
Validating SystemC Implementations
Against Their Formal Specifications

Jannis Stoppe2 Robert Wille1,2 Rolf Drechsler1,2
1Institute of Computer Science, University of Bremen, 28359 Bremen, Germany

2Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
{jstoppe,rwille,drechsler}@uni-bremen.de

ABSTRACT
The ever increasing complexity of embedded systems leads

to a constant strive for higher levels of abstraction. While

the design at the Electronic System Level (ESL) with Sys-

temC as the common programming language is state-of-the-

art today, also the use of formal specifications by means of

modeling languages such as UML or SysML receives more

and more attention. This raises the question of how to val-

idate an ESL implementation against a given formal spec-

ification. For this, SystemC’s limited introspection and re-

flection features pose a serious obstacle. In this paper, a

methodology is presented that retrieves the necessary static

and dynamic information which is needed in order to val-

idate a SystemC design. For this purpose, we retrieve in-

formation from the SystemC API and compiler-generated

debug symbols. The proposed solution can be applied to

a wide variety of project setups and requires only minimal

adjustments to retrieve the necessary information.

1. INTRODUCTION
With the increasing complexity of embedded systems, cor-

responding design methods are constantly faced with new

challenges. In order to catch up with this development and

to tackle the ever increasing complexity, higher levels of ab-

straction are introduced to the design process. The current

state-of-the-art assumes design at the ESL [15] with its de-

facto standard language SystemC [14, 17, 19] as the typical

starting point of the implementation process. However, in

accordance with the strive for higher levels of abstractions,

also the use of formal specifications prior to the implemen-

tation receives more and more attention – leading to the

design at the Formal Specification Level (FSL) [6].

Here, modeling languages such as the Unified Modeling

Language (UML) [18] or the Systems Modeling Language

(SysML) [21] are applied to formally specify the structure

and the behavior of a system to be implemented. These FSL

descriptions work as precise blueprint for the designer and

can even be exploited to generate ESL code stubs or initial

implementations. However, manual refinement of the re-

sulting ESL implementation is usually required afterwards.

Due to this manual process, new errors might be introduced.

Consequently, the ESL implementation might violate con-

straints that are formulated in the formal specification.

In this work, we propose an approach which validates an

implemented ESL description against its formal specifica-

tion. For this purpose, a methodology is suggested which

• extracts system states (“snapshots”) before and during

the execution of a SystemC design and then

• compares those states with the previously specified

FSL description.

The severely limited capabilities for introspection and re-

flection of SystemC represent a significant obstacle for this

goal. In fact, extracting the respective system states is cru-

cial to the proposed methodology. We address this problem

by utilizing the existing SystemC API (allowing for retriev-

ing dynamic information) and the compiler-generated debug

symbols (providing access to static information). This does

not assume any changes and restrictions on the compiler.

Hence, the resulting approach can be applied to a wide vari-

ety of project setups, requiring only minimal adjustments. A

case study illustrates how this, in fact, helps to detect errors

and inconsistencies of an ESL implementation compared to

its FSL specification.

The remainder of this paper is structured as follows: The

next section provides a brief review on formal specifications

at the FSL and SystemC implementations at the ESL. It also

introduces the design of an arbiter which works as running

example in the rest of this paper. Section 3 motivates the

considered problem and introduces the general idea of the

proposed methodology. Afterwards, the implementation of

it is described in Section 4. Finally, the paper concludes

with an evaluation and a sketch of application in Section 5

as well as conclusions in Section 6.



2. PRELIMINARIES
In order to keep this work self-contained, the basics on

formal specifications at the FSL and SystemC at the ESL

are briefly reviewed in this section. Besides that, the running

example is introduced.

2.1 Formal Specifications
Modeling languages such as the Unified Modeling Lan-

guage (UML) [18] or the Systems Modeling Language (SysML)

[21] have been established to explicitly specify the design of

systems prior to the implementation phase. In this work, we

focus on block definition diagrams and sequence diagrams.

Block definition diagrams formally describe the structure of

a system. They are composed of blocks which are organized

by compartments to store different information such as at-

tributes, operations, or relations to other blocks. Attributes

describe the data elements of the block, whereas operations

are used to modify them. The dynamic flow caused by op-

eration calls can be visualized by sequence diagrams. Here,

instances of the blocks are extended by life lines that express

the time of creation and destruction in the scenario. Arrows

indicate operations that are called on an instance and are

drawn from the caller to the callee.

Examples of both description means are provided in Fig.

1 – representing the specification of an arbiter which is used

as running example in the rest of this paper1. The arbiter

is a collection of cells that handle the access to an under-

lying resource (e.g. a bus). These cells are connected to

their neighbors and form a circle that has a token travel-

ing around. The cell that currently holds that token grants

access to the element connected to it. More precisely, Fig.

1a shows the structure of this system. It contains a two-cell

arbiter which would result in a switching behavior, i.e. al-

ternating access between Cell 0 and Cell 1. Fig. 1b illus-

trates a simple case of a sequence diagram: Assuming that

all cells keep requesting the token in a two-cell arbiter, it

should be granted alternatingly. Cell 0 opens the resource

to the requesting element and grants the resource to the next

cell in the next step. Afterwards, Cell 1 grants the resource

for the first time and, afterwards, returns the token back to

Cell 0. After that, the process continues analogously.

2.2 SystemC
For system design at the ESL, SystemC has been estab-

lished as a de-facto standard [14, 17, 19]. SystemC is imple-

mented as a C++ library that provides structures to im-

plement and simulate embedded systems early in the de-

sign process – e.g. prior to a hardware/software partitioning.

For this purpose, SystemC provides additional descriptions

means for hardware elements (e.g. modules, signals, etc.)

which are instantiated during an elaboration phase. In this

phase, the execution of a SystemC program is started and

the simulated system is instantiated. With the start of the

1The specification of this arbiter is inspired by the imple-
mentation originally proposed in [5].

Cell 0
block

Cell 1
block

NotGate
block

token in

req in

grant in

override in

ack out
grant out

token out

override out

ack out
grant out

token out

override out

token in

req in

grant in

override in

(a) Block definition diagram.

Cell 0 Cell 1

grant

grant

(b) Sequence diagram.

Figure 1: Formal specification of the arbiter [5].

simulation, the simulation phase commences, i.e. the instan-

tiated system is executed with the given parameters. This

phase lasts until the program terminates. No new modules

may be instantiated during this phase.

Due to the fact of SystemC being a C++ library, all C++

description means may be used during the elaboration phase

to instantiate the desired system. This means that a given

SystemC program does not necessarily contain the descrip-

tion of only a single system to be simulated. The result of

the elaboration phase may depend on user inputs or other

external stimuli. The precise nature of the respectively sim-

ulated system is, therefore, only known at run-time. The

arbiter program e.g. contains a variable that specifies the

number of cells which could be read from user input just as

well.

3. VALIDATING SYSTEMC
AGAINST A FORMAL SPECIFICATION

This section motivates the need for solutions validating

SystemC implementations against their formal specifications

and sketches the general idea of the solution proposed in

this work. The problem is formulated first followed by an

overview of the related work on introspection and reflection

of SystemC designs. These works build a cornerstone in the

proposed validation methodology which is sketched in the

end of this section.



Textbook

specifi-

cation

Formal

specification

(e.g. UML /

SysML)

ESL

source

code (e.g.

SystemC)

Equivalence/Compliance checks

Manual

translation

RTL

source

code (e.g.

VHDL)

Semiautomatic translation

Figure 2: Today’s design flow.

3.1 Problem Formulation
In order to close the gap from the given specification (pro-

vided in natural language) to the initial implementation (at

the ESL) and in accordance with the strive for higher levels

of abstractions, the use of formal specifications prior to the

initial implementations receives more and more attention.

Modeling languages such as the UML [21] or the SysML [18]

are applied for this purpose. This led to the design at the

Formal Specification Level (FSL, see e.g. [6]).

FSL specifications offer a formal description of the struc-

ture and the behavior of the system to be implemented. Due

to this formal representation, code generation techniques can

be applied to automatically create ESL stubs and even ini-

tial implementations (as indicated by the upper arrows in

Fig. 2). But since each of these initial implementations are

manually extended afterwards, new errors might be intro-

duced. As a consequence, the resulting (final) ESL imple-

mentation might differ from the FSL specification in both,

structure and behavior. Hence, after completing the ESL

implementation, it is useful to validate the result against

the original FSL description (as indicated by the lower ar-

rows in Fig. 2).

Such a process is quite common in the design of soft-

ware systems. As an example, in [8] a Java implemen-

tation is analyzed and extracted back to an UML model.

Then, the resulting UML model can be used in order to

check whether the software system has been implemented

as intended. However, considering the design of embedded

systems, a serious obstacle occurs: Implementations in Sys-

temC – the de-facto standard in ESL design – hardly provide

any support for introspection and reflection. This signif-

icantly hinders the extraction of corresponding models or

comparisons to given formal specifications. Motivated by

this, we consider the question “How to validate whether an

ESL implementation in SystemC indeed adheres to a cor-

responding FSL specification?”. For this purpose, recently

developed methods for introspection and reflection of Sys-

temC are utilized and extended.

3.2 Introspection and Reflection of SystemC
Usually, the structure and the behavior of an implementa-

tion can be extracted using the language’s introspection and

reflection features. The former allows to examine the type

and/or properties of objects at run time, the latter enables

the designer to modify those values and/or invoke methods

of the retrieved objects, also at run time. Since SystemC is

implemented as a C++ library, it is limited to the native

features of C++. Unlike other languages that provide a na-

tive support for introspection and reflection (like C# with

Esys.net [3, 12, 13] or Java with HJJ [9]), C++ (and, thus,

SystemC) are limited to very restricted means concerning

the reflection of an implementation’s structure and state.

Although SystemC does remedy this a bit by providing an

API to retrieve instances of SystemC objects at run-time,

this is hardly sufficient to compare an implementation to an

FSL model. In fact, additional information concerning their

static properties (e.g. contents of their functions, a list of

members etc.) is needed for a more complete model of the

system.

To retrieve these static information, custom SystemC

parsers have been proposed in the past (see e.g. [1,2,4,7,11]).

They are specialized in the analysis of the SystemC source

code in order to retrieve as much information about the

design as possible. However, as any C++ construct can

be used to create the instances that represent the simu-

lated hardware, these parsers face the severe limitations that

(1) some code elements are not trivial to analyze statically

(macros, recursions, loops) and (2) some information may

not be known at compile-time at all (contents of external

files, dynamically linked libraries, command-line parame-

ters). Because of this, a complete design extraction at run-

time based on these methods is infeasible.

As an alternative, an approach relying on a customization

of the compiler and, by this, enabling static data-extraction

at compile-time has been presented in [16]. Of course, pro-

viding a custom compiler also can be used to modify the

resulting binary to track and report any run-time behaviour

and, by this, extract the dynamic information like object in-

stances or variable assignments. However, this results in the

consideration of a restricted sub-set of C++; project setups

that utilize other compilers or even other versions need to

be modified in order to work on the given setup.

Hence, in this work we utilize an idea presented in [20]

which exploits the compiler-generated debug symbols in or-

der to retrieve the desired information. During compila-

tion, debug symbols are generated to provide debuggers with

static information about the code while the developer debugs

the program. As the compiler needs to store this information

until the program is executed, this data can also be accessed

during run-time. By this, dynamic information on the in-

stantiation of the system (e.g. ”there are ten instances of the

module Cell”) and their corresponding static information

(e.g. ”each module Cell has a method void ctrl_fsm()”)

can both be obtained. The usage of the dynamic information

makes this approach a simulation-based approach, as the off-

the-shelf SystemC kernel is used to generate the instances

during the elaboration phase and the following simulation

is used to extract consecutive snapshots. How the retrieved

data can be utilized is sketched next.



Source

Code

Binary

exe-

cutable

Debug

symbols

Program

state

Static inf.

1

Dynamic

inf.

2

3

4

FSL spec.

5

Figure 3: Proposed methodology.

3.3 Proposed Methodology
In order to validate an ESL implementation against a

formal specification, the structure and the behavior of the

ESL design has to be extracted first. Due to the shortcom-

ings of introspection and reflection in SystemC (as discussed

above), the idea of using debug symbols proposed in [20] is

utilized for this purpose. More precisely, an information ex-

traction flow as sketched in Fig. 3 is applied.

First, static information on the SystemC implementation

is determined exploiting the compiler-generated debug sym-

bols (1). Afterwards, the original code is compiled so that

the resulting binary can be executed (2). Both steps do not

assume any changes and restrictions on the compiler. As

discussed above, SystemC allows then to retrieve informa-

tion of the instantiated instances at run-time. By addition-

ally exploiting the static information, which is now available

through the debug symbols (3), the structure and current

state of the executed system can be derived (4). This does

not only include which classes/modules have been instanti-

ated, but also the members these classes are composed of (in-

cluding referenced objects) and which values they have been

assigned with. During the execution of the SystemC im-

plementation, several such “snapshots” of the system states

can be conducted. From those, corresponding FSL descrip-

tions (e.g. a block definition diagram of the structure and a

sequence diagram including the respective object diagrams

of the behavior) can be derived and eventually compared to

the originally given FSL specification (5). For this purpose,

existing modeling frameworks such as e.g. the Eclipse Mod-

eling Framework can be utilized as they offer corresponding

model checking capabilities out of the box. For this work, a

simple checker that asserts all parts of the specification are

present in the implementation was implemented as a proof-

of-concept.

4. IMPLEMENTATION
This section describes the implementation of the proposed

methodology in detail. As sketched above and in Fig. 3,

validating a SystemC implementation against a given FSL

specification is conducted in five steps:

1. retrieve static information,

2. retrieve module instantiations ,

3. link static and dynamic information,

4. derive the current program state, and

5. compare the program states to the FSL specification.

All these steps are detailed in the following. To this end,

we use the FSL specification and the SystemC implemen-

tation of the arbiter introduced in Section 2 as a running

example.

4.1 Retrieve Static Information
Retrieving the static structure of the ESL implementation

is crucial for a structural analysis of the instantiations during

the execution of a SystemC program. More precisely, their

static layout, i.e. their classes, members, etc., is needed. As

discussed in Section 3.2, this information is stored in the

debug symbols which are generated during the compile pro-

cess. Accordingly, the static information can be retrieved by

simply parsing these debug symbols. As, to our knowledge,

there is no compiler that does not save its debug symbols

for later use, this methodology should be applicable uni-

versally, i.e. without any restrictions on supported language

constructs or compiler versions. Moreover, usually proper

parsers or an API are provided for an easy access. While

the results of this step may change for each compilation (if

the code was changed), it remains the same if the resulting

binary is executed repeatedly. This step is therefore exe-

cuted after building the SystemC project.

4.2 Retrieve Module Instantiations
The static information retrieved in Step 1 does not unveil

how often certain classes are instantiated. While it specifies

that there is a module of type cell, the amount of mod-

ules used in the design as well as the connections between

them and other modules is not part of SystemC’s static fea-

tures. This information is only available during run-time. It

therefore needs to be extracted dynamically.

For this purpose, SystemC offers an API to retrieve a

list of all modules, signals etc. that have been instanti-

ated during SystemC’s elaboration phase. More precisely,

an sc_object_manager-instance can be accessed, providing

a list of all module instances. These do not only form the

core of the simulated system but can also be used as an

initial nucleus for an (incomplete) block definition diagram.

Utilizing the sc_object_manager-instance for the SystemC

implementation of the considered arbiter leads to the incom-

plete block definition diagram as shown in Fig. 4. As can be

seen, the module instances and connections between them

can be extracted automatically using this method. Similari-

ties with the originally given FSL specification from Fig. 1a

are already evident. However, details e.g. on the members

and their current assignment are still missing.



cells

cells 0

Scalable Arbiter

StimGen

NotGate

clk
req i

tok i
gra i

ove i

ack o
gra o

tok o
ove o

clk
req i

tok i
gra i

ove i

ack o
gra o

tok o
ove o

a b

clk
port 2

port 3

port 0

port 1

block

port 0

port 1

port 2

port 5

port 3

port 4

block

block

block

block

Figure 4: Retrieved module instantiations.

4.3 Link Static and Dynamic Information
The objects retrieved in Step 2 now need to be connected

to the static information of their respective classes retrieved

in Step 1. The SystemC API returns sc_object instances.

While the extraction of information based on the sc_object

type might be helpful already, extracting the information

contained in the fields that are members of the actually in-

stantiated class (that inherits sc_object in some way) is

preferable. For this, however, the actual type needs to be

retrieved from the instance that resides in the memory dur-

ing the execution.

To access them, Run-Time Type Inspection (RTTI) is ap-

plied which is part of the current C++ standard [10] and,

hence, the closest solution for a universally applicable type

retrieval system. The derived (dynamic) type names can be

matched to the names contained in the debug symbols that

got extracted in Step 1. Once the static and dynamic types

have been linked, the resulting data consists of SystemC ob-

ject instances that do contain information about their static

fields (i.e. methods, variables etc.) but not the currently as-

signed values. Applied to the running example, this allows

to retrieve the respective members of the single components

as exemplarily been sketched for one object of type Cell in

Fig. 5.

4.4 Derive the Current Program State
In order to complete the “snapshot” of a currently consid-

ered program state, the respective assignments to each mem-

ber have to be derived. This is accomplished by traversing

the memory allocated by the considered SystemC execution.

cells

public sc core::sc in<bool> TICK
public sc core::sc in<bool> req in
public sc core::sc in<bool> tok in
public sc core::sc in<bool> gra in
public sc core::sc in<bool> ove in
public sc core::sc out<bool> ack out
public sc core::sc out<bool> gra out
public sc core::sc out<bool> tok out
public sc core::sc out<bool> ove out
enumerator state type{NORMAL, WAIT, TOKEN,
WAITTOKEN}
public sc core::sc signal<RTLCell::state type,0> curr state
public sc core::sc signal<RTLCell::state type,0> next state
...

clk
req i

tok i
gra i

ove i

ack o
gra o

tok o
ove o

block

Figure 5: Retrieved arbiter cell w/ static inform.

A breadth-first-search along a running program’s references

is applied, starting with the objects that were retrieved in

Step 2. The information contained in the debug symbols is

used to determine an individual object’s memory layout. All

fields are located and separated into base types (like integer,

float, etc.) to extract their values and compound types and

pointers, both of which are again enqueued for later analysis.

However, this traversal of allocated memory does have the

following issues:

4.4.1 Bad Pointers
Null pointers are not analyzed further. A more serious

problem are bad pointers. For example, Fig. 6a shows an

instance with a bad pointer. Although a field indicates that

this pointer should not be used, this semantic distinction

cannot be recognized automatically. Hence, our implemen-

tation assumes that all pointers are valid and catches mem-

ory access violations at run-time. Due to the read-only na-

ture of the data extraction, no data stored in the memory is

compromised by this.

4.4.2 Unreferenced Memory
There might be parts in memory that are allocated and

used but not addressed. A common example is an array that

is created on the heap and addressed using a pointer while

a second value stores its size. As an example, see Fig. 6b

showing an instance with an array of size 4. In this case, only

the referred memory is considered, i.e. we traverse the graph

that is formed by elements in memory and their connections

only. Elements that are separated from this graph cannot be

reached by the traversal algorithm and, hence, are ignored.

That is, in the example of Fig. 6b arr[0] is extracted as a

single int value (as both, pointer and type, are known), but

arr[1] to arr[3] are ignored.

4.4.3 Incorrectly Typed References
Objects referenced using an erroneous type also pose a

problem for the proposed extraction method. Our approach



b: instance

m isValid: false

m ptr: #ffffffff

invalid address

catched in code

using the boolean

member m isValid

(a) Bad pointer.

b: instance

int* arr

int size = 4

0

3

1

7

2

7

3

7

(b) Unreferenced memory.

b: instance

char* module

Available data︷ ︸︸ ︷
Retrieved data

(c) Incorrectly typed refer-
ences.

a: A

x: X y: Y

b: B c: C

(d) Multiple type references.

Figure 6: Special issues during program state extraction.

Figure 7: Resulting program state. The area on the left is a close-up to the upper-left corner of the diagram.

While a manual comparison would be hard due to the amount of data that is retrieved, this data can be used

as a foundation for an automated model-checking approach.

assumes that the type of a pointer corresponds to the type

of data that is actually stored at the given address. Due

to C++’s lack of type safety, an instance of type a may be

stored in a part of the memory that is referenced as being of

a certain unrelated type b. Our approach will then assume

that the address contains an instance of this type b and,

therefore, extracts the data as if it would be of that type

b. This may result in missing or incorrectly extracted data.

For example, Fig. 6c shows a pointer of type char that ac-

tually points to an instance that contains much more data.

However, our approach treats this as a char and, hence only

retrieves the first byte.

4.4.4 Multiple Type References
Although similar to the incorrectly typed references, this

is more a problem concerning established modeling languages:

If a single address in memory is addressed by two or more

differently typed variables (as illustrated in Fig. 6d), a cor-

responding representation is usually not available in estab-

lished modeling languages. Currently, our approach just ex-

ports all interpretations of a certain variable. Depending on

the desired modeling language, these features might need

additional tweaking.

The result of this traversal is indicated in Fig. 7 for the

running example, i.e. the arbiter implementation2. The re-

2Please note that this figure is not supposed to provide de-
tailed information but serves as an illustration of the mag-
nitude of the obtained information.

sulting model does not only contain the instances of the

original specification shown in Fig. 1a, but also all instances

of any object that is referenced through these (directly or

indirectly) and the values that are currently assigned to the

according member variables. Although this is much more

data than actually needed, it now provides a precise “snap-

shot” of the current system state in terms of an FSL descrip-

tion. By sequentially applying this scheme for each system

state which shall be compared against an FSL specification,

all the information needed for this comparison is retrieved.

4.5 Compare the Program States
to the FSL Specification

The extracted models shall now be compared to a given

FSL specification. As the static and dynamic information

that were extracted from the memory can simply be trans-

lated e.g. to block definition diagrams (as already illustrated

above), checking for compliance with a given model is sim-

ple. Existing modeling frameworks such as the Eclipse Mod-

eling Framework can be utilized for this purpose.

Validating the behavior instead requires some manual ad-

ditions. As the proposed method only extracts program

states (“snapshots”) for certain points in the execution of

the program and is unable to supervise a certain behavior,

checking if a certain protocol is adhered cannot be performed

fully automatically. In fact, the designer has to explicitly en-

force when a snapshot shall be retrieved. If e.g. the behavior

is specified by means of a sequence diagram, then a snap-



shot after each operation call (which changes the state of

the system) is appropriate. By this, the respective states

of the implementation are retrieved and can be validated

against the specification. This of course neither guarantees

that the change in state is a result of the communication

nor that the given communication was indeed the only be-

havior occurring between those states, but valid checks in

these places indicate whether an implementation complies

with its formal specification.

5. EVALUATION & APPLICATION
The proposed methodology has been implemented and

evaluated. In this section, we discuss the performance of

the resulting approach and illustrate how its application ad-

vances the design of embedded systems.

5.1 Performance
The suggested method is able to extract a significant amount

of information to be used for the validation of the struc-

ture and the behavior of an ESL implementation against a

corresponding FSL specification. The performance depends

thereby on what exactly is extracted. The determination

of the static information of the considered arbiter required

e.g. approx. one minute on an AMD Phenom II X4 965 with

8GB RAM – most of the time is thereby spent on writing the

information onto the disc (with output disabled, the process

takes approx. 12 seconds). Retrieving a snapshot, e.g. the

one from Fig. 7, required approx. 14 CPU seconds. Note

that, in the current proof-of-concept implementation, infor-

mation is stored in an external XML file that needs to be

parsed and searched during the dynamic extraction. Hence,

further improvements in the performance are very likely but

were not in the scope of this work. For a variety of Sys-

temC designs, the respective information was successfully

retrieved.

Besides that, the proposed solution

• can essentially be transferred to any setup, as long as

readable debug symbols and RTTI data are generated

by the compiler,

• is able to extract not only the system’s modules but

also any other C++ objects to which they are con-

nected to,

• relies on the SystemC API to retrieve the objects to

be inspected and analyzed, i.e. the user does not have

to add any additional code apart from the statement

that denotes at which points during the execution a

snapshot is required,

• does not add any overhead to the execution until the

extraction statements are executed.

Overall, the determined FSL descriptions from a SystemC

execution can be used for the validation of running SystemC

designs without a manual translation into unit tests or some-

thing similar. How this advances the design of embedded

systems is exemplarily illustrated next.

5.2 Application
The proposed approach has been applied in order to vali-

date the SystemC implementation from [5] against its formal

specification provided in Section 2. For this purpose, a sim-

ple model to state matcher was implemented which utilizes

the retrieved information and compares them to the origi-

nally given FSL specification. This enabled the detection of

the following errors and inconsistencies:

• Additional wrapper modules have been added to the

SystemC implementation of the respective cells. Fur-

thermore, the original specification does not contain

the module Scalable_Arbiter that hosts the cells within.

• The identifiers of the blocks and its corresponding mod-

ules did not match. That is, identifiers Cell 0, Cell 1,

. . . , Cell n-1 are used in the specification, while the

identifiers cells, cells_0, cells_1, . . . , cells_n-2

are used in the SystemC counterpart. This is a cru-

cial issue as designers might likely map e.g. Cell 2 to

cells_2 (though it should be mapped to cells_1).

• Similarly, the identifiers of the inputs and outputs did

not match. The implementation abbreviated the names,

i.e. the identifier override_out became an ove_o.

• The implementation contains inputs for the clock, sev-

eral other inputs for the wrapper module, and a StimGen-

module that was obviously added for testing the setup

by generating signal stimuli. All that is not part of

the formal specification. In particular, the addition of

clock inputs is crucial as this changes the interface of

the module.

• A consecutive “snapshot” of the state after each clock

cycle showed that the implementation does not make

the token of the arbiter travel around the cells. This

obviously is a serious design error which needs to be

inspected.

After explicitely pin-pointed to it, most of these issues can

also be seen by comparing Fig. 1a and Fig. 4. Of course,

these issues are not necessarily errors. But they clearly em-

phasize parts of the design which are different from the orig-

inal specification. In particular with increasing complexity

of the designs, this provides a helpful tool which warns the

designer about potential discrepancies and possible sources

for confusion later on in the design process.

6. CONCLUSION
In this work, we use the potential resulting from the ap-

plication of high level formal specifications by providing an

approach that allows for the validation of an ESL implemen-

tation against its formal specification. For this purpose, a



solution has been proposed which overcomes the limited in-

trospection and reflection features of SystemC. This enables

the derivation of snapshots during the execution of a Sys-

temC program which can be compared against a given FSL

specification. A case study illustrated the usefulness of the

presented methodology.

Acknowledgments
This work was supported by the German Federal Ministry of

Education and Research (BMBF) within the project SPE-

CifIC under grant no. 01IW13001 as well as the German

Research Foundation (DFG) within a Reinhart Koselleck

project under grant no. DR 287/23-1 and a research project

under grant no. WI 3401/5-1.

7. REFERENCES

[1] David Berner, Jean-Pierre Talpin, Hiren Patel,

Deepak Abraham Mathaikutty, and Sandeep Shukla.

SystemCXML: An extensible SystemC front end using

XML. In Proceedings of the Forum on Specification

and Design Languages, pages 99–104, 2005.

[2] Carlo Brandolese, Paolini Di Felice, Luigi Pomante,

and Daniele Scarpazza. Parsing SystemC: An

Open-Source, Easy-to-Extend Parser. In IADIS

International Conference on Applied Computing,

pages 706–709, 2006.

[3] Olivier Brassard, Frederic Rousseau, Jean David,

Mathieu Kastle, and El Aboulhamid. Automatic

Generation of Embedded Systems with .NET

Framework Based Tools. 2006 IEEE North-East

Workshop on Circuits and Systems, pages 165–168,

June 2006.

[4] Javier Castillo, Pablo Huerta, and Jose Ignacio

Martinez. An open-source tool for SystemC to Verilog

automatic translation. Latin American Applied

Research, 37(1):53–58, 2007.

[5] Rolf Drechsler and Daniel Grosse. Reachability

Analysis for Formal Verification of SystemC. In

Euromicro Symposium on Digital System Design 2002,

pages 337–340, 2002.

[6] Rolf Drechsler, Mathias Soeken, and Robert Wille.

Formal Specification Level: Towards

verification-driven design based on natural language

processing. In Forum on Specification and Design

Languages, pages 53–58, 2012.

[7] Görschwin Fey, Daniel Große, Tim Cassens, Christian

Genz, Tim Warode, and Rolf Drechsler. ParSyC: an

efficient SystemC parser. In Workshop on Synthesis

And System Integration of Mixed Information

technologies, pages 148–154, 2004.

[8] Martin Gogolla and Ralf Kollmann.

Re-Documentation of Java with UML Class Diagrams.

In 7th Reengineering Forum, pages 41–48, 2000.

[9] John Hopf, G. Stewart Itzstein, and David Kearney.

Hardware Join Java: a high level language for

reconfigurable hardware development. In International

Conference on Field-Programmable Technology, pages

344–347, 2002.

[10] ISO. Information technology – Programming

languages – C++. Norm ISO/IEC 14882:2011,

International Organization for Standardization, 2000.

[11] FZI Karlsruhe. KaSCPar - Karlsruhe SystemC Parser

Suite, 2012.

http://www.fzi.de/index.php/de/component/content/article/238-

ispe-sim/4350-kascpar-karlsruhe-systemc-parser-suite.

[12] James Lapalme, El Mostapha Aboulhamid, Gabriela

Nicolescu, Luc Charest, Francois R. Boyer, Jean Pierre

David, and Guy Bois. ESys. Net: a new solution for

embedded systems modeling and simulation. ACM

SIGPLAN Notices, 39(7):107–114, 2004.

[13] James Lapalme, El Mostapha Aboulhamid, Gabriela

Nicolescu, Luc Charest, Francois R. Boyer,

Jean Pierre David, and Guy Bois. .NET framework - a

solution for the next generation tools for system-level

modeling and simulation. In Design, Automation and

Test in Europe Conference, pages 732–733, 2004.

[14] Kevin Marquet, Matthieu Moy, and Bageshri Karkare.

A theoretical and experimental review of SystemC

front-ends. In Forum on Specification and Design

Languages, pages 124–129, 2010.

[15] Grant Martin, Brian Bailey, and Andrew Piziali. ESL

Design and Verification: A Prescription for Electronic

System Level Methodology. Morgan Kaufmann, 2007.

[16] Matthieu Moy, Florence Maraninchi, and Laurent

Maillet-Contoz. PINAPA: An Extraction Tool for

SystemC Descriptions of Systems-on-a-Chip. In

Conference on Embedded software, pages 317–324,

2005.

[17] O.S.C. Initiative. IEEE Standard SystemC Language

Reference Manual. IEEE Computer Society, 2006.

[18] James Rumbaugh, Ivar Jacobson, and Grady Booch.

The Unified Modeling Language reference manual.

Addison-Wesley Longman, Essex, UK, January 1999.

[19] Carsten Schulz-Key, Markus Winterholer, Thomas

Schweizer, Tommy Kuhn, and Wolfgang Rosenstiel.

Object-oriented modeling and synthesis of SystemC

specifications. In Asia and South Pacific Design

Automation Conference, pages 238–243, 2004.

[20] Jannis Stoppe, Robert Wille, and Rolf Drechsler. Data

Extraction from SystemC Designs using Debug

Symbols and the SystemC API. In IEEE Computer

Society Annual Symposium on VLSI, pages 26–31,

2013.

[21] Tim Weilkiens. Systems Engineering with

SysML/UML: Modeling, Analysis, Design. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA,

February 2008.


