
Reverse BDD-based Synthesis
for Splitter-free Optical Circuits

Robert Wille Oliver Keszocze Clemens Hopfmuller Rolf Drechsler
Institute of Computer Science, University of Bremen, 28359 Bremen, Germany

Cyber Physical Systems, DFKI GmbH, 28359 Bremen, Germany
{rwille,keszocze,drechsle}@informatik.uni-bremen.de

Abstract—With the advancements in silicon photonics, optical
devices have found applications e.g. for ultra-high speed and
low-power interconnects as well as functional computations to
be realized on-chip. Caused by the increasing complexity of
the underlying functionality, also the need for computer-aided
design methods for this technology rises. Motivated by that,
initial work on the development of synthesis methods for optical
circuits has been performed. But all approaches proposed thus
far suffer e.g. from unsatisfactory synthesis results or restricted
scalability. In particular, splittings in the resulting circuits which
degrade the optical signals into hardly measurable fractions
prevent an efficient and scalable synthesis for optical circuits.
In this work, we present a synthesis approach based on Binary
Decision Diagrams (BDDs) that overcomes these obstacles. The
approach yields circuits that rely on a total of zero splitters –
at the expense of a moderate increase in the number of optical
gates. Experiments confirm that, by this, an efficient and scalable
synthesis scheme for optical circuits eventually becomes available.

I. INTRODUCTION

In the last decades, the semiconductor industry wit-
nessed impressive developments. Devices continued to become
smaller and faster (known as Moore’s law [1]) – a trend that
will remain valid in the near future, but already is showing
its limitations [2]. Consequently, researchers and engineers al-
ready started exploring alternative directions and technologies
to be used in order to efficiently perform logical computations.

As a result, silicon-based integrated optics (also known as
silicon photonics) received significant interest. This resulted
in the physical design of optical interconnects and optical
functional on-chip units [3] which allow for ultra-high-speed
networks while having beneficial low-power properties. VLSI
chips with ultra-fast optical interconnects have already been
announced and will enter the market soon [4]. Innovations like
[5], [6], [7], amongst others, allow for optical devices to be
easily available. This, in turn, enables to extend the domain of
optics from optical interconnects, the main application today
(see e.g. [8]), to full-scale optical computations.

Motivated by this, initial work on the logic design of
optical circuits for important Boolean functions has been
conducted. This led to designs of (half) adders (see e.g. [9],
[10]) or ternary logic operators (see e.g. [11]). While those
approaches focused on single applications only, first attempts
towards generic approaches have been considered in [12].
Here, different synthesis schemes aiming for the realization
of an arbitrary function are discussed. However, the presented
schemes mainly suffer from no or only poor support for
expression sharing and, hence, rather large synthesis results
as well as a restricted scalability (this is discussed in more
detail later in Section II-B).

At the same time, the number of so called garbage outputs
and particularly the splittings of optical signals constitute
serious obstacles. In fact, a design scheme based on Binary
Decision Diagrams (BDDs, [13]) and originally proposed
in [12] was one of the the most promising approaches towards
an efficient and scalable synthesis of optical circuits. Here,
each node of the BDD is substituted by an optical gate
eventually leading to a circuit realizing the desired function.
But the generated circuits included a very large number of

splitters, i.e. logical devices which divide an optical signal into
two optical signals – each with only half the power. As a result,
optical signals are split into hardly measurable fractions and,
hence, this direction was eventually considered infeasible [12].
As a consequence, no scalable synthesis scheme for optical
circuits exists until today.

In this work, we address this issue. We show that, despite the
previous setbacks, the exploitation of BDDs still is a suitable
direction. But in contrast to the previously proposed scheme,
we introduce a new approach which generates the desired
circuits in a reverse fashion, compared to the previously
proposed scheme. For this purpose, paths of the BDD are
explicitly considered. The proposed scheme eventually results
in circuit structures where so called combiners rather than
splitters are applied. This enables, for the first time, a scalable
synthesis scheme which overcomes the obstacles of previously
proposed solutions.

A conceptional discussion as well as an experimental eval-
uation confirm the advantages of the proposed solution: At
the expense of a moderate increase in the number of optical
gates, an optical circuit without any splitters is generated. At
the same time, even improvements with respect to further cost
criteria such as garbage outputs can be observed. Overall, this
eventually establishes BDD-based synthesis as a suitable syn-
thesis scheme for optical circuits without the serious obstacles
observed in previous work.

The remainder of this paper is structured as follows: Sec-
tion II provides an overview on the applied models and cost
metrics used in the logic design of optical circuits as well as a
brief review on previously proposed synthesis solutions. After-
wards, BDD-based synthesis as introduced in [12] including
its major obstacles are discussed and the proposed solution is
sketched in Section III. Details on the implementation of our
solution are then provided in Section IV. Finally, the proposed
approach is discussed from a conceptional point of view as
well as experimentally evaluated in Section V and Section VI,
respectively, before the paper is concluded in Section VII.

II. DESIGN AND SYNTHESIS OF OPTICAL CIRCUITS

Recent advances in the physical realization of optical de-
vices motivated the development of corresponding, automated
methods for their design and synthesis. For this purpose,
corresponding logical models and optimization criteria have
been derived. This section briefly reviews the resulting gate
library and cost metrics. Afterwards, previously proposed
synthesis schemes for optical circuits are discussed.

A. Applied Circuit Model and Cost Metrics
Optical devices allow to realize Boolean functionality by

means of so called crossbar gates which route the optical sig-
nals between two parallel paths. The inputs of both paths can
either be sourced by light (representing the logical value “1”)
or darkness (representing the logical value “0”). Furthermore,
the routing of both paths may be switched depending on the
value of an electrical signal. The output of each optical signal
can be read using optical receivers. Logically, this leads to the
following definition of a crossbar gate.

x
p
q

f
g

(a) Crossbar gate (b) Splitter (c) Combiner

Fig. 1: Optical gates

Definition 1. A crossbar gate realizes a Boolean func-
tion B3 → B2 composed of two optical inputs p and q,
one electrical input x, and two optical outputs f and g.
The signals p and q as well as f and g are connected by
waveguides which, depending on the value of x, realize either
the identity or a switch of the input values, i.e.

x⇒ (p ≡ f) ∧ (q ≡ g) and x⇒ (p ≡ g) ∧ (q ≡ f)

is realized. Fig. 1a provides the graphical representation of a
crossbar gate.

Note that, except for the crossbar gate as defined above, an
optical signal cannot directly modify the value of an electrical
signal and vice versa. For such purposes, an opto-electrical
interface would be required which, however, is considered as
expensive as well as slow. As a result, electrical and optical
signals are never assumed to interact with each other except
for the crossbar gate.

Besides that, also splitter and combiner are utilized in order
to realize logic functions.

Definition 2. A splitter divides an optical signal into two
optical signals – each with only half the signal power. A
combiner merges two optical signals into a single one and, by
this, inherently realizes the OR-function. Fig. 1b and Fig. 1c
provide the graphical representation of both gates. Splitters
(combiners) may have more than two outputs (inputs). Then,
in case of a splitter, the strength of the signal is divided by
the number of outputs.

Having a gate library composed of crossbar gates, splitters,
and combiners, arbitrary Boolean functions can be realized.

Example 1. Fig. 2 shows an optical circuit composed of six
crossbar gates, two splitters, and one combiner.

In order to measure the costs of an optical circuit, usually
the number of crossbar gates is counted. This metric is simply
motivated by the fact that each gate needs to be physically re-
alized. Besides that, also the number of splitters has explicitly
been considered. Although splitters (as well as combiners) are
easy to realize physically, each splitter decreases the strength
of an optical signal considerably. Hence, keeping the splitting
of optical signals as small as possible is an important objective.

However, simply counting the number of splitters does not
accurately measure the impact of splitters in a circuit. For the
physical implementation, it will make a difference if e.g. ten
signals are separately split once, or one signal is split ten times.
While this has also been acknowledged in previous work [9],
it was not explicitly addressed in terms of a metric thus far.
In our work, we explicitly consider this effect by additionally
introducing the worst case fraction of a single optical signal
as a further metric. The worst case fraction is determined as
follows: If we have a splitter with i outputs, each output is
assumed to have a signal strength of 1/i of the incoming signal.
A combiner will not change the fraction, as the worst case is
assumed, i.e. all other inputs of the combiner are assumed to
be 0. While this metric is just an approximation that may not
correspond perfectly to the physical implementation, it gives
a better idea of the resulting signal strength than just counting
the number of splitters.

x1

x2

x3

x4

x5

x6

f

1
0

0
1 0

Fig. 2: Optical circuit
Finally, the number of garbage outputs – defined by the

number of crossbar outputs, which are neither needed as input
for another gate nor as primary output of the entire circuit
anymore – has been considered in the past. Keeping the
number of garbage outputs as small as possible is motivated
by the fact that the respective optical signals still have to be
disposed. This requires additional routing and, hence, overhead
that should be avoided.
Example 2. The costs of the circuit depicted in Fig. 2 are
defined by 6 crossbar gates, 2 splitters, a worst case fraction
of 4, and 5 garbage outputs.
B. Previously Proposed Synthesis Approaches

As stated in Section I, logic design of optical circuits is
an emerging area in which the development of corresponding
automatic methods for synthesis is at the beginning. Never-
theless, first attempts have been made to automatically realize
circuits based on the model and considering (some of) the cost
metrics reviewed above.

In particular, several such methods for synthesis have been
introduced and discussed in [12]. The first one employs so
called virtual gates. Virtual gates are sub-circuits composed of
crossbar gates that realize important building block-functions
such as AND, OR, etc. They can be combined in a hierarchical
fashion while, at the same time, maintain certain properties,
e.g. the absence of garbage outputs. In contrast, virtual gates
allow expression sharing only to a very limited extent and,
hence, the resulting circuits are either of significant size or rely
on a very large amount of splitters. To address this problem,
an algorithm performing XOR decomposition is additionally
employed. Here, parts of the function are synthesized as a vir-
tual gate while sharing is explicitly employed whenever XORs
expressions occur. For this purpose, function decomposition
aiming for XOR expressions is performed. All these solutions
are, however, bounded by scalability issues.

The same problem occurs for the solution proposed in [14],
which introduces an exact synthesis scheme, i.e. an approach
guaranteeing minimality with respect to the number of gates.
Since guaranteeing minimality is a computationally hard prob-
lem, solvers for Quantified Boolean Formulas are utilized for
this purpose. This allows for the synthesis of minimal optical
circuits for Boolean functions of up to 6 variables. While this is
ideal to confirm the minimality of virtual gates or to determine
further building blocks, there obviously is a strong limitation
with respect to scalability, too.

Thus far, the most promising approach towards scalable syn-
thesis of optical circuits constitutes the BDD-based synthesis
scheme proposed in [12]. Similar to corresponding schemes
e.g. for the synthesis of conventional as well as reversible
circuits in [15] and [16], respectively, BDDs representing the
function to be synthesized are generated first. Afterwards, a
mapping scheme is employed substituting each BDD node
by a corresponding crossbar gate. This allows for a scalable
synthesis but, eventually, leads to rather poor results. In fact,
the generated circuits suffer from a very high decrease in signal
strength – as mentioned above a crucial issue when it comes to
the physical realization. Also, the number of garbage outputs
was not satisfactory. Hence, this idea eventually was dropped
by the authors of [12].

In this work, we propose a solution which overcomes and
explicitly addresses these drawbacks. We will show that BDD-
based synthesis indeed is a suitable scheme for synthesis of
optical circuits – it only has to be applied in an entirely
different fashion.

III. MOTIVATION AND GENERAL IDEA

BDD-based synthesis as introduced in [12] represents a
promising direction for scalable synthesis of optical circuits,
but suffers from the very large number of splitters and an
unsatisfactory number of garbage outputs. In this section, we
describe the previously suggested (but eventually discarded)
synthesis scheme in more detail and explicitly discuss its
essential weakness. Afterwards, we present the general idea
of our synthesis scheme which overcomes this weakness.

A. BDD-based Synthesis of Optical Circuits

BDD-based synthesis of optical circuits (originally proposed
in [12]) relies on Binary Decision Diagrams as an efficient
and scalable representation of Boolean functions. A BDD
is a directed graph G = (V,E) where each terminal node
represents the constant 0 or 1 and each non-terminal node
represents a (sub-)function. Each non-terminal node v ∈ V
has two succeeding nodes low(v) and high(v). If v is rep-
resenting the function f and is labeled with the variable xi,
the corresponding sub-functions represented by the succeeding
nodes are the co-factors fxi=0 (low(v)) and fxi=1 (high(v)).
Thus, the Shannon decomposition is naturally realized. BDDs
constitute an efficient representation for Boolean functions as
they represent redundant sub-functions by the same sub-graph.
This eventually leads to shared nodes, i.e. nodes with more
than one predecessor.

Having a BDD of the function to be realized, a correspond-
ing optical circuit can easily been derived from it. In fact, the
Shannon decomposition applied in each BDD node is directly
realized by a crossbar gate as introduced in Def. 1. Hence,
an optical circuit can be derived by traversing the BDD in
a depth-first fashion and substituting each node v ∈ V with
a corresponding crossbar gate. If a shared node occurs, the
respective optical signal has to be split accordingly. Combining
all gates and connecting the respective signals eventually lead
to an optical circuit realizing the desired function.

Example 3. Fig. 3a shows a BDD representing the func-
tion f : B4 → B2 with f1 = x̄0x̄2 + x̄0x2x3 + x0x̄1x3
and f2 = x0 + x̄0x̄1x3 as well as the respective co-factors
resulting from the application of the Shannon decomposition.
Fig. 3b shows the optical circuit obtained from this BDD. The
co-factor represented by the node ve can easily be realized by
the left-most crossbar gate. Since ve is a shared node, a splitter
is necessary in order to realize the co-factors represented by vc
and vd. More precisely, the splitter provides the respective
input values which can be used by the suceeding gates in
order to realize the co-factors of nodes vc and vd. Following
this scheme eventually leads to the circuit shown in Fig. 3b.

Considering practically relevant functions, the respective
BDD representation usually includes a large amount of shared
nodes which eventually result in splitters. Hence, applying
the synthesis method sketched above leads to optical circuits
where certain output signals are constituted by a negligible
fraction of power only (this is evaluated later in Section VI in
detail). Because of this essential weakness (and the fact that
also the number of garbage outputs is rather large), BDD-based
synthesis has been dropped as useful synthesis scheme.

x0

x2

1 x3

0 1

x1

0

x0

1

vc vd

ve

va vb

vf

f1 f2

(a) BDD

x3

x1

x2 x0

x0

f1

f2

0
1

1

10
(b) Obtained circuit

Fig. 3: BDD-based synthesis (previous approach)

B. Proposed Idea
Dealing with the problem of realizing complex Boolean

functionality with no or at least as few as possible splitters
constitutes one of the biggest obstacles in the design of
optical circuits. In the past, researchers tried to come up with
alternative decomposition schemes such as the Ashenhurst-
Curtis decomposition or functional bi-decomposition [14]. But
all these directions eventually resulted in new challenges to
be solved. Instead, this work shows that BDD-based synthesis
still is a suitable scheme – if applied in an entirely different
fashion.

More precisely, we propose an alternative BDD-based syn-
thesis scheme which exploits the fact that a function f to
be realized is defined by the 1-paths of the corresponding
BDD. A 1-path p = (v1, v2, . . . , vl) with vi ∈ V for a
given BDD G = (V,E) representing f is a sequence of
nodes obtained by traversing the BDD from the root node
to a 1 -terminal. A single path can be realized, as described
in Section III-A, i.e. by simply traversing each node of the
path and adding a corresponding crossbar gate. Based on that,
a given function f can be realized by separately synthesizing
all 1-paths of the corresponding BDD and eventually ORing
the respective outputs1.

However, generating optical logic for all 1-paths separately
obviously would lead to a very expensive circuit realization.
Hence, another property is exploited: the direction in which a
1-path is traversed during synthesis does not matter, i.e. the
path can be traversed from the root node to the 1 -terminals or
vice versa. In contrast to straight-forward BDD schemes, we
propose to traverse the 1-paths in a reverse fashion, i.e. from
the root nodes to the 1 -terminals. By this, shared nodes of the
BDD can fully be exploited, i.e. no redundant logic has to be
created, while, at the same time, combiners instead of splitters
can be applied for their realization. This reduces the number of
cases an optical signal is split to zero and, hence, overcomes
the weakness of BDD-based synthesis reviewed above.

The following example illustrates the idea.

Example 4. Consider again the function f1 as discussed in
Example 3 which is solely represented by the BDD shown
at the left-hand side of Fig. 4a. The edges highlighted bold
indicate that this function is defined by three 1-paths. Consid-
ering these paths in the direction from the root to the terminals
and additionally exploiting the sharing within the BDD would
eventually lead to (1) a root edge assumed to be constant 1
and (2) two functions f ′1 and f ′′1 with f ′1 ∨ f ′′1 = f1. This
interpretation of the BDD can be realized without any splitters
as shown at the top of Fig. 4b.

1Note that ORing optical signals can be realized by a single combiner,
i.e. the output of the combiner emits light (i.e. the logical value 1) if at least
one of its optical inputs sources light.

x0

x2

1 x3

0 1

x1

0

x0

x1

x3

0 1

0

1

f1 f2

f ′′2f
′′
2f
′′
2

f ′2f
′
2f
′
2

f ′1f
′
1f
′
1

f ′′1f
′′
1f
′′
1

111 111

(a) BDD(s) for f1 = f ′1∨f ′′1 and f2 = f ′2∨f ′′2

x0

x1

x2

x3

0
1

0

0

0

f ′
1

f ′′
1

f1

x0 x1 x3

f ′′
2

f ′
2

0
1

0 0 f2

(b) Obtained circuit(s)

Fig. 4: Proposed BDD-based synthesis

The general idea of the splitter-free BDD-based synthe-
sis can only be applied to BDDs representing functions
f : Bn → B1, i.e. functions with one output only. In order to
realize multi-output functions such as considered in Exam-
ple 3, all respective outputs have to be treated separately. The
right-hand side of Fig. 4a and the bottom of Fig. 4b show the
BDD and the resulting circuit for the function f2 considered
in Example 3, respectively. This restriction of course prevents
the full exploitation of sharing within the BDD. However,
discussions and experimental results show that this only leads
to a minor drawback with respect to the costs of the resulting
circuits. Before this is addressed in detail in Section V and
Section VI, a detailed description of the implementation of
this scheme is provided in the next section.

IV. IMPLEMENTATION

The observations and the general idea sketched in the
previous section eventually resulted in an implementation of
the proposed synthesis scheme as shown in Algorithm 1.
The algorithm starts by creating the BDD for the function f
(line 1). This can efficiently be done using existing BDD
packages such as CUDD [17]. In this BDD representation,
we are particularly interested in all 1-paths which are stored
in the set P (line 2) and, afterwards, individually processed
(line 5).

As discussed in Section III-B, single paths can be re-
alized by simply traversing each node of the path and
adding a crossbar gate accordingly. Hence, for each 1-path
p = (v0, v1, . . . , vl), each single node vi (1 ≤ i ≤ l) is
considered (line 7). We additionally consider to which sub-
function fj of f with f : Bn → Bm and 1 ≤ j ≤ m this
path belongs (line 6): If the respective node has not been
considered before in combination with function fj (line 13),

Algorithm 1: Overall reverse BDD synthesis algorithm
Data: Function f : Bn → Bm

Result: Splitter free optical circuit realizing f
1 G = (V,E)← BDD representation of f
2 P ← all 1-paths in G
3 visited← ∅
4
5 foreach p = (v1, v2, . . . , vl) ∈ P do
6 fj ← function belonging to the path p
7 for i = 1 to l do
8 xi ← label(vi)
9 xi−1 ← label(vi−1)

10
11 // new entities in each step are highlighted in bold
1313 if (vi, fj) /∈ visited ∧ i 6= l then

14

xixixi

15 visited← visited ∪ {(vi, fj)}
16 else
17 reuse existing gate
18 switch do
19 case i = 1

20

xi

111
000

21 case vi = low(vi−1)

22

xi−1 xi

23 case vi = high(vi−1)

24

xi−1 xi

25 case i = l

26

xi−1

fj

xi−1
fj

low(vl−1) = vl high(vl−1) = vl

a corresponding crossbar gate is added to the circuit structure
(line 14). Otherwise, the crossbar gate from the previous
traversion can be re-used (line 17). The information whether
a node has already been considered before in combination
with fj is stored in the set visited which is initially set
empty (line 3) and constantly updated (line 15). This case
differentiation is illustrated by the following example.

Example 5. Consider again the BDD shown in Fig. 3a. The
node ve is traversed by three 1-paths, namely
• p1 = (va, vc, ve, vf) (belonging to f1),
• p2 = (va, vd, ve, vf) (belonging to f1), and
• p3 = (vb, vd, ve, vf) (belonging to f2).

First, p1 is traversed which, next to others, leads to the
creation of a crossbar gate for ve (see rightmost crossbar
gate in the top circuit shown in Fig. 4b). The same gate can

be re-used when traversing p2 since it belongs to the same
sub-function f1. However, as p3 belongs to a different sub-
function (namely f2), a re-use is not possible. Instead, a new
gate is created (see the rightmost crossbar gate in the bottom
circuit shown in Fig. 4b).

By following this scheme, the independent consideration of
each function fj as discussed in Fig. 4 is done implicitly.

Finally, the connections between the previously created
gates have to be generated. Again, a case-by-case analysis is
applied here (lines 18-25). Since we consider the BDD in a
reverse fashion (as discussed in Section III-B and illustrated
in Fig. 4a), the first node v1 of each path is realized as shown
in line 19, i.e. a simple identity function (at output f) and a
negation function (at output g) with respect to x1 (the label
of v1) is realized. Those two functions are eventually re-used
by the next node v2 in the path and, hence, the next crossbar
gate. If v2 is reached through a low-edge (i.e. if v2 = low(v1)),
then the negation output is used, i.e. a connection as shown
in line 22 is created. Otherwise, the identity output is applied,
i.e. a connection as shown in line 24 is created. This eventually
leads to co-factors at the output f and the output g. Which
one is chosen here again depends on the next node v3. This
procedure continues until all nodes of the currently considered
path are traversed. If a crossbar gate’s input p or q is used
multiple times, we implicitly create a combiner gate for those
inputs.

The continuation of this procedure terminates if the last
node vl of the path p is considered. For this node, no crossbar
gate is created but the output of the previous gate is used
as a primary output for the function fj . The choice of the
output (f or g) is, again, determined by whether vl was reached
through a low-edge or a high-edge (see line 26).

Example 6. Consider again the paths of the BDD shown in
Fig. 3a. Applying the scheme described above exactly leads to
the connections as shown in Fig. 4b.

V. DISCUSSION

As reviewed in Section II-A, the number of crossbar gates,
the worst case fraction, and the number of garbage outputs
are the most important optimization criteria in the logic
design of optical circuits. In particular, the splitting of optical
signals constituted a crucial obstacle for scalable synthesis
thus far. The synthesis scheme proposed in this work aims
to address this obstacle, thereby overcoming one of the main
weaknesses of previously proposed solutions. Whether this
has been accomplished and, if yes, at what costs is discussed
in this section from a conceptional point of view2. For this
purpose, arbitrary functions f : Bn → Bm composed of m
single output functions denoted as fj (0 ≤ j < m) are
considered. The respective BDDs are denoted by G = (V,E)
and Gj = (Vj , EJ) for f and fj , respectively.

First, it can be observed that the proposed BDD-based
synthesis scheme has an obvious drawback: Each function fj
of f has to be considered separately. Because of this, sharing
between those functions cannot be exploited. Since additional
BDD nodes directly translate to additional crossbar gates, this
eventually leads to an overhead of crossbar gates which can
be measured by ∑

0≤j<m |Vi|
|V |

,

i.e. the combined number of all nodes of single-output
BDDs Gj divided by the number of nodes of the BDD G

2Precise results based on experimental evaluations are provided later in
Section VI.

representing all functions. That is, this overhead is clearly
bounded by the number m of fj-functions, meaning that no
more than m · |V | gates are needed. Moreover, usually less
overhead can be observed. For example, the number of nodes
in the BDD G discussed in Fig. 3 is five, while the combined
number of nodes in all BDDs Gj in Fig. 4 is seven. Hence,
this results in an overhead of a factor of 1.4 only, instead
of the maximal overhead of 2. Experiments summarized in
Section VI confirm that this similarly holds also for larger
BDDs.

On the other hand, this small overhead allows for addressing
the main weaknesses of the previously proposed BDD-based
synthesis. In fact, the number of garbage outputs is signifi-
cantly reduced in the majority of the cases. BDD-based syn-
thesis as proposed in [12] resulted in a garbage output for each
BDD node (due to the fact that in each corresponding crossbar
gate, only the f -output is used). In the proposed scheme, only
BDD nodes leading to a 0 -terminal cause a crossbar gate with
a garbage output. Hence, the newly proposed scheme generates
as much as

∑m
j=1 |{v|v ∈ Vj ∧ (low(v) = 0∨ high(v) = 0}|

garbage outputs – usually, this number is smaller than the total
of |V | garbage outputs generated by the previously proposed
BDD-based synthesis.

Finally, and most important, the proposed synthesis scheme
does not require any splitters. That is, not a single optical
signal is split and, hence, the worst case fraction remains 1
for all signals in the circuit. Overall, this eventually establishes
BDD-based synthesis as a suitable synthesis scheme for optical
circuits without the serious obstacles observed in previous
work and only at the expense of a moderate increase in the
number of crossbar gates.

VI. EXPERIMENTAL EVALUATION

In order to experimentally confirm the discussions from
the previous section, BDD-based synthesis as described in
Section IV has been implemented in Java and applied to a
selection of benchmarks taken from the LGSynth-package. All
experiments have been conducted on a 2.6 GHz Intel Core i5
machine with 8 GB of memory running Linux.

Table I summarizes the obtained results. The first columns
provide details on the considered functions and their BDD
representation, i.e. their name, number of primary inputs (n),
number of primary outputs (m), the number of nodes of the
entire BDD (|V |), as well as the combined number of nodes
over all BDDs (

∑
|Vi|). Afterwards, the results obtained by

the previous synthesis approach from [12] and the newly
proposed scheme from Section IV are reported, i.e. the number
of crossbar gates as well as the number of garbage outputs.
For the synthesis scheme from [12], we additionally listed the
number of splitters and the worst case fraction (the proposed
scheme always leads to a total of zero splitters and, hence,
a worst case fraction of 1). For the proposed scheme, we
additionally list the number of combiners (the previously
proposed scheme always leads to a total of zero combiners).
Finally, the last two columns list the differences (as factors)
in the synthesis results with respect to the number of crossbar
gates and garbage outputs. All results have been obtained in
negligible run-time, i.e. just a few CPU seconds.

The results confirm that the actual overhead caused by the
newly proposed synthesis scheme in terms of crossbar gates
indeed is moderate. In the worst case (table3), a little bit
more than twice the number of crossbar gates is needed – in
the majority of benchmarks, the additional overhead is even
smaller.

In contrast, this moderate overhead enables significant im-
provements with respect to other metrics. In fact, the number
of garbage outputs can often be reduced to a fraction of

TABLE I: Experimental Evaluation
Previously proposed synthesis scheme [12] Proposed synthesis scheme Difference

Function n m |V |
∑

|Vi| Crossbar Splitter w.c. fract. Garb. Crossbar Comb. Garb. Crossbar Garb.

apex2 39 3 7102 7182 7102 1756 > 107 7102 7182 6176 1235 1.01 0.17
frg1 28 3 203 203 203 26 720 203 203 189 98 1.00 0.48
cps 24 109 2318 3606 2318 280 184320 2318 3606 1279 2590 1.56 1.12
cordic 23 2 80 82 80 29 10240 80 82 64 20 1.03 0.25
mux 21 1 131070 131070 131070 255 > 107 131070 131070 256 550 1.00 0.00
cm151a 19 9 93 94 93 14 16 93 94 67 50 1.01 0.54
parity 16 1 31 31 31 28 16384 31 31 29 2 1.00 0.06
spla 16 46 681 1090 681 114 6480 681 1090 316 767 1.60 1.13
cm163a 16 13 50 70 50 8 60 50 70 23 38 1.40 0.76
pcler8 16 5 58 59 58 16 4 58 59 29 17 1.02 0.29
pdc 16 40 705 1118 705 124 18900 705 1118 413 765 1.59 1.09
t481 16 1 32 32 32 11 1296 32 32 29 6 1.00 0.19
cmb 16 4 47 48 47 1 2 47 48 2 26 1.02 0.55
ryy6 16 1 23 23 23 7 96 23 23 20 9 1.00 0.39
ham15 15 15 119 183 119 72 1024 119 183 87 75 1.54 0.63
in0 15 11 526 625 526 143 99792 526 625 307 137 1.19 0.26
f51m 14 8 1219 1605 1219 407 244992 1219 1605 683 98 1.32 0.08
alu4 14 8 1352 1534 1352 339 > 107 1352 1534 438 125 1.13 0.09
misex3c 14 14 847 970 847 202 367200 847 970 556 222 1.15 0.26
misex3 14 14 1301 1976 1301 349 > 107 1301 1976 1320 672 1.52 0.52
tial 14 8 1354 1677 1354 397 > 107 1354 1677 726 184 1.24 0.14
cu 14 11 65 97 65 10 10 65 97 12 82 1.49 1.26
table3 14 14 941 1996 941 212 > 107 941 1996 618 969 2.12 1.03
co14 14 1 27 27 27 12 4096 27 27 13 14 1.00 0.52

Function: Name of the function n: Number of primary inputs m: Number of primary outputs
|V |: Number of nodes of the entire BDD

∑
|Vi|: Combined number of nodes over all BDDs Gi

Crossbar: Number of crossbar gates Splitter: Number of Splitter gates w.c. fract.: Worst case fraction
Garb.: Number of garbage outputs Comb.: Number of combiner gates

The proposed synthesis scheme always leads to circuits with a total of none splitters and, hence, a worst case fraction of 1.
All results have been obtained in negligible run-time, i.e. just a few CPU seconds.

what was needed by previous solutions. Exceptions are cps,
spla, pdc, and table3 due to their special BDD structure. But
even here, no serious increase can be documented. Even more
important, the main weakness of BDD-based synthesis has
been solved: No splitter and, hence, no signal splitting is
required anymore. As the numbers clearly show, this was the
main obstacle of previous solutions. Signals have been split to
hardly measurable fractions. All this does not happen anymore
in the newly proposed synthesis scheme, i.e. all signals keep
their initial signal strength.

VII. CONCLUSIONS

In this paper, a BDD-based synthesis scheme for splitter-free
optical circuits has been proposed. By this, serious obstacles
of previously introduced solutions are addressed. Experiments
showed that our approach completely solves the issue of signal
spliting while, at the same time, still provides a scalable
synthesis scheme. In many cases, also the number of garbage
outputs can signficantly be reduced. All these benefits come
at the expense of a moderate overhead in terms of crossbar
gates only. This eventually establishes BDD-based synthesis
as a suitable and scalable synthesis scheme for optical circuits
without the serious obstacles observed in previous work.
In future work, we intend to apply one-path minimization
techniques to further improve the results.

REFERENCES

[1] G.E. Moore. Cramming more components onto integrated circuits.
Journal of Electronics, 38(8):183–191, 1965.

[2] Wilfried Haensch, Edward J Nowak, Robert H Dennard, Paul M
Solomon, Andres Bryant, Omer H Dokumaci, Arvind Kumar, Xinlin
Wang, Jeffrey B Johnson, and Massimo V Fischetti. Silicon CMOS
devices beyond scaling. IBM Journal of Research and Development,
50(4.5):339–361, 2006.

[3] P.K. Kaliraj, P. Sieber, A. Ganguly, I. Datta, and D. Datta. Performance
Evaluation of Reliability Aware Photonic Network-on-Chip Architec-
tures. In Intl. Green Computing Conference, pages 1–6, 2012.

[4] A. Shacham, K. Bergman, and L. P. Carloni. Photonic Network-on-Chip
for Future Generations of Chip Multi-Processors. IEEE Transactions on
Computers, 57(9):1246–1260, 2008.

[5] William M Green, Michael J Rooks, Lidija Sekaric, and Yurii A Vlasov.
Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator.
Optics express, 15(25):17106–17113, 2007.

[6] Ling Liao, Dean Samara-Rubio, Michael Morse, Ansheng Liu, Dexter
Hodge, Doron Rubin, Ulrich Keil, and Thorkild Franck. High speed
silicon Mach-Zehnder Modulator. Optics Express, 13(8):3129–3135,
2005.

[7] Haisheng Rong, Richard Jones, Ansheng Liu, Oded Cohen, Dani Hak,
Alexander Fang, and Mario Paniccia. A continuous-wave Raman silicon
laser. Nature, 433(7027):725–728, 2005.

[8] Ray Beausoleil, J Ahn, N Binkert, Al Davis, David Fattal, Marco
Fiorentino, Norman P Jouppi, Moray McLaren, CM Santori, Robert S
Schreiber, et al. A Nanophotonic Interconnect for High-Performance
Many-Core Computation. In IEEE Symposium on High Performance
Interconnects, 2008., pages 192–189. IEEE, 2008.

[9] Abdallah K. Cherri and Ayman S. Al-Zayed. Circuit designs of
ultra-fast all-optical modified signed-digit adders using semiconductor
optical amplifier and Mach-Zehnder interferometer. Optik - International
Journal for Light and Electron Optics, 121(17):1577 – 1585, 2010.

[10] D. K. Gayen and T. Chattopadhyay. Designing of Optimized All-Optical
Half Adder Circuit using Single Quantum-Dot Semiconductor Optical
Amplifier Assisted Mach-Zehnder Interferometer. Journal of Lightwave
Technology, 31(12):2029–2035, 2013.

[11] T. Chattopadhyay. All-optical symmetric ternary logic gate. Optics and
Laser Technology, 42(6):1014–1021, 2010.

[12] Christopher Condrat, Priyank Kalla, and Steve Blair. Logic Synthesis
for Integrated Optics. In Great lakes symposium on VLSI, pages 13–18.
ACM, 2011.

[13] Randal E Bryant. Graph-Based Algorithms for Boolean Function
Manipulation. IEEE Transactions on Computers, 100(8):677–691, 1986.

[14] Christopher Condrat, Priyank Kalla, and Steve Blair. Exploring Design
and Synthesis for Optical Digital Logic. In International Workshop on
Logic Synthesis, 2010.

[15] R. Drechsler, J. Shi, and G. Fey. MuTaTe: An efficient design for
testability technique for multiplexor based circuits. In Great lakes
symposium on VLSI, pages 80–83, 2003.

[16] R. Wille and R. Drechsler. BDD-based synthesis of reversible logic
for large functions. In Design Automation Conference, pages 270–275,
2009.

[17] Fabio Somenzi. CUDD: Colorado University Decision Diagram pack-
age. University of Colorado at Boulder, http://vlsi.colorado.edu/∼fabio/
CUDD/, 2012.

