
Determining the Minimal Number of SWAP Gates
for Multi-dimensional Nearest Neighbor Quantum Circuits

Aaron Lye1 Robert Wille1,2 Rolf Drechsler1,2

1Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
2Cyber Physical Systems, DFKI GmbH, 28359 Bremen, Germany

{lye,rwille,drechsle}@informatik.uni-bremen.de

Abstract

Motivated by the promises of signi�cant speed-ups for
certain problems, quantum computing received signi�cant
attention in the past. While much progress has been made
in the development of synthesis methods for quantum cir-
cuits, new physical developments constantly lead to new
constraints to be addressed. The limited interaction dis-
tance between the respective qubits (i.e. nearest neigh-
bor optimization) has already been considered intensely.
But with the emerge of multi-dimensional quantum ar-
chitectures, new physical requirements came up for which
only a few automatic synthesis solutions exist yet � all
of them of heuristic nature. In this work, we propose an
exact scheme for nearest neighbor optimization in multi-
dimensional quantum circuits. Although the complexity
of the problem is a serious obstacle, our experimental eval-
uation shows that the proposed solution is su�cient to
allow for a qualitative evaluation of the respective opti-
mization steps. Besides that, this enabled an exact com-
parison to heuristical results for the �rst time.

I. Introduction

Quantum computing [1] allows for solving many rel-
evant problems in signi�cantly less complexity. This is
achieved by exploiting certain quantum mechanical phe-
nomena. For example, information can not only be rep-
resented by the conventional basis states 0 and 1, but
also by their superposition. Additional properties such
as entanglement can be utilized to solve problems like
factorisation [2] or database search [3] signi�cantly faster
than with conventional concepts. Motivated by these de-
velopments, researchers and engineers started to actively
consider the logic synthesis of the corresponding circuits.
First netlists of the respective quantum circuits have

thereby been developed by hand. But in order to design
even more complex quantum circuits, automatic meth-
ods for computer-aided design and synthesis are required.
Accordingly, e�cent quantum circuit design became an
active �eld of research. Therefore, several technological
constraints have to be considered during the design pro-
cess. Among them, the limited interaction distance be-
tween gate qubits is one of the most common ones. Here,
it is required that computations are only to be performed
between adjacent, i.e. nearest neighbor, qubits.
An established design scheme to address this constraint

is to apply a post-synthesis optimization to the quan-
tum circuits which are usually composed of 1- and 2-qubit

gates. The main idea of most of these approaches is to
add so called SWAP gates into the circuit structure in or-
der to move the respective gate connections together until
they become adjacent. However, the precise fashion how
these SWAP gate insertions are conducted has a signi�-
cant e�ect on the overall costs of the resulting circuit. In
particular, reordering the qubit positions or considering
SWAP gate insertion not only locally for each single gate
but for the whole cascade may reduce the costs signi�-
cantly. Hence, several approaches on determining good
SWAP gate insertions have been proposed in the past
[4, 5, 6, 7, 8, 9].

So far, these approaches assumed quantum circuit re-
alizations in one-dimensional architectures. But recently,
physical implementations based on multi-dimensional ar-
chitectures have gained interest and are seen as the more
suitable physical solution [10, 11, 12]. Here, qubits are
not aligned next to each other, but e.g. in a 2D structure.
First physical realizations based on photonics [13], super-
conductors [13], quantum dots [14], and neutral atoms [15]
have been shown very promising. Nevertheless, the devel-
opment of respective synthesis solutions ensuring near-
est neighbor-compliance for these architectures are just
at the beginning. To the best of our knowledge, only
hand-made solutions such as [16] or the approach recently
proposed in [17] exists yet. However, these solutions are
of heuristic nature and, hence, no exact results on 2D
and multi-dimensional nearest neighbor quantum circuits
have been obtained thus far. That is, exactly evaluat-
ing the performance of nearest neighbor optimization for
multi-dimensional quantum architectures was not possi-
ble until today.

In this paper, we aim for such an exact evaluation. We
observe that, in contrast to nearest neighbor optimization
for 1D architectures, determining the minimal number of
SWAP gates for multi-dimensional quantum architectures
requires several complex sub-problems to be solved. Con-
sequently, we propose a solution composed of three steps
� each of them tackling a separate sub-problem. Experi-
ments con�rm the computational complexity of the con-
sidered problem, but also show that � using the proposed
solutions � it is possible to determine exact results for cir-
cuits of up to six qubits. This is su�cient to allow for a
qualitative evaluation of the respective optimization steps
to be performed in order to generate nearest-neighbor-
compliant quantum circuits for multi-dimensional archi-
tectures. At the same time, this enables, for the �rst time,
an exact comparison to results which have heuristically
been generated before.

1

q0 q0

q1 q1

q2 q2

q3 q3

U

U

U

(a) 1D circuit

q0

q1

q2

q3
U

U

U

(b) 2D circuit

q0 q0

q1 q3

q2 q2

q3 q1

U q1

q2

U

q1

q3 q2

q3 U

(c) Nearest neighbor 1D circuit

q0 q1

q1 q2

q2 q0

q3 q3

U

q0

q1

U

q0

q2

U

(d) Cheaper NN 1D circuit

Fig. 1. Multi-dimensional quantum circuits

The remainder of this paper is structured as follows: In
order to keep this paper self-contained, Section II intro-
duces the basics of quantum circuits and nearest neighbor
architectures. Section III introduces the problem consid-
ered in this work in more detail and proposes the main
idea of our solution. Afterwards, the solution is compre-
hensively described in Section IV. Section V shows the
application and discusses the achieved results in compar-
ison to previously obtained results. Finally, the paper is
concluded in Section VI.

II. Nearest Neighbor Quantum Circuits

Quantum computing relies on manipulating quantum
bits (qubits) rather than conventional bits. A qubit may
assume any state represented by the linear superposition
of the basis states |0〉 and |1〉. The manipulations are per-
formed by applying speci�c unitary operations U . Com-
monly used quantum operations include the Hadamard
operation H (setting a qubit into superposition), the
phase shift operation S, as well as the NOT operation X.
Details on these operations are not relevant in the remain-
der of this work, but can be found e.g. in [1]. The appli-
cation of a unitary operation is eventually represented by
means of quantum gates, i.e. an n-qubit quantum gate ap-
plies a 2n×2n unitary matrix to the corresponding qubits.
This leads to the following de�nition of a quantum circuit
used in this work.

De�nition 1. A quantum circuit is denoted by the cas-
cade G = g1g2 . . . g|G| (in �gures drawn from left to right),
where |G| denotes the total number of gates. The number
of qubits is denoted by n. Usually, quantum circuits are
composed of unary gates simply applying the respective
unitary operation on a single qubit or controlled quantum
gates over two qubits. The costs of a quantum circuit are
de�ned by the number |G| of gates.
Originally, qubits in a quantum circuit have been ar-

ranged in a 1-dimensional (i.e. linear) fashion where each
qubit is placed next to each other. Fig. 1(a) shows an
example of such a circuit. However, recent technological
developments (e.g. [10, 11, 12]) also lead to the consid-
eration of 2-dimensional arrangements where qubits are
placed according to a grid-structure. In this case, the
circuit from Fig. 1(a) would be realized as sketched in
Fig. 1(b). Such arrangements can accordingly been ex-
tended to higher dimensions eventually leading to multi-
dimensional quantum circuits.
Finally, technological constraints for certain technolo-

gies (see e.g. [12, 18, 19]) limit the interaction distance
between the qubits and, hence, only allow the application
of gates between adjacent (i.e. nearest neighbor) qubits.
For the 1D circuit depicted in Fig. 1(a) and the 2D cir-
cuit depicted Fig. 1(b), this only holds for gate g1 and g2,

respectively. All other gates have to be made nearest
neighbor-compliant. To this end, so called SWAP gates
can be utilized.

De�nition 2. A SWAP gate over two qubits qi, qj trans-
forms (q0, . . . , qi−1, qi, qi+1 . . . , qj−1, qj , qj+1 . . . , qn−1) to
(q0, . . . , qi−1, qj , qi+1 . . . , qj−1, qi, qj+1 . . . , qn−1), i.e. sim-
ply swaps the value of the two qubits qi and qj.

Nearest neighbor-compliance of a quantum circuit can
be achieved by applying a cascade of adjacent SWAP
gates in front of each gate g with non-adjacent qubits.
By this, the respective qubits are shifted together until
they are adjacent. Fig. 1(c) exemplary shows the circuit
previously considered in Fig. 1(a) which has been made
nearest neighbor compliant by inserting additional SWAP
gates (SWAP gate connections are denoted by ×). In a
similar fashion, this can be applied to the 2D circuit from
Fig. 1(b) as well.

III. Considered Problem and Proposed Solution

Ensuring nearest neighbor compliance by inserting
SWAP gates has heavily been considered in the past and
is an established procedure to satisfy the underlying tech-
nological constraints. The main objective is thereby to
keep the number of SWAP gates to be inserted as small as
possible. This section reviews the respective related work
and, based on that, states the research question consid-
ered in this work. Afterwards, the proposed steps to solve
the considered problem are outlined.

A. Related Work and Considered Problem

Obviously, the fashion in which SWAP gates are in-
serted has a signi�cant e�ect on the required number of
insertions. For example, the insertion of SWAP gates
as shown in Fig. 1(d) leads to a much cheaper near-
est neighbor-compliant circuit compared to the solution
previously shown in Fig. 1(c). Accordingly, di�erent ap-
proaches for optimizing the insertion of SWAP gates have
been proposed in the recent past.
The majority of them focused on 1D quantum circuits

and applied strategies such as the re-ordering of qubit
positions [5], window-based heuristics [7], or mapping
the problem to a corresponding graph arrangement prob-
lem [4]. While these approaches lead to heuristic solutions
only, an exact approach guaranteeing the minimal number
of SWAP insertions has recently been proposed in [8, 9].
In [6], another exact approach has been proposed which
additionally allows for changing the order of the gates so
that the results obtained there are not directly compara-
ble to the other solutions.

In contrast, nearest neighbor optimization for 2D (or
even multi-dimensional) quantum circuits is just at the
beginning: Although manually derived nearest neighbor-
compliant 2D realizations for certain building blocks such
as an adder, e.g. in [16], have been presented, automatic
approaches for SWAP gate insertion are hardly available
yet. To the best of our knowledge, only the approach
recently proposed in [17] exists. This, however, only gen-
erates heuristic solutions. Until today, no exact approach
and, hence, no exact results on 2D and multi-dimensional
nearest neighbor quantum circuits exists yet. This is cru-
cial since clear results e.g. on the number of needed SWAP
gates or the best possible qubit arrangement cannot be
derived from heuristic results.
Motivated by this, we consider the following problem

in this work: How to determine the minimal number
of SWAP gates to be inserted to make a 2D or even a
generic, i.e. multi-dimensional, quantum circuit nearest
neighbor-compliant.

B. Proposed Solution

Determining the (minimal) number of SWAP gate in-
sertions in 1D quantum circuits basically focused on where
and how many SWAP gates have to be added into an
existing circuit structure. Considering multi-dimensional
quantum circuits, further issues need to be addressed. For
example, the precise con�guration of the circuit is not �x:
A 1D circuit with e.g. 7 qubits always have those seven
qubits arranged next to each other; in a 2D quantum cir-
cuit, they may be arranged onto a 2×4- or even 3×3-grid.
Multi-dimensional quantum circuits allow for many fur-
ther possibilities. This obviously has an e�ect on which
qubits are adjacent and which are not. Moreover, even
the number of SWAP gates needed to establish a certain
qubit permutation onto the circuit (e.g. in order to make
a non-adjacent gate nearest neighbor-compliant) signi�-
cantly depends on this. Determining this number is a
non-trivial task.
In order to address all these issues, we propose a solu-

tion composed of the following steps:

1. Determine the precise con�guration of the considered
quantum circuit, i.e. its dimensions for a given num-
ber of qubits.

2. Determine a cost function providing the minimal
number of SWAP gates needed to realize an arbitrary
permutation onto the given circuit con�guration.

3. Determine the minimal SWAP gate insertions based
on the given circuit con�guration and its cost func-
tion.

IV. Implementation

This section describes the proposed solution and the ap-
plied procedures to each of the steps mentioned above in
detail. For sake of clarity, all issues are mostly discussed
and illustrated by means of 2D quantum circuits. How-
ever, all concepts can accordingly be extended to multi-
dimensional quantum circuits.

q1 q4

q0 q3

q2

(a) 2× 3-grid

q1

q2 q0 q3

q4

(b) 3× 3-grid

Fig. 2. Determine the precise quantum circuit con�guration

A. Determine the Precise Quantum Circuit Con�guration

For a given number of qubits, multi-dimensional quan-
tum circuits allow for several possible con�gurations to
be considered. The respective choice has thereby a signif-
icant e�ect on the number of needed SWAP gates but also
on the number of garbage, i.e. unused, qubit positions.

Example 1. Consider a quantum circuit over �ve
qubits q0, . . . , q4 to be realized in a 2D architecture
and with interactions between q0 and each of q1, . . . , q4.
The smallest possible 2D con�guration would require a
2× 3-grid1. As sketched in Fig. 2(a), the best possible
qubit-placement indeed would keep the number of garbage
positions minimal (just one), but additionally requires
an additional SWAP gate for q0 and q4. In contrast, a
3× 3-grid would allow for a qubit-placement with no need
for any additional SWAP gates but eventually lead to four
garbage qubit positions (as sketched in Fig. 2(b)).

In general, researchers and designers aim for keeping
the number of garbage qubits as small as possible [20]. At
the same time, also e�orts have been made to explicitly
exploit those [21, 22]. Multi-dimensional nearest neigh-
bor quantum circuits provide another argument for being
more �exible with the �keep the number of garbage qubits
as small as possible�-design rule. Eventually, the designer
has to trade-o� the respective criteria. In the following,
we aim for determining the minimal number of SWAP
gates for quantum circuit con�gurations with the min-
imal number of garbage qubit positions. However, the
approach is also applicable for con�gurations which are
larger than necessary.

B. Costs of Establishing an Arbitrary Permutation

In order to globally determine the minimal number of
SWAP gates needed to make an arbitrary quantum circuit
nearest neighbor-compliant, it has to be known how many
SWAP gates are required to establish an arbitrary permu-
tation of qubit positions in that circuit. For 1D quantum
circuits, this can been obtained in linear time using in-
version vectors [8, 9]. For multi-dimensional circuits, this
constitutes a more complex problem. The problem can be
formulated by means of adjacent transposition graphs2.

De�nition 3. Let G = g1g2 . . . g|G| be a circuit over n
qubits. An adjacent transposition graph A = (V,E) is a
representation of all transpositions which can be realized
by nearest neighbor-compliant SWAP gates. The set V of
nodes represent all |V | = n! possible permutations while
edges represent valid transpositions from one permutation
to another.

1In principle, a 1×5-grid may be considered the smallest possible
con�guration but, however, is considered as a 1D con�guration.

2Adjacent transposition graphs have previously also been applied
in [6] for nearest neighbor optimization of 1D circuits. However, as
said above inversion vectors are the more e�cient solution here.

q0q1
q2q3

q0q1
q3q2

q0q3
q2q1

q1q0
q2q3

q2q1
q0q3

.
Fig. 3. Adjacent transposition graph

Example 2. Fig. 3 sketches a part of the transposition
graph for a 2D quantum circuit over n = 4 qubits. Tran-
sition graphs for multi-dimensional quantum circuits can
be created by accordingly considering the possible transpo-
sitions and the resulting permutations.
Having such a representation, the minimal number of

SWAP gates needed to establish an arbitrary permuta-
tion can be obtained by determining a minimal path from
the node representing the identity permutation (denoted
as vsrc) to the node representing the desired permuta-
tion (denoted as vdest). Inspired by [23], this can be for-
mulated as Pseudo-Boolean Optimization problem (PBO
problem).
More precisely, for each node v ∈ V a Boolean vari-

able xv is introduced representing whether v is included in
the optimal path from the source to the destination node,
i.e. xv = 1 i� v is in the optimal path. In the same fashion,
a Boolean variable xe is introduced for each edge e ∈ E
representing whether e is included in the optimal path
from the source to the destination node, i.e. xe = 1 i� e
is in the optimal path.
Then, it has to be constrained that (1) vsrc and vdest

are part of the path, (2) one edge including vsrc and one
including vdest have to be part of the path, and (3) if
any other node v ∈ V \ {vsrc, vdest} is part of the path
(i.e. i� xv = 1), then two other edges incident to v (an
incoming one and an outcoming one) have to be part of
the path as well. Minimality of the path is ensured by
enforcing the optimization function (4), i.e.

xvsrc ∧ xvdest (1)

∧
∑

e∈{(vsrc,•)∈E}

xe = 1 ∧
∑

e∈{(vdest,•)∈E}

xe = 1 (2)

∧
v∈V \{vsrc,vdest}

(xv ⇔
∑

e∈{(v,•)∈E}

xe = 2), (3)

min :
∑
e∈E

xe. (4)

Passing this formulation to a state-of-the-art PBO
solver [24], a minimal assignment to all xv- and xe-
variables is derived. From the xe-variables, the minimal
transpositions and, by this, the minimal SWAP gate cas-
cade realizing the desired permutation can be obtained.
Using state-of-the-art PBO solvers enables the exploita-
tion of intelligent decision heuristics, powerful learning
schemes, and e�cient implication methods and, hence, is
much more su�cient that simply traversing the complete
space of assignments.

C. Optimal SWAP Gate Insertion

Finally, the actual determination of SWAP gates
needed in order to make an arbitrary quantum circuit
nearest neighbor-compliant is considered. For this pur-
pose, (1) all possible permutations of qubit positions be-
fore each gate g ∈ G of the circuit and (2) the costs (in

terms of adjacent SWAP gates) that would be needed in
order to create these particular permutations have to be
considered. How to calculate the second issue has already
been covered in the previous section. For the �rst issue,
again a PBO formulation is proposed.
Again, Boolean variables are introduced for this pur-

pose. We distinguish thereby between the position in a
circuit and the corresponding qubits. Before each gate,
we allow an arbitrary permutation (including the iden-
tity) which may lead to di�erent mappings of qubits to
the respective positions. More precisely:

De�nition 4. Let G = g1g2 . . . g|G| be a quantum cir-
cuit over n qubits to be realized in a d-dimensional
architecture. Additionally, let each dimension of this
d-dimensional quantum circuit be bounded by b0, . . . , bd−1,
i.e. the circuit inherits positions de�ned by P d ⊂ Nd =
N × · · · × N with ∀p = (p0, . . . , pd−1) ∈ P d : pl ≤ bl with
0 ≤ l < d. Then, Boolean variables xkij with 1 ≤ k ≤ |G|,
i enumerating all positions pi ∈ P d, and 1 ≤ j ≤ n are
introduced representing whether a qubit qj is assigned a

position pi before gate gk (xkij = 1) or not (xkij = 0)3.

Example 3. Consider again the quantum circuit over �ve
qubits q0, . . . q4 to be realized in a 3×3 2D architecture as
sketched in Fig. 2(b). Additionally assume that the posi-
tions pi ∈ P 2 are enumerated from left to right and top to
bottom, i.e. p0 (p8) represents the position at the top-left
(bottom-right). This permutation to be established before
a gate gk would be represented by the assignment xk40 = 1
(qubit q0 at position p4), x

k
11 = 1 (qubit q1 at position p1),

xk23 = 1 (qubit q2 at position p3), x
k
53 = 1 (qubit q3 at po-

sition p5), and xk74 = 1 (qubit q4 at position p7). All
remaining xkij-variables are assigned zero.

Obviously, these mappings cannot arbitrarily be made.
In fact, each position must exactly correspond to one
qubit and each qubit must exactly correspond to one po-
sition. In order to ensure this, the following constraint is
added to the PBO instance:

|G|∧
k=1

∧
p∈Pd

(
∑
p′∈Pd

xkp′p = 1) ∧ (
∑
p′∈Pd

xkpp′ = 1)


Next, it has to be ensured that only permutations are

applied which satisfy the nearest neighbor condition on
all functional gates. Since the control and target qubits
of each elementary 2-qubit gate (denoted by g(c, t) with
c, t ∈ P d) are known, this can be enforced through the
~xki -variables and the following constraint:

∧
gk(c,t)∈G

d−1∨
i=0

∨
p∈Pd|
pi<bi−1

(
(xkpc ∧ xk(p+ui)t

) ∨ (xkpt ∧ xk(p+ui)c
)
)

where ui is the ith unit vector4. More precisely, this con-
straint enumerates all possible adjacent positions for the

3Note that, in accordance to previous work (e.g. [5, 7, 8, 9]), we
assume the primary input qubits can arbitrarily be permuted with
no additional costs.

4Adding the unit vector to a position, i.e. p + ui, means incre-
menting the ith element of the tupel p ∈ P d. The result is the next
position in the respective direction of the selected dimension and is
valid due to pi < bi − 1.

qubits c and t and eventually ORs them. By this, only
assignments are valid which make qubit c and qubit t ad-
jacent.
Finally, the possible permutations of qubits at each po-

sition and the corresponding costs for creating such a per-
mutation has to be formulated into the PBO instance.
Again, the ~xki -variables can be exploited for this purpose.
Based on them, it can be derived what permutation is
applied before gate gk in order to change the previous po-
sitioning. Further free Boolean variables (denoted by skπ)
are utilized to store whether a corresponding permuta-
tion π is applied. This is expressed by the following con-
straint:

|G|∧
k=2

∧
π∈Π

 ∧
p∈Pd

(~xk−1
p = ~xkπ(p))⇔ skπ


This constraint considers all possible permutations (de-
noted by Π) established before each gate gk. If the as-

signments of ~xk−1
i and ~xki establish a particular permu-

tation π ∈ Π, then the respective variable skπ is set to 1
(encoded through ⇔). This states that this particular
permutation π has been chosen before gate gk and, hence,
the corresponding costs for it have to be considered. This
is eventually incorporated in the objective function

min :

|G|∑
k=2

∑
π∈Π

cπs
k
π

where cπ denotes the costs (in terms of adjacent SWAP
gates) for creating a permutation π. These costs have
been determined before as described in Section IV.B.
Combining all these constraints, a PBO instance results

which is satis�abile for all permutations of qubits that
lead to a nearest neighbor compliant circuit. The precise
permutation to be created at position k can thereby be
derived from the assignment to the skπ variables. If skπ has
been assigned 1 by the PBO solver, a permutation π has
to be created before gate gk. By additionally optimizing
the objective function, the PBO solver ensures a minimal
number of SWAP gates.

V. Application and Discussion

The approaches presented above address, in an exact
fashion, the main issues to be solved when it comes to
determine the minimal number of SWAP gates in or-
der to make a multi-dimensional quantum circuit nearest
neighbor-compliant. In this section, we show and discuss
how this advances the state-of-the-art in this domain. Due
to page limitations, we limit ourselves to selected exam-
ples which representatively illustrate the bene�ts but also
the limitations of the proposed approaches.

A. Costs of Establishing an Arbitrary Permutation

SWAP gate insertion basically is about establishing a
new permutation of qubits to the respective positions
within a multi-dimensional quantum circuit. Hence, be-
fore it comes to an actual SWAP gate insertion, the gen-
eral question is how costly (in terms of SWAP gates) is
it to realize a certain permutation. While linear solutions

TABLE I
Costs of establishing an arbitrary permutation

#SWAPs #SWAPs
π 1D 2D π 1D 2D

q0q1q2q3 0 0 q2q0q1q3 2 2
q0q1q3q2 1 1 q2q0q3q1 3 3
q0q2q1q3 1 3 q2q1q0q3 3 1
q0q2q3q1 2 2 q2q1q3q0 4 2
q0q3q1q2 2 2 q2q3q0q1 4 2
q0q3q2q1 3 1 q2q3q1q0 5 3
q1q0q2q3 1 1 q3q0q1q2 3 3
q1q0q3q2 2 2 q3q0q2q1 4 2
q1q2q0q3 2 2 q3q1q0q2 4 2
q1q2q3q0 3 3 q3q1q2q0 5 3
q1q3q0q2 3 3 q3q2q0q1 5 3
q1q3q2q0 4 2 q3q2q1q0 6 4

to this question exist for 1D circuits (due to the help of
inversion vectors [8, 9]), the approach presented in Sec-
tion IV.B represents the �rst exact solution for multi-
dimensional circuits. This does not only provide the de-
signer with crucial information on the (exact) costs of es-
tablishing a certain operation, but also allows an analysis
on the suitability of di�erent con�gurations with respect
to nearest neighbor constraints.
As a representative, Table I shows the obtained costs

needed to establish all 4! = 24 possible permutations
over 4 qubits in both, a 1D quantum circuit as well as
a 2× 2, i.e. 2D, quantum circuit. The �rst column de-
notes thereby all possible permutations π, while the re-
maining two columns provide the number of SWAP gates
needed in order to realize the respective π's in the 1D
circuit and the 2D circuit.
Obviously, establishing the identify permutation

(i.e. q0q1q2q3) does not require a SWAP gate in neither the
1D nor the 2D con�guration. But for all other permuta-
tions, signi�cant di�erences can be observed. In fact, 2D
architectures require never more than 4 SWAP gates � in
a single case only. Instead, 1D circuits require 4 SWAP
gates or more (i.e. up to 6) in a total of 9 cases. Hence,
with respect to nearest neighbor constraints, the higher
dimension certainly pays o�. But this does not necessarily
hold for all permutations. For example, the permutation
q0q2q1q3 can be realized in a 1D architecture with a sin-
gle SWAP gate only, why 3 SWAP gates are needed in a
2D circuit. Without a scheme which enables logic design-
ers to determine those exact values, precise conclusions as
discussed here would not be possible.

B. Optimal SWAP Gate Insertion

Considering the actual SWAP gate insertion for a par-
ticularly given circuit, very few results exist yet. All of
them are of heuristic nature. Here, the approach proposed
in Section IV.C advances the state-of-the-art by, for the
�rst time, providing exact solutions. This allows for an
evaluation on how far the previously obtained heuristic
results are from the optimum.
Table II provides a selection of results con�rming this

statement. Here, the heuristically determined number of
SWAP gates as reported in [17] is compared against the
exactly determined number of SWAP gates obtained by
the approach proposed in Section IV.C (the columns Cir-
cuit and Conf. provide the name and the con�guration
as used in [17], respectively).

TABLE II
Resulting Optimal SWAP Gate Insertion

#SWAPs
Circuit Conf. [17] Sect. IV.C Time
3_17_13 2x2 6 4 17.6s
decod24-v3_46 2x2 3 2 0.5s
hwb4_52 2x2 9 7 42752.9s
rd32-v0_67 2x2 2 2 0.2s
4gt11_84 2x3 1 1 1644.5s

As expected, the approach presented in [17] � to the
best of our knowledge the only solution addressing SWAP
gate determination for 2D architectures thus far � does
not guarantee minimality. In fact, (exact) solutions with
less SWAP gates are possible as shown by means of the
�rst three representatives in Table II. On the other side,
this does not mean that the approach from [17] never re-
alizes minimal solutions. In fact, as shown in the last two
rows of Table II, respective representatives exists. How-
ever, without the approach presented in Section IV.C, it
would still be unknown whether these results are indeed
minimal or not.

In all these evaluations, the computation time remains
the limiting factor. That was expected and is a well-
known characteristic of exact synthesis schemes in general
(regardless of whether conventional or emerging technolo-
gies are considered). In our evaluations, we were able to
determine exact results for con�gurations with up to 6
qubits (using an AMD Athlon X2 CPU with 3 GHz and
4 GB of memory). This is in accordance to exact synthe-
sis schemes for other purposes. The right-most column
of Table II gives the detailed run-times for the selected
representatives. Despite this limitation, the proposed ap-
proaches nevertheless advances the �eld of nearest neigh-
bor optimization for multi-dimensional quantum circuits
by providing the minimal number of SWAP gates needed
in order to establish an arbitrary permutation for several
circuit con�gurations and a methodology to realize min-
imal solutions to be used for comparison to (much more
scalable) heuristic results.

VI. Conclusions

In this work, we considered the problem of how to
exactly determine the minimal number of SWAP gates
to be inserted in order to make a generic, i.e. multi-
dimensional, quantum circuit nearest neighbor-compliant.
We observed that a solution for this problem requires sev-
eral steps � each of them with its certain complexity. To
cope with the respective complexity, solvers for pseudo-
Boolean satis�ability have been utilized. This allowed, for
the �rst time, for a qualitative evaluation of the respec-
tive optimization steps and enabled an exact comparison
to heuristical results.

References

[1] M. Nielsen and I. Chuang. Quantum Computation and Quan-
tum Information. Cambridge Univ. Press, 2000.

[2] P. W. Shor. Algorithms for quantum computation: discrete
logarithms and factoring. Foundations of Computer Science,
pages 124�134, 1994.

[3] Lov K. Grover. A fast quantum mechanical algorithm for
database search. In Theory of computing, pages 212�219, 1996.

[4] Y. Hirata, M. Nakanishi, S. Yamashita, and Y. Nakashima. An
e�cient method to convert arbitrary quantum circuits to ones
on a Linear Nearest Neighbor architecture. Quantum, Nano
and Micro Technologies. ICQNM, pages 26�33, 2009.

[5] M. Saeedi, R. Wille, and R. Drechsler. Synthesis of quantum
circuits for linear nearest neighbor architectures. Quant. Info.
Proc., 10(3):355�377, 2011.

[6] Atsushi Matsuo and Shigeru Yamashita. Changing the gate
order for optimal LNN conversion. In Reversible Computation,
volume 7165 of Lecture Notes in Computer Science, pages 89�
101. Springer Berlin Heidelberg, 2012.

[7] A. Shafaei, M. Saeedi, and M. Pedram. Optimization of quan-
tum circuits for interaction distance in linear nearest neighbor
architectures. In Design Automation Conf., pages 41�46, 2013.

[8] Robert Wille, Aaron Lye, and Rolf Drechsler. Optimal SWAP
gate insertion for nearest neighbor quantum circuits. In ASP
Design Automation Conf., pages 489�494, 2014.

[9] R. Wille, A. Lye, and R. Drechsler. Exact reordering of circuit
lines for nearest neighbor quantum architectures. IEEE Trans.
on CAD, 33(12), 2014.

[10] L. C. L. Hollenberg, A. D. Greentree, A. G. Fowler, and C. J.
Wellard. Two-dimensional architectures for donor-based quan-
tum computing. Phys. Rev. B, 74:045311, 2006.

[11] Muir Kumph, Michael Brownnutt, and Rainer Blatt. Two-
dimensional arrays of radio-frequency ion traps with address-
able interactions. New Journal of Physics, 13(7):073043, 2011.

[12] Naomi H. Nickerson, Ying Li, and Simon C. Benjamin. Topo-
logical quantum computing with a very noisy network and lo-
cal error rates approaching one percent. Nat Commun, 4:1756,
2013.

[13] Alexandre Blais, Jay Gambetta, A. Wallra�, D. I. Schuster,
S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf. Quantum-
information processing with circuit quantum electrodynamics.
Phys. Rev. A, 75:032329, Mar 2007.

[14] J. M. Taylor, J. R. Petta, A. C. Johnson, A. Yacoby, C. M.
Marcus, and M. D. Lukin. Relaxation, dephasing, and quantum
control of electron spins in double quantum dots. Phys. Rev.
B, 76:035315, Jul 2007.

[15] M. Sa�man, T. G. Walker, and K. Mølmer. Quantum infor-
mation with Rydberg atoms. Rev. Mod. Phys., 82:2313�2363,
Aug 2010.

[16] B.-S. Choi and R. Van Meter. A θ(
√
n)-depth quantum adder

on the 2D NTC quantum computer architecture. J. Emerg.
Technol. Comput. Syst., 8(3):24, 2012.

[17] Alireza Shafaei, Mehdi Saeedi, and Massoud Pedram. Qubit
placement to minimize the communication overhead in circuits
mapped to 2D quantum architectures. In ASP Design Automa-
tion Conf., pages 495�500, 2014.

[18] N. Y. Yao, Z.-X. Gong, C. R. Laumann, S. D. Bennett, L.-M.
Duan, M. D. Lukin, L. Jiang, and A. V. Gorshkov. Quan-
tum logic between remote quantum registers. Phys. Rev. A,
87:022306, 2013.

[19] David A. Herrera-Martí, Austin G. Fowler, David Jennings,
and Terry Rudolph. Photonic implementation for the topolog-
ical cluster-state quantum computer. Phys. Rev. A, 82:032332,
2010.

[20] R. Wille, O. Keszöcze, and R. Drechsler. Determining the
minimal number of lines for large reversible circuits. In Design,
Automation and Test in Europe, pages 1204�1207, 2011.

[21] D. M. Miller, R. Wille, and R. Drechsler. Reducing reversible
circuit cost by adding lines. In Int'l Symp. on Multi-Valued
Logic, pages 217�222, 2010.

[22] R. Wille, M. Soeken, D. M. Miller, and R. Drechsler. Trading
o� circuit lines and gate costs in the synthesis of reversible
logic. INTEGRATION, the VLSI Jour., 47(2):284�294, 2014.

[23] F.A. Aloul and B.A. Rawi. Identifying the shortest path in
large networks using Boolean satis�ability. In Electrical and
Electronics Engineering, pages 1�4, Sept 2006.

[24] Martin Gebser, Benjamin Kaufmann, André Neumann, and
Torsten Schaub. clasp: A con�ict-driven answer set solver. In
Logic Programming and Nonmonotonic Reasoning, pages 260�
265, 2007.

