
(Semi-)Automatic Translation
of Legal Regulations to Formal Representations:

Expanding the Horizon of EDA Applications
Oliver Keszocze1,2 Betina Keiner3 Matthias Richter3 Gottfried Antpöhler4 Robert Wille1,2

1 Cyber-Physical Systems, DFKI GmbH, Bremen, Germany
2 Department of Mathematics and Computer Science, University of Bremen, Germany

3 gradient.Systemintegration GmbH, Singen, Germany
4 Kassenärztliche Vereinigung Bremen, Bremen, Germany

{keszocze,rwille}@informatik.uni-bremen.de [firstname.lastname]@gradient.de g.antpoehler@kvhb.de

Abstract—Caused by the challenges in the design of today’s
hardware and software systems, tools for Electronic Design
Automation (EDA) became impressively powerful. However, these
accomplishments can also be exploited in other domains. In
fact, the steps of formalizing and checking legal regulations
shares many similarities with established EDA design steps. In
this work, this is demonstrated by proposing the application
of EDA tools in the domain of law processing. We propose a
(semi-)automatic translation of real rules and regulations into
a formal representation. Afterwards, we discuss how – similar
to the hardware/software design – these formalization can be
utilized in the respective domain.

I. INTRODUCTION

The ever increasing complexity of hardware and software
systems lead to the development of elaborated design flows
for Electronic Design Automation (EDA). Within these flows,
how to check whether the system works as intended gains more
and more relevance. Requirement engineering [1] and design at
the Formal Specification Level [2] exploiting languages such as
UML [3] or OCL [4] provide proper solutions for this purpose.
Based on the initially given (textual) specification, engineers
use these solutions to (formally) design and, eventually, verify
the desired system to be implemented. This led to the availabil-
ity of very efficient EDA tools (see e.g. [5], [6], [7]). However,
the application of these tools is not necessarily bounded to the
design of hardware/software systems.

In fact, legal regulations can also be seen as a special kind
of specification. Although they do not directly specify the
functionality of a system to be developed, many computer
applications heavily rely on them. In fact, (software) systems
exist which are “in charge” of checking whether e.g. tax
returns, accounting and billing, stock market transactions,
etc. are processed in line with the rules and regulations of the
respective field and country. Hence, as in hardware/software
design, a first (manual) design step in the development of such
systems is to formalize these regulations. Considering that

legal rules and laws are usually provided in a structured and
precise (albeit not always comprehensive) fashion motivates
the use of natural language processing for their formalization.

In this work, we present a methodology which
(semi-)automatically formalizes given legal regulations
(provided as real-world wording of the law) into a formal
representation. As case study, we consider rules from the
German Regulations on Scales of Fees for Medical Doctors.
We show, how the proposed approach and the resulting
formal representation can be used as blueprint to incorporate
respective checks into an existing software system. Moreover,
the obtained formal descriptions of the considered legal
regulations even allow to check whether the law is consistent
by itself. This does not only advance the development of
respective systems, but also shows directions how EDA tools
can be utilized to make better and non-contradictory laws in
general.

II. CONSIDERED DOMAIN AND PROBLEM FORMULATION

In this work, the translation of legal regulations to a formal
representation is considered and discussed by considering rules
from the German Regulations on Scales of Fees for Medical
Doctors [8] provided in terms of a so-called Uniform Assess-
ment Standard (German: Einheitlicher Bewertungsmaßstab; in
the following: EBM). These regulations specify how medical
doctors in Germany are supposed to generate his/her invoices.
For this purpose, all possible services are listed and structured
by means of cases. Each case is composed of notes and spans
over one or more sessions which are conducted in one or
more days. Eventually, one or more services are conducted
in each case at the respective sessions. This structure is
required since some services can only be accounted once
(independently of how many sessions were required) or solely
for each session. The EBM eventually defines which services
can be accounted and to what amount.

Case

Session DayNote

Service
(a) Model of the domain

“The service 45678 is not to
be billed together with EBM
position 54687 within the third
and fourth quarter of 2014.”

(b) A EBM rule

if (
Case.quarter >= new Quarter(32014) &&
Case.quarter <= new Quarter(42014)
) {
if (together(45678,54687)) {
error("45678,54687 not in combination")
}
}

(c) A DSL condition checking for the EBM rule

Fig. 1: Considered domain and problem

Example 1. Fig. 1a sketches the structure of a case in terms of
an abstract UML model. At the same time, Fig. 1b provides an
example of an EBM regulation1. More precisely, this regulation
states that the service assigned the ID 45678 cannot be
accounted together with the service assigned the ID 54687.

Medical doctors, hospitals, etc. prepare their invoice ac-
cording to these regulations. However, before the submitted
invoices are indeed payed, they are usually checked for
correctness and consistency with respect to the EBM. Due
to the large amount of regulations, this usually is performed
by means of automatic checkers, i.e. the submitted bills are
checked by tools. These tools adopt the structure sketched
above and in Fig. 1a in terms of data-structures and data-
bases, storing cases as well as their respective notes, sessions,
dates, and services. Having initialized all cases submitted by
a medical doctor, the initialized data is checked against all
EBM regulations. This, however, requires to have all the EBM
regulations available in a formal description which can be used
in the tool’s programming language. For this purpose, usually
a Domain Specific Language (DSL) is provided.

Example 2. Consider again the EBM regulation shown in
Fig. 1b. In order to automatically process this, a DSL-
statement as shown in Fig. 1c (and using the data-structure
from Fig. 1a) is required.

III. EXISTING SOLUTION

Obviously, translating these regulations into a formal rep-
resentation, such as a DSL, is a crucial step within the
development of the respective tools. Thus far, the existing
design flow heavily relies on manual interaction.

1Note that all regulations in the EBM are originally provided in German
language. However, in order to describe the approach, all examples discussed
in this paper have been translated.

EBM
(Natural language)

• The service 45678. . .

• The service 54932. . .
...

if (service = 45678) {...}

if (service = 54932) {...}
...

Manual
Tran

sla
tio

n

(a) Design flow

(b) Screenshot of a template

Fig. 2: Existing solution

More precisely, a design flow as sketched in Fig. 2a is
applied. The original EBM is assumed to be available in
terms of a structured document separately listing all rules and
regulations (denoted as EBM rules). This structure and, by
this, the respective EBM rules can easily be generated from
the articles and sections of the originally given EBM wording
of the law. Using this separation, each single rule can be
processed separately.

The actual translation of each EBM rule into a formal
DSL representation is then conducted manually. In order
to aid this, so called templates are utilized. They represent
frequently occurring cases and provide some guidance for
the user. These guidances are e.g. tooltips pinpointing the
user to incorrectly spelled EBM rules. For the considered
EBM regulations, a total of 18 templates are provided. If the
respectively considered regulation does not fit to any of these
templates, additionally an DSL editor with a context assistant
is provided. Fig. 2b exemplarily shows a template capturing
the case of the regulation shown in Fig. 1b.

Note that this process has to be conducted on a regular basis.
Since legal regulations such as the EBM are subject to constant
changes, newly added or revised rules have to be formalized
frequently. While the backend of the respective tools such as
data-structures remains rather stable, (re-)formalizing the reg-
ulations has become the major bottleneck in the development
of such tools.

IV. PROPOSED SOLUTION

In order to ease the process sketched in the previous
section, we propose solutions aiming for an automation of the
translation from natural language legal regulations (here: EBM
rules) into a formal description (here: DSL descriptions). For
this purpose, two complementary directions are investigated:

• Exploitation of Regular Expressions
Here, the EBM rules are distinguished by their respective
structure. Then, rules with similar and/or very regular
structures are automatically processed by means of regu-
lar expressions from which the desired formal description
is derived.

• Exploitation of Natural Language Processing
Here, existing methods from the domain of natural lan-
guage processing such as typed dependencies [9] are
applied to extract information from given EBM rules.
In contrast to regular expressions, this technique is not
just syntactical but employs meta-information of the
respective sentences.

In the following, both schemes are described in more detail
in Section IV-B and Section IV-C, respectively. Before, a pre-
processing step is introduced which normalizes the given EBM
rules and, hence, improves the impact of both schemes.

A. Normalizing EBM Rules

The considered regulations use a wide range of different
terms which basically describe the same issues. As an exam-
ple, recall the sentence from Fig. 1b. The words “service”
and “EBM position” are synonymous, i.e. they refer to the
same entity in the domain: a service. When (automatically)
translating such rules, it is essential that, whenever possible,
a consistent terminology is applied. In order to achieve this, a
normalization is conducted prior to the actual translation.

For this purpose, a knowledge database is applied in order
to replace all synonyms by a uniform representative. This
knowledge database has to be initially filled by an expert that
knows and understands both, the domain of interest as well as
the wording of the law. While building up the database still
requires manual interaction, the result can heavily be re-used
in all upcoming (and possibly future) formalization processes.
Moreover, the database also allows for further simplifications
of the considered sentences. For example, parts of sentences
often include recurring natural language descriptions of partic-
ular services. Using the database, they can also be normalized
to their corresponding EBM position.

B. Exploitation of Regular Expressions

The sentences describing the EBM rules are very structured
and in a certain way repetitive. This is caused by the fact
that many regulations are structurally identical and just need
to be applied in different contexts. For example, consider

the rule from Fig. 1b inheriting the structure “The service
<ID> is not to be billed together with services <ID, ID,
. . .> within <timeframe>” with “ID” referring to a particular
EBM position. Such rules frequently occur in the EBM just
with different EBM positions and/or timeframes.

Identifying such structures allow for and easy an powerful
formalization procedure. In fact, once a formalization for such
a sentence is available, it can be re-used in order to determine
formal representations of structurally identical sentences. Reg-
ular expressions are an obvious tool for this purpose2. For
example, the regular expression determining enumerations of
EBM positions is given by:

ID =[0-9]{5}[A-Z]?

enum=<ID>(,\s+<ID>|(

(,| as well as)\s+<ID>)?

\s*(and|to)\s*<ID>)*

This, as well as similar regular expressions for further issues
such as timeframes, can be utilized to (automatically) process
all further sentences composed of such a structure. More
precisely, if a rule such as shown in Fig. 1b is translated
to a formal representation for the first time (e.g. by manual
interaction), structurally similar rules can then automatically
be translated and adjusted e.g. by EBM positions and/or
timeframes.

While this scheme works very well for a large fraction of
EBM rules (as discussed later in Section V), of course it is
limited by the structural properties of the natural language
sentences. As soon as variances occur which cannot efficiently
be expressed in terms of regular expressions, this scheme does
not lead to the desired results anymore. To cope with this, an
alternative approach is introduced in the next section.

C. Exploitation of Natural Language Processing

Besides pure structural information, also meta-information
e.g. obtained by grammatical analysis can be utilized when
translating natural language rules into a formal representation.
For this purpose, established techniques from the domain of
natural language processing such as typed dependencies [9]
can be employed. Typed dependencies create a relationship
between words of a sentence and, furthermore, type them with
respect to their grammatical relation. For example the words
“the” and “service” have a determiner (short: det) dependency
to each other. All typed dependencies of a sentence eventually
form a graph based on which a translation into a formal
representation can automatically be conducted in many cases.

In the following, the general idea of this approach is
illustrated again by means of the example from Fig. 1b. The
corresponding typed dependency graph of the original German
sentence, obtained using the tool ParZu [10], is shown in

2Alternatively, also boilerplates as e.g. considered in [1] can be applied.

Fig. 3: Typed dependencies of the sentence of Fig. 1b

Fig. 33. To ease the understanding of the graph, an English
translation of each word is additionally provided in italic. Note
that this rule has already been normalized as described in
Section IV-A.

Using this information, first a root node is defined that will
serve as the starting point for all further investigations. This
node is defined by the node which (1) has a root dependency
to the node labeled “ROOT” and (2) is not labeled with
a puncutation mark. Hence, in the considered example, we
consider the root node labeled “ist/is” as the root node (see
Fig. 3). Then, the following information is gathered:

1) The subject (subj) of the sentence is “Leistung”/service.
This becomes the reference object in the model of the
domain. Dependencies of type app refer to the precise
EBM position of the service, i.e. 45678 in the considered
example.

2) In order to determine further EBM positions that are
referred to in the sentence, pn-app paths are checked.
In the running example, this gives the excluded EBM
position 54687. Enumerations of EBM positions result
in a long path of kon- and cj-type dependencies after the
initial app-typed dependency.

3) The context of the rule, i.e. the timeframe in which

3The dependency graph of the English translation differs from its “German
counterpart” and, hence, would require an adjustment of the following steps.
Although such adjustments would be moderate, an exhaustive evaluation was
not possible due to the missing translation of the entire EBM. Hence, we
continue the description of the scheme using the original German EBM rule.

the regulation is to be applied, is “the third and fourth
quarter of 2014”. This is examined from the pp- and
adv-typed dependencies (in many cases, the pp-typed
dependencies are sufficient). If no context could be
determined, it is assumed that the respective session is
applied. This assumption originated from background
information provided by an expert in the field who stated
that, if no context is explicitly mentioned, this is indeed
the default case.

4) Negations in a sentence, e.g. two services are not to be
billed together, are usually determined by examining the
adv-typed dependencies of the root node.

All this information can then be compiled together
into a corresponding formal representation. More pre-
cisely, the EBM position 45678 (Information 1) stands in
a relation to the EBM position 54687 (Information 2),
i.e. if (together(45678,54687)), iff the third and
fourth quarter of 2014 is considered (Information 3), i.e.

if (Case.quarter >= new Quarter(32014)

&& Case.quarter <= new Quarter(42014))

The negation (Information 4) indicates that this is a forbidden
scenario, i.e. should lead to an error. This eventually can be
represented to a formal DSL description similar to the one
shown in Fig. 1c.

In a similar fashion, other EBM rules can be processed.
While this obviously cannot cover all possible means, it consti-
tutes an improvement to the rather simple scheme introduced
in Section IV-B. In addition to this generic NLP approach,
specialized schemes for classes of sentences have been de-
veloped. We use regular expressions to decide which class
a sentence belongs to and, then, use the respective scheme
to extract the formal description. Note that even though the
regular expressions are able to determine the class of the
sentence, they were not fully capable of correctly extracting
the information.

V. EVALUATION

The approaches introduced above have been implemented
in Java and evaluated by considering a recent version of the
EBM. In total, 2932 rules have been processed from which

• a total of 958 rules (i.e. approx. 33%) could have been
translated into a formal representation using the scheme
described in Section IV-B based on regular expressions,

• a total of 1929 rules (i.e. approx. 66%) could have been
translated into a formal representation using the scheme
described in Section IV-C based on techniques for natural
language processing, and

• a total of 1003 rules (i.e. approx. 34%) could not be
translated by either of these approaches.

This evaluation shows that already the rather simple approach
based on regular expressions leads to some very satisfying
results. Those can be further be improved by more sophisti-
cated analyses and eventually lead to a subset of two Third of
all rules for which a formal representation can automatically
be translated. Considering that, thus far, all rules have to be
manually translated this is a considerable improvement.

Note that the quality of the results significantly depends
on the initial information e.g. provided by experts in terms
of knowledge databases or by determined the applied regular
expressions. However, this has only to be provided once and,
afterwards, can be re-used for the remaining process as well
as frequently occurring future updates. Furthermore, note that
the correctness of the generated formal representations is not
automatically checked yet. The proposed flow still requires a
user which manually approves the determined results. But still,
this check can be done significantly faster than determining the
entire formal description from scratch.

VI. CONCLUSION AND FUTURE WORK

In this work, we introduced approaches aiming for the
automatic translation of legal regulations into a formal descrip-
tion. For this purpose, we considered rules from the German
Regulations on Scales of Fees for Medical Doctors provided in
terms of the EBM. Our solutions exploited structural informa-
tion (employed by regular expressions) as well as grammatical
information (employed by type dependencies). Our evaluations
showed that, using the proposed schemes, up to 66% of the
considered rules can automatically be translated.

By this, we demonstrated how EDA tools can be applied in
the domain of law processing. While, in this paper, we mainly
focused on the generation of formal checking conditions for
the EBM, manifold further applications exists in which the
formal representation of legal regulations can be utilized. For
example:

• The formal representation can be applied to optimize the
billing data of medical doctors in order to achieve the
maximum outcome – usually with respect to the charged
money.

• A formal representation of rules can be used to check
whether the model (and, by this, the legal regulations
themselves) is consistent, i.e. free of any contradicting
rules. This may help lawmakers to “verify” the soundness
of legal regulations at least up to a certain amount.

• In a similar fashion, one could look for corner cases that
are allowed by the given regulations but, from a political,

social, or other perspective, should be prohibited. Also
this information can be used e.g. by lawmakers in the
process of creating new regulations as it easily allows
you to check the impact of new rules.

• The formal representation allows to check out for loop-
holes in the regulations – either to exploit or to fix them.

• Finally, these applications can also be used in other
domains that regulate how things are to be paid. A
good example for this would be tax regulations. In fact,
software that aids tax payers hand in their annual tax
declaration and optimizing it already is a big market.

Future work will be devoted to address these further direc-
tions in detail.

ACKNOWLEDGEMENTS

This work was supported by the German Federal Min-
istry for Economic Affairs and Energy (BMWi) under
grant no. KF2054902MS2 and KF2013014MS2 as well as
the German Research Foundation (DFG) under grant no.
WI 3401/5-1. We would like to thank Lucjan Suchy for many
fruitful discussions.

REFERENCES

[1] M. E. C. Hull, K. Jackson, and J. Dick, Requirements Engineering,
Second Edition. Springer, 2005.

[2] R. Drechsler, M. Soeken, and R. Wille, “Formal specification level: To-
wards verification-driven design based on natural language processing,”
in Forum on Specification & Design Languages, 2012.

[3] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Lan-
guage reference manual. Essex, UK: Addison-Wesley Longman, Jan.
1999.

[4] J. Warmer and A. Kleppe, The Object Constraint Language: Precise
modeling with UML. Boston, MA, USA: Addison-Wesley Longman,
Mar. 1999.

[5] B. Beckert, R. Hähnle, and P. Schmitt, Verification of Object-Oriented
Software: The KeY Approach. Secaucus, NJ, USA: Springer, Oct. 2007.

[6] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray, “UML2Alloy: A
Challenging Model Transformation,” in Int’l Conf. on Model Driven
Engineering Languages and Systems. Springer, Oct. 2007, pp. 436–
450.

[7] M. Soeken, R. Wille, and R. Drechsler, “Encoding OCL Data Types for
SAT-Based Verification of UML/OCL Models,” in Tests and Proofs, ser.
Lecture Notes in Computer Science, vol. 6706. Springer, Jun. 2011,
pp. 152–170.

[8] “Gebührenordnung für Ärzte (GOÄ),” Online available at
http://www.e-bis.de/goae/defaultFrame.htm.

[9] M.-C. de Marneffe, B. MacCartney, and C. D. Manning, “Generating
Typed Dependency Parses from Phrase Structure Parses,” in Conf. on
Language Resources and Evaluation, 2006, pp. 449–454.

[10] R. Sennrich, G. Schneider, M. Volk, and M. Warin, “A new hybrid
dependency parser for German,” in Proceedings of the German Society
for Computational Linguistics and Language Technology, 2009, pp. 115–
124.

