 1)

In [11], an automatic approach to determine those cases has
been proposed. Explicitly considering cases rather than sce-
narios enables an improved coverage analysis. Corresponding
results summarized in [11] showed that existing approaches for
stimuli generation are quite ineffective to deliver a satisfying
result in this regard. In fact, sets of stimuli are generated which
might trigger certain scenarios a couple of times but not in all
possible fashions.

C. Problem Formulation

Motivated by the discussions from above, the following
research question is addressed in this work:

How can we efficiently determine a compact set of
stimuli, which ensures to adequately cover all cases
of the considered scenarios?

In the next section, the general ideas of the proposed
solutions are presented.

III. GENERAL IDEAS

In order to solve the problem stated above, minimal stimuli
generation as introduced in [10] is exploited. Different ap-
proaches based on this method are proposed and described in
this section.

In the following, a naive method is proposed first. This
builds the foundation for an advanced approach, which is
provided next and aims for improving the applicability. Finally,
to gain further improvements, a method based on partitioning
the problem is proposed. Together with the advanced approach,
this method composes the major contribution of this work.

A. Naive Approach

The naive approach is an adaptation of the method intro-
duced in [10] for minimal stimuli generation. In order to
describe the idea in a self-contained manner, minimal stimuli
generation is described first.



Given a DUV and a set S of scenarios, minimal stimuli
generation aims for determining a minimal set of stimuli
which triggers all considered scenarios a certain amount of
times. For this purpose, a sequence of decision problems is
formulated which asks whether a proposed number c of stimuli
can achieve this goal. When the decision problem is satisfiable,
a set of c stimuli can be derived. Otherwise, it has been proven
that no result with c stimuli exists. The general idea is then to
solve this kind of decision problems until a satisfying solution
has been obtained. Minimality is thereby ensured by starting
with c = 1 and iteratively incrementing c by one whenever
the decision problem turns out to be unsatisfiable.

To realize this method, an instance of Boolean satisfiability
is created for each problem, which is eventually a conjunction
of constraints representing the DUV, the scenarios, and the
proposed number c. Then, this instance is solved using SAT
solvers. This is described in more detail in Section IV.

The method introduced in [10] does not consider cases of
scenarios. Hence, an improved coverage as discussed above
is not ensured. To address this, the naive approach simply
replaces scenarios with cases while maintains the general
idea of minimal stimuli generation. In particular, a decision
problem now asks whether a proposed number c of stimuli
can trigger all considered cases a certain amount of times.
Similarly, to solve this problem using SAT solvers, an instance
is created which however is composed of constraints for the
DUV, cases, and the proposed number c. Obviously, this
adaptation leads to a set of c stimuli which adequately covers
all cases of the considered scenarios.

The resulting method is of exact nature, i.e. the naive ap-
proach determines a minimal solution. Nevertheless, ensuring
minimality often causes tremendous computational costs and,
thus, decreases the scalability of the approach. Hence, heuristic
methods, which can efficiently determine a compact set of
stimuli satisfying a coverage requirement, are more preferable
when complex tasks are to be handled. For this purpose, an
advanced approach is proposed next.

B. Advanced Approach

Keeping efficiency in mind, an advanced approach has
been developed which benefits from improvements gained by
adopting the following revisions on the naive approach:

1) Reducing the Complexity of the Instances: The naive
approach takes both the DUV and cases into account. However
as shown in Definition 2, a case is composed of a minimal set
of primary inputs and flip flops. These signals are independent
with each other and with the DUV1. Hence, the DUV in
fact does not have to be considered as long as cases are
directly taken into account. In particular, constraints for the
DUV are actually not necessary and, hence, can be omitted
to encode instances for decision problems. Obviously, this
significantly reduces the complexity of the instances and, by

1The flip flops, whose values are propagated from primary inputs and/or
another flip flops, are not components of a case, since a case consists of a
minimal set of signals.

this, considerably decreases the computational costs caused by
solving them.

2) Utilizing Advantages of Modern SAT Solvers: The naive
approach follows an incremental procedure. Hence, a sequence
of unsatisfying instances is solved until a satisfying one yields
the desired stimuli. This is not very suited for modern SAT
solvers such as [12], [13], [14]. In fact, proving the non-
existence of a solution requires to consider the entire search
space, while this can be avoided as soon as a satisfying solu-
tion has been determined. That is, solving satisfying instances
is often easier than solving unsatisfiable instances.

In order to exploit this, the procedure is revised to a
decremental process. Again, a sequence of decision problems
is formulated asking whether a set of c stimuli can adequately
cover all considered cases. But in contrast to the naive ap-
proach, c is not initially set to 1 but a significantly large upper
bound (e.g. the total number of cases). Then, c is iteratively
decremented until

1) c = 1 is reached and, thus, it has been shown that all
cases can be triggered by one stimulus only,

2) an instance has been proven unsatisfiable, i.e. it has been
shown that all cases can be triggered by c + 1 stimuli
but not c stimuli (then the number c + 1 of stimuli has
been proven minimal), or

3) a previously determined time limit has been reached
(then minimality is not guaranteed but still a set of c
stimuli would be available).

The decremental procedure effectively reduces the number
of instances which are generically hard to solve. Furthermore,
it iteratively approximates the resulting set of stimuli until it
is either stopped or the minimum is determined. By setting
the value of the run-time to be spent, designers can define the
precision of approximation and, by this, ensure a reasonable
compactness vs. efficiency trade-off. Hence, the advanced ap-
proach significantly improves the applicability. Nevertheless,
it is still limited to the number of cases to be considered
since cases are all handled simultaneously at once. Hence,
to gain further improvements, an approach considering cases
separately is proposed next.

C. Partitioning Approach

The general idea is to partition a global problem into several
smaller ones and, then, solve them separately. In particular, a
set of stimuli is now searched targeting on adequately covering
at least one of each scenario’s cases first. After it has been
derived, a next set of stimuli is searched aiming for the same
goal but considering the remaining cases of each scenario
only. This procedure continues until no inadequately covered
cases is left. Then, the final set of stimuli can be obtained by
unifying all previously determined ones.

To ensure the compactness, each set of stimuli is searched
using the advanced approach. Although this goal can also be
achieved using the naive approach, by this, we lose benefits
gained by reducing the complexity of instances and utilizing
advantages of modern SAT solvers. Overall, this approach
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Fig. 1: Problem Structure of Minimal Stimuli Generation

eases the restriction on the number of cases to be considered
and, thus, it can be applied to more complex tasks.

To demonstrate the applicability of the proposed ap-
proaches, a case study has been conducted which is summa-
rized in Section V. But before, details on their implementations
are provided next.

IV. IMPLEMENTATION

The implementations of the proposed approaches are elab-
orated in this section.

A. Naive Approach

Since the naive approach is simply adapted from the method
of minimal stimuli generation, the implementation of minimal
stimuli generation is described first.

As mentioned in III-A, in order to determine a minimal
set of stimuli sufficiently covering all scenarios, a sequence
of decision problems is formulated and solved using SAT
solvers. For this purpose, the work [10] has proposed a general
structure for the respective decision problems (see Fig. 1),
which can directly be encoded as an instance of Boolean
satisfiability. To simplify the description, an example is given
next which illustrates step by step, how this structure helps to
achieve the goal.

Example 3. Consider again the MMU and the scenarios S0

and S1 from Example 1. First, assuming that each scenario is
expected to be triggered at least once.

The first decision problem asks whether one stimulus can
already achieve this goal. The structure of this problem is
shown in Fig. 1(a). Besides the constraints for the DUV and
the scenarios, an AND gate is used to connect the outputs of
the scenarios. Afterwards, the output of this AND gate is fixed
to Boolean true such that all scenarios are enforced to be
triggered once (a true at the output of a scenario means that

the scenario is triggered on the DUV). With this structure, the
instance to be solved can directly be encoded as:

DUV ∧ S0 ∧ S1

Apparently, if this instance is satisfiable, a set of stimuli
with one stimulus can be derived from the satisfying solution.
However, since the S0 and S1 can not evaluate to true at
the same time (see Example 1), the instance is proven to be
unsatisfiable in this case.

Hence, a second decision problem is formulated. It asks
whether two stimuli can achieve the goal. The respective
structure is shown in Fig. 1(b). Here, a new copy of the
DUV and the scenarios2 (denoted by DUV 1, S1

0 and S1
1 ,

respectively) as well as extra OR gates are added. As can
be seen, different copies of a scenario are first connected to
an OR gate. Then, all OR gates are connected to the AND
gate3. Similarly, the output of the AND gate is fixed to true.
By this, at least one copy of each scenario must evaluate to
true such that all scenarios must be triggered at least once.
This structure results in the following instance:

DUV 0 ∧DUV 1 ∧ (S0
0 ∨ S1

0) ∧ (S0
1 ∨ S1

1)

Obviously, solving this instance yields a satisfying solution,
e.g. S0

0=1 (S0
1=0) and S1

1=1 (S1
0=0). Hence, a result with two

stimuli (each is from one copy of the DUV) is derived. Since
the proposed number of stimuli is iteratively incremented by
one, minimality is ensured.

Thus far, the resulting set of stimuli triggers each scenario
once. In order to determine further (new) stimuli and, by
this, trigger scenarios more times, as proposed in [10] the
satisfying instance is repeatedly solved while always blocking
the already determined solutions until the expected number of
coverings for each scenario has been reached.

Overall, an algorithm has been presented in [10]. A simpli-
fied version of it is shown in Algorithm 1. Given a DUV and a
number n of scenarios as inputs, the algorithm first starts with
initializing the proposed number of stimuli (denoted by c) to 1
and the set of all stimuli to be determined (denoted by Sstim)
to ∅. Then, an instance Φ with

Φ =
c−1∧
d=0

DUV d ∧
n−1∧
i=0

c−1∨
d=0

Sd
i (1)

is created and solved by SAT solvers (Line 2-3). If this instance
is satisfiable, a set of stimuli is extracted and stored in Sstim

(Line 4-5). Then, an analysis is performed to check whether
the respective scenarios Si have been triggered the desired
amount of times (denoted by tSi

) – see Line 6. If this is the
case, the algorithm terminates. Otherwise, Sstim is blocked

2Copies of the DUV are functionally identical, but independent with each
other because of renamed signals in all copies of the DUV. This applies to
all copies of scenarios too. Hence, when a copy of scenario is triggered on
the respective copy of the DUV, the scenario is triggered on the DUV.

3These connection rules apply to further copies of the DUV and scenarios
too, which are added in the structure in case that, the current number of copies
does not allow for creating a satisfying instance.



Algorithm 1: Minimal Stimuli Generation
Input: DUV, Scenarios S
c = 1; Sstim = ∅ ;1

Φ =
c−1∧
d=0

DUV d ∧
n−1∧
i=0

c−1∨
d=0

Sd
i ;

2

res = solve (Φ) ;3

if res = true then4

Sstim = Sstim ∪ extract () ;5

if analyse (Sstim) ≥ tSi
foreach Si then6

return ;7

else8

block (Sstim) ;9

go to 2 ;10

else11

++c ;12

go to 2 ;13

and the process is repeated (Line 9-10). Here, the variable c is
not incremented. Further stimuli are still generated based on
the current instance. This iterates until no more stimuli can
be generated with the current value of c (Line 11). Then, c
is incremented and, by this, an additional copy of DUV and
scenarios are added in (Line 12-13).

To adapt this implementation to support the problem consid-
ered in this work, scenarios are replaced by cases as mentioned
earlier. This is illustrated in the following example.

Example 4. Reconsider the procedure in Example 3 and cases
from Example 2. The first decision problem now asks whether
one stimulus can cover all cases. The respective instance is:

DUV ∧ cS0
0 ∧ cS0

1 ∧ cS0
2 ∧ cS1

0 ∧ cS1
1 ∧ cS1

2

Since this instance is not satisfiable, i.e. not all cases can
evaluate to true simultaneously (see Example 2), the second
decision problem with c = 2 is formulated. The respective
instance is:

DUV 0 ∧DUV 1 ∧ (cS0
0

0 ∨ cS0
1

0 ) ∧ (cS0
0

1 ∨ cS0
1

1 ) ∧

(cS0
0

2 ∨ cS0
1

2 ) ∧ (cS1
0

0 ∨ cS1
1

0 ) ∧ (cS1
0

1 ∨ cS1
1

1 ) ∧ (cS1
0

2 ∨ cS1
1

2 )

Similarly, no satisfying solution exists for the above instance.
Hence, c is further incremented. The first satisfying instance
and, by this, the first set of stimuli is obtained when c = 6,
i.e. each case needs one stimulus. Then, by repeatedly solving
this instance, more stimuli can be generated.

Overall, the instance to be solved now can be generalized
as (assuming that each of n scenarios has m cases):

c−1∧
d=0

DUV d ∧
n−1∧
i=0

m−1∧
l=0

c−1∨
d=0

cSi
d

l (2)

Then, by simply replacing the instance (Line 2) in Algo-
rithm 1 with this new instance while keeping the rest of the
algorithm (the inputs now are the DUV and all considered
cases), the naive approach is realized.

or

and true
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Fig. 2: Problem Structure of Advanced Approach

B. Advanced Approach

While the naive approach is realized straightforwardly, the
advanced approach requires major changes.

First of all, the DUV is not considered in the approach. This
leads to a simplified problem structure as depicted in Fig. 2,
i.e. the DUV in Fig. 1 is omitted while the other elements and
connections remain (scenarios are replaced by cases). Hence,
the respective instance is encoded as:

n−1∧
i=0

m−1∧
l=0

c−1∨
d=0

cSi
d

l (3)

Then, considering this new instance a decremental solving
procedure is applied. This is illustrated by means of the
following example.

Example 5. Reconsider the cases from Example 2. With the
decremental procedure, the first decision problem asks whether
6 stimuli can cover all cases at least once (assuming that each
case needs one stimulus). The number 6 is chosen since 6 cases
are considered in total and, hence, 6 constitutes an obvious
upper bound . The respective instance is:

(cS0
0

0 ∨ cS0
1

0 ∨ · · · ∨ cS0
5

0 ) ∧ (cS0
0

1 ∨ cS0
1

1 ∨ · · · ∨ cS0
5

1 ) ∧

(cS0
0

2 ∨ cS0
1

2 ∨ · · · ∨ cS0
5

2 ) ∧ (cS1
0

0 ∨ cS1
1

0 ∨ · · · ∨ cS1
5

0 ) ∧

(cS1
0

1 ∨ cS1
1

1 ∨ · · · ∨ cS1
5

1 ) ∧ (cS1
0

2 ∨ cS1
1

2 ∨ · · · ∨ cS1
5

2 )

Although this instance includes 6 copies of each case, modern
SAT solvers can efficiently find a solution since it is satisfiable.

Then, the proposed number is decremented by one. That is,
the second instance asks whether 5 stimuli can still achieve the
goal. This directly leads to an unsatisfying result or a solving
time-out. In both cases, the process terminates and a set of
stimuli is derived from the last satisfying solution.

In contrast to Example 4 where the incremental procedure
is used, four unsatisfying instances have been avoided and, by
this, obviously lots of solving time has been saved.

Similarly, to obtain further stimuli and, by this, trigger cases
more times, a satisfying instance is repeatedly solved until the
expected coverings for each case has been reached.

Overall, we have devised Algorithm 2. Given a set C of
cases, the algorithm starts with initializing c and Sstim to the
total amount of considered cases and ∅ (Line 1). In addition, a
flag variable f is set to Boolean false indicating that a set of
stimuli should not be extracted from a satisfying solution yet



Algorithm 2: Advanced Approach
Input: a set C of cases derived from scenarios S

(DUV is omitted in this approach)
c = C.size(); Sstim = ∅; f = false ;1

Φ =
n−1∧
i=0

m−1∧
l=0

c−1∨
d=0

cSi
d

l ;
2

res = solve (Φ) ;3

if timeout || (res = false) then4

f = true ;5

c++ ;6

else7

if f = false then8

if c = 1 then9

f = true ;10

else11

c - - ;12

else13

Sstim = Sstim ∪ extract () ;14

if analyse (Sstim) ≥ tcSi foreach cSi then15

return Sstim ;16

else17

block (Sstim) ;18

go to 2 ;19

(the function of f will gradually be described in the following).
Then, the instance Φ is created and solved for the first time
(Line 2-3). Since this first instance assumes c to be the number
of all considered cases, it is satisfiable (Line 7). Nevertheless,
a set of stimuli should not be derived from it yet, because
further satisfying instances composed of less copies of each
case may still exist and they should be obtained (or proven to
be unavailable) in order to ensure the resulting set of stimuli
as compact as possible. For this purpose, f keeps being false
and c is decremented by one (Line 12). Then, the process
continues at Line 2. This iterates until the satisfying instance
made of one copy of each case has been reached (Line 9), the
expected time for solving an instance has run out (denoted by
timeout) or, an unsatisfying result has been obtained (Line 4).
That is, f is switched to true in order to allow for extracting a
set of stimuli either from the current satisfying solution (Line
10, 19) or from the last one (Line 5-6, 19). Similarly, the
overall result is analysed if it has adequately covered all cases
(Line 15). Based on this analysis, either the overall process
terminates (Line 16) or Sstim is blocked and more stimuli are
derived subsequently (Line 18-19).
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Fig. 3: Problem Structure to Partition Problem

C. Partitioning Approach

In order to realize the idea sketched in Section III-C,
different implementations are possible. A trivial solution may
just arbitrarily partition the cases into groups and, afterwards,
solve the resulting instances separately. However, a more
elaborated scheme is proposed in this work.

In fact, the respective cases to be considered are grouped by
their respective scenarios. To this end, a similar approach as
introduced in Section IV-B is applied. The decremental solving
procedure remains, but the precise SAT encoding is revised to

n−1∧
i=0

c−1∨
d=0

m−1∨
l=0

cSi
d

l . (4)

That is, instead of the formulation as shown in Fig. 2 an
extended formulation as shown in Fig. 3 is applied. Here,
additional OR gates are introduced which respectively connect
all cases of a scenario together. By this, a satisfying solution
is derived when at least one case of each scenario evaluates
to true. Hence, only a partition of all cases must be satisfied
in order to determine a stimuli.

Example 6. Consider again the cases from Example 2. Since
these cases are derived from two scenarios, the first decision
problem asks whether two stimuli can cover at least one
case of each scenario. With respect to the new structure, this
problem is encoded as (c = 2):

((cS0
0

0 ∨ cS0
0

1 ∨ cS0
0

2 ) ∨ (cS0
1

0 ∨ cS0
1

1 ∨ cS0
1

2 )) ∧

((cS1
0

0 ∨ cS1
0

1 ∨ cS1
0

2 ) ∨ (cS1
1

0 ∨ cS1
1

1 ∨ cS1
1

2 ))

Compared to the first instance as shown in Example 5,
the complexity of this instance is obviously decreased. Hence,
noticeable solving time can be reduced (this is confirmed by
a case study presented in the next section).

Similarly, solving this instance yields a satisfying solution,
e.g. cS0

0

0 = 1 and cS1
1

0 = 1. Hence, c is decremented by one.
This directly results to the following unsatisfiable instance:

(cS0
0 ∨ cS0

1 ∨ cS0
2 ) ∧ (cS1

0 ∨ cS1
1 ∨ cS1

2 )



Algorithm 3: Problem Partitioning
Input: a set C of cases derived from scenarios S

(DUV is omitted in this approach)
Ctmp = C; Clog = ∅; Tmp = ∅; Sstim = ∅ ;1

while Ctmp 6= ∅ do2

Tmp, Clog = revised advanced approach (Ctmp) ;3

Sstim = Sstim ∪ Tmp ;4

Ctmp = Ctmp \ Clog ;5

return Sstim ;6

Thus, the first set of stimuli is derived from the last solution
which triggers cS0

0 and cS1
0 Hence, four cases are left to be

considered in the next iteration, i.e. the following instance is
considered next:

((cS0
0

1 ∨ cS0
0

2 )∨ (cS0
1

1 ∨ cS0
1

2 ))∧ ((cS1
0

1 ∨ cS1
0

2 )∨ (cS1
1

1 ∨ cS1
1

2 ))

In this manner, stimuli for all remaining cases will eventu-
ally been generated.

Overall, we have devised Algorithm 3. Similarly, given a
set C of cases, the process starts with initializing variables.
Besides of the known Sstim, three set Ctmp, Tmp and Clog

are introduced (Line 1), which, in each iteration, record the
cases left to be considered, the resulting set of stimuli, and
the cases being newly satisfied. These sets are initially set
to C, ∅, and ∅, respectively. Then, the first set of stimuli is
determined (Line 3) as described above. More precisely, 1)
Line 2 in Algorithm 2 is replaced by Instance 4 and, 2) Line 15
is now satisfied when only (at least) one case of each scenario
has adequately been covered and, 3) besides of the resulting
stimuli, Line 16 returns also information on which cases have
been covered. After the result has been derived, it is stored
in Sstim (Line 4). Meanwhile, the newly satisfied cases are
excluded from Ctmp (Line 5) and, thus, they are not passed to
the next iteration. Then, the process is repeated until Ctmp is
eventually empty (Line 2). Then, the process terminates and
returns the final set of stimuli (Line 6).

V. CASE STUDY

The proposed approaches have been implemented in C++.
As SAT solver, we utilized MiniSAT [14]. To demonstrate the
advantages and disadvantages of the approaches, a case study
has been conducted on a Memory Management Unit (MMU),
i.e. an interface between a CPU and an external memory which
manages the respective data transactions.

For this MMU, 93 cases have been considered which were
derived from 18 scenarios using the approach introduced
in [11]. The objective was to determine a compact set of
stimuli covering each of these cases at least once. This case
study has been conducted on a 64-bit AMD Athlon Dual Core
machine with 4 GB of memory running Linux.

The results are summarized in Table I and Table II. Table I
reports the results obtained by the naive and the advanced
approach. More precisely, the first column gives the pre-
defined number c of stimuli to be considered in order to

trigger all cases. Columns |PI| and |V | specify the number
of free variables and the total number of variables of the
instance, respectively. Finally, column SAT denotes whether
the respective instance has been classified as satisfiable (

√
) or

unsatisfiable (×), while column Time provides the run-time
(in CPU seconds) which was required to derive this result.

Table II summarizes the results of the partitioning approach.
For the considered MMU, a total of seven iterations were
necessary. For each iteration (denoted in column Iteration),
columns # and Time provide the number of generated stimuli
and the required run-time, respectively. Column |CSi

a | shows
the number of cases which got covered in this iteration.

The results clearly confirm the discussions from above.
Although the naive approach would generate a minimal result,
it suffers from the high computational cost. For the considered
MMU, no satisfying solution was obtained within a time
limit of 5000 CPU seconds. It could only be proven that the
considered cases cannot completely be covered by 11 or less
stimuli.

In contrast, the applicability is significantly improved using
the advanced approach. Although the satisfying instances may
be orders of magnitudes larger (e.g. the first instance encodes
93 copies of cases), modern SAT solvers are capable to derive
a solution in negligible run-time. Utilizing this advantage,
the decremental procedure can efficiently approximate the
proposed number c towards the minimal value. Although the
minimal value is eventually not reached, a fair approximation
composed of 27 stimuli was determined in just 13.328 CPU
seconds.

Finally, the partitioning approach is confirmed to be the
most efficient method with respect to the run-time. Since this
approach partitions all cases with respect to its scenarios and
the total of 93 cases to be considered have been derived from
18 scenarios, the upper bound for c is 18. Additionally ex-
ploiting the advanced approach, this significantly reduces the
complexity and, hence, allows for an efficient determination of
the stimuli. In contrast, several iterations have to be conducted
which eventually increase the number of generated stimuli:
Following this scheme a total of 30 stimuli are generated
until all cases are covered. Although this is more than the
27 stimuli determined by the advanced approach, this result
was generated in just a bit more than a CPU second and did
not even require the application of a run-time limit.

Overall, compact sets of 27 and 30 stimuli covering all cases
are efficiently determined using the proposed approaches.
Compared to previous work, this is a significant improvement.
In fact, the evaluations in [11] showed that, using e.g. the
stimuli generator proposed in [10], even a set of 120 generated
stimuli did not cover all these cases. This clearly shows how
an explicit consideration of cases advances the coverage in
simulation-based verification.



TABLE I: Stimuli Generation Considering Cases of Scenarios of the MMU
93 cases derived from 18 scenarios are under the consideration.
Naive Approach Advanced Approach

c |PI| |V | SAT Time (s) c |PI| |V | SAT Time (s)
1 14 2359 × 0.001 93 744 211203

√
0.589

2 28 4625 × 0.015 92 736 208933
√

0.307
3 42 6891 × 0.016 91 728 206663

√
1.118

4 56 9157 × 0.020 . . .
5 70 11423 × 0.037 66 528 149913

√
0.184

6 84 13689 × 0.136 65 520 147643
√

0.167
7 98 15955 × 0.966 64 512 145373

√
0.208

8 112 18221 × 3.124 . . .
9 126 20487 × 14.82 28 224 63653

√
0.639

10 140 22753 × 347.50 27 216 61383
√

0.167
11 154 25019 × 467.03 26 208 59113 − t.o.
12 168 27285 − t.o.

Total SAT solving time until t.o.: 833.66 Total SAT solving time until t.o.: 13.328
c: Pre-defined number of stimuli to be considered |PI|: Number of free variables

|V |: Number of total variables SAT: Result of the solving engine Time (s): Run-time in CPU seconds
t.o.: Time out

TABLE II: Problem Partitioning
Iteration # Time (s) |CSi

a |
1. 6 0.322 28
2. 6 0.283 24
3. 6 0.187 20
4. 5 0.149 14
5. 5 0.082 5
6. 1 0.028 1
7. 1 0.014 1

Total number of stimuli: 30
Total SAT solving time: 1.065

#: Number of determined stimuli
Time (s): Run-time in CPU seconds

|CSi
a |: Number of covered cases in an iteration

VI. CONCLUSION

In this work, we considered the generation of dedicated
stimuli for simulation-based verification which cover scenarios
to be triggered in all possible fashions. For this purpose, three
approaches have been proposed including a naive approach
based on minimal stimuli generation, an advanced approach
with less complexity, and an approach employing a partition-
ing scheme. By means of examples, the application of these
approaches has been demonstrated. A case study confirmed
their advantages and disadvantages. Overall, it was possible
to determine very compact sets of stimuli satisfying all cases
of the considered scenarios. With the approaches presented in
this work, a contribution towards increasing the coverage has
been made.
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