A Generic Representation of
CCSL Time Constraints for UML/MARTE Models

Judith Peters! Robert Wille!:2

Nils Przigoda!

Ulrich Kiihne! Rolf Drechsler!»2

"nstitute of Computer Science, University of Bremen, 28359 Bremen, Germany
2Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
{jpeters,rwille,przigoda,ulrichk,drechsler } @informatik.uni-bremen.de

Abstract—The complexity of today’s embedded and cyber-
physical systems is rapidly increasing and makes the considera-
tion of higher levels of abstraction during the design process
inevitable. In this context, the impact of modeling languages
such as UML and its profiles such as MARTE is growing. Here,
CCSL provides a formal description of timing constraints which
have to be enforced on the considered system. This builds the
basis for many further design steps and can be used e.g. for
checking the consistency of the specification, for code generation,
or for proving whether the time constraints have correctly been
implemented at lower abstraction levels. However, most of the
approaches available thus far usually focus on sole design tasks
only - often even without an explicit consideration of the system’s
functional behavior. In this work, we are aiming for overcoming
this drawback by providing a method to automatically generate
a generic representation of a set of clock constraints in terms of
a transition relation. Afterwards, the resulting transition relation
can easily be utilized for the above mentioned design tasks. A
discussion on the applicability of the generic description as well
as an exemplary evaluation shows the promise of the proposed
generic representation.

I. INTRODUCTION

Today’s embedded systems are formed of up to millions of
components such as gates, signals, and lines enriched by ad-
ditional sensors and actors eventually forming cyber-physical
systems. The increasing complexity of these systems makes
the consideration of higher levels of abstractions in their design
inevitable. Modeling languages such as the Systems Modeling
Language (SysML, [1]) as well as the Modeling and Analysis
of Real-time and Embedded systems profile (MARTE, [2]) find
considerable attention in this regard. They allow for a very
precise specification of the functional as well as non-functional
behavior for a system to be realized.

In this contribution, we consider the specification of tim-
ing behavior. Timing is an essential part of a specification
and particularly of interest in all cases where the question
“when?” is asked. Specifying timing behavior is complex,
because it needs to provide a clear definition of time, clocks
to access time, and relations between all of them. For this
purpose, MARTE provides the Clock Constraint Specification
Language (CCSL, [2]) which allows for a precise specification

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.

DAC ’15, June 07 - 11, 2015, San Francisco, CA, USA

Copyright 2015 ACM 978-1-4503-3520-1/15/06. .. $15.00

http://dx.doi.org/10.1145/2744769.2744775

of timing behavior in complex systems. This builds the basis
for the next designs steps and can be used e.g. to (1) check
whether the timing constraints are consistent, plausible, and
indeed have been specified as intended, (2) generate code
which actually realizes the desired timing behavior, as well as
(3) proving whether the time constraints have correctly been
implemented at lower abstraction levels. In the recent past,
very powerful and complementary methods addressing these
tasks have been proposed e. g. in [3], [4], [5], [6], and [7].

These methods, however, usually rely on a translation and
interpretation of the CCSL descriptions in some different com-
putational model or language. Generating this is a laborious
and, at the same time, highly critical task in which any error
will spoil the validity of the respective results. Thus far,
researchers approached this challenge by providing translation
schemes for single application scenarios only. For example,
checking CCSL as introduced in [3], [4], [5], [6] relies on
a direct encoding of the constraints e.g. into Promela- or
UPPAAL-syntax. Code generation as proposed in [7] directly
creates SystemC code. That is, for each design task usually
a different translation and interpretation of CCSL constraints
is applied — although all of them eventually shall rely on the
same semantics.

Moreover, in most of the existing approaches, the non-
functional behavior of the system is not explicitly considered.
This constitutes a significant drawback since e.g. methods
such as [8], [9], [10], [11], [12], [13] which are aiming
for proving the correctness of corresponding models do not
support CCSL constraints. Vice versa, CCSL checkers as
introduced in [3], [4], [5], [6] do not consider the functional
behavior. That is, functional and timing constraints are usually
checked independently of each other. Consequently, design
flaws caused by the combination of both constraints are often
not considered before an initial implementation is available.
Other design tasks such as code generation similarly suffer
from the current state-of-the-art: For example, the realization
of CCSL timing constraints in SystemC as described in [7]
relies on the fact that the entire functional description of the
system is already implemented.

Overall, the “inflation” of solutions for rather specific design
tasks and, at the same time, their inability to combine them
with tools for functional code generation and verification
significantly limits the application of CCSL timing constraints
in practice.

In this work, we aim for a generic representation of the
CCSL constraints which (1) can be used for various purposes
such as verification, code generation, and more as well as
(2) can easily be integrated and merged with corresponding
representations of the functional behavior of the system un-

5 6 i
sensorl
4
N 5
))
%q,& %%é‘ 6
Fig. 1. An exemplary time line of a clock sensorl .

10

der consideration. To this end, we propose a transformation
scheme which takes CCSL constraints and maps those into
an equivalent representation in terms of a transition relation.
Afterwards, the resulting transition relation can easily be
integrated into existing solutions for design tasks mentioned
above.

The contribution is described in the remainder of this work
as follows: Section II briefly reviews CCSL. Afterwards, the
general idea of the generic representation (including a formal
definition) as well as a methodology for its automatic genera-
tion are introduced in Section III and Section IV, respectively.
Finally, Section V discusses the applicability of the generic
description and provides an exemplary evaluation before the
paper is concluded in Section VI

II. PRELIMINARIES

The Modeling and Analysis of Real-time and Embedded
systems profile (MARTE) for UML provides a language for
describing timing constraints: the Clock Constraint Specifica-
tion Language (CCSL) [2]. A central part of the underlying
time definition are instants, i. €. moments in the raw, unordered
time, defined by clock ticks. The clock is an instrument to
access a set of instants [14]:

Definition 1. A clock ¢ = (Z, <, D, \, u) consists of a set of
instants I, which owns a quasi-order relation <, a set of labels
for the instants D, a labeling function)\, and a unit u for the
clock ticks. A finite clock has a finite number of ticks. If no ticks
are left, the clock is empty. A clock cl = (Z1,=<1,D1, A1, u)
is a subclock of another clock ca = (Tz,<2,Da, A2, u), if
7, CIo.

Example 1. Consider a sensor which can perform measure-
ments at certain times. The time steps to perform a measure-
ment can be described using the clock sensorl. They form a
set of instants of the clock which are illustrated by dots at the
time line shown in Fig. 1. Every instant represents a clock tick.
These ticks represent time steps in which a measurement may
be conducted. The order of the instants on the line is specified
by <sensor1- Finally, the time steps in which a measurement
does actually take place are labeled by a corresponding 1D
(in Fig. 1, denoted below the dots representing the instants).

In general, clocks can be logical or chronometric [2].
Logical clocks can refer to discrete events like processor cycles
or sensor data, while chronometric clocks refer to physical
time and can also be dense. In this contribution, we consider
discrete clocks. From the clocks, a time structure can be
derived [14]:

Definition 2. A time structure is a pair (C,<), where C is
a set of clocks and < is a binary relation on U.ccZ, named
precedence (one clock tick takes place before or coincidentally
with the other). From <, some further relations can be derived
to specify instant behavior.

ClockConstraintSystem sensors {
Clock minClock;

Clock sensorl;
Clock sensor2;
Clock echo is sensorl delayedBy 1;
sensor2 # echo;

sensorl isPeriodicOn minClock period
sensor?2

1.0;

isPeriodicOn minClock period 1.0;

Fig. 2. A CCSL specification

These instant relations affect the instants to which they are
referring to, but not the rest of the instants of the clock. In
contrast, if instant relations are defined for all instants of the
clock, they become clock relations (or clock definitions, in
terms of CCSL). These clock relations constrain the complete
behavior of the clocks. An illustration of clock relations is
given in the following example. A complete list of clock
constraints can be found e.g. in [2].

Example 2. Consider a system with two sensors triggered by
the clocks sensorl and sensor2. Both sensors have to
reply in every second step with respect to a third (minimal)
clock minClock. From its second reply on, sensorl causes
an echo interfering with the signal of sensorZ2. Hence, this
echo and the reply of sensorZ2 are not allowed to occur
coincidentally. This is described in the CCSL specification in
Fig. 2.

At the beginning, the clocks are defined (lines 1-5). Clock
echo in line 5 is defined as a subclock of sensorl. Both tick
together, but echo starts one tick after sensor1. Afterwards,
the clock relations are applied. Line 7 states the exclusion of
echo and sensor2, while lines 8 and 9 define the periodicity
of sensorl and sensor2 on minClock.

III. GENERIC REPRESENTATION OF CCSL CONSTRAINTS

Description means as described above allow for a very
precise specification of the timing behavior for a system to be
realized. The resulting formal descriptions can already be uti-
lized to automatically perform design tasks such as consistency
checking, code generation, or verification. For this purpose, a
variety of solutions have been proposed in the recent past [3],
[4]1, [5], [6], [7]. A typical step involved in most of these
approaches consists of transforming the given specification
or a part thereof into a corresponding representation such
as Promela, SystemC, etc. In this work, we are aiming for
representing the non-functional timing constraints (provided
in CCSL) in terms of a more generic representation which
is applicable to existing design approaches for the above
mentioned tasks but also can easily be integrated to solutions
only addressing functional behavior thus far.

The idea of our representation is to model the timing
behavior by means of so-called ticking sets. A ticking set
describes all clocks ¢ € C which can tick in a certain time
step. Clocks that are not included in a ticking set will not tick
in the respective time step. Relying on such a description, the
entire timing behavior can be represented as a sequence of
ticking sets: Each ticking set constitutes a state; transitions
allow for moving from one state to another in accordance to

g:(ca=2Vv
—da
u: (ca =0)A

gicea<2 da=t
u:cp++ (A rue)
A isPeriodicOn B Vo = g:ica <2
period 2.0; (ca =0, w:ca++
da = false)

(a) CCSL constraints (b) Corresponding automaton

Fig. 3. Generic representation

the constraints originally provided in CCSL. For this purpose,
transitions may have guard conditions over global variables
(such as counters for periodic behaviors) which state whether
a transition may be taken or not. The values of these global
variables may be changed during a transition by means of
update functions.

More precisely, the given CCSL constraints shall be repre-
sented in terms of a transition relation given by an automa-
ton A defined as follows.

Definition 3. Let C be a set of clocks given by a CCSL
specification. Furthermore, let V be a set of global variables
used to store additional information (e. g. counters) and V an
assignment of them. In order to evaluate conditions derived
from the CCSL constraints, a guard function g is applied which
maps the current assignment V to either true or false.
Finally, let w be an update function which manipulates the
values of V. Then, the behavior of the clocks according to a
given CCSL specification can be represented by an automaton
A= (%,50,V,V,) where
e X C P(C) are the states referring to possible ticking sets,
o Sy C X are the initial states,
e V is a set of global variables,
e Vb is an initial assignment of V, and
8 : 0 P53 o' is a relation representing all transitions from
. D 8
a source state o € X, to a target state o' € X2 with guard
condition g and update function u.

Obviously a transition can only be used if the guard function
evaluates to true.

Example 3. Fig. 3(a) shows a CCSL constraint defining
the timing behavior of two clocks A and B being periodic.
A corresponding transition relation representing this timing
behavior is provided by the automaton shown in Fig 3(b).
More precisely, from the periodicity of A on B one can
conclude that A is a subclock of B, i. e. A can never tick alone.
Hence, the set X of states to consider is composed of the
ticking sets {B} and {A B} only. In addition to that, a counter
variable c 4 and a Boolean variable d 4 are utilized in order to
buffer the actual period as well as to monitor whether A has
already ticked. Relying on the assignments of these variables,
the transitions § between the respective ticking sets can be
conducted as indicated in Fig 3(b).

IV. DETERMINING THE GENERIC REPRESENTATION

While the generic representation as introduced in the pre-
vious section allows for manifold applications, a structured
approach is required to automatically determine this automaton

For sake of clarity, a precise definition e.g. of the domain of a variable
v €V is omitted here, but will be provided later in Section IV.

from given CCSL constraints. This section outlines a possible
scheme for this purpose. A discussion of the benefits and
drawbacks as well as an exemplary evaluation of the proposed
approach are later provided in Section V.

A. Initializing Automaton

First, an initial structure for the automaton is created,
i.e. an initial set of states which may have to be considered
is generated. A clock ¢ € C may either tick solely or in
conjunction with one or more other clocks. Hence, in the worst
case, for each possible subset of clocks, an own state may be
required. Additionally, we assume that, in each state, at least
one clock is supposed to tick, i.e. there is no “empty” state.
Overall, this leads to an initial set > of states formed over the
power set of all the clocks in C:

% —PEC)\ {0}

In a similar fashion, we initially assume that an arbitrary
clocking behavior is allowed and, thus, a transition from each
ticking state to any other ticking state is possible. Guard
conditions and update functions are initially assumed to always
evaluate to true and to employ the identity, respectively:

§—{ot o' |0,0' €%,9(V) = true,u =idy}

Hence, the automaton is initialized as a complete graph over
the power set of all clocks in C.

Example 4. In the remainder of this section, the necessary
steps are illustrated by means of the CCSL constraints given
in Fig. 2. This specification of timing behavior is composed of
the clocks C = {sensorl, sensor2,minClock, echo},
leading to a set X composed of 15 states for the desired
automaton. Each state is connected to all of the remaining
states eventually leading to the initial structure as shown
Fig. 4(a). Note that, due to space restrictions, the names
of the clocks have been shorted, i.e. sensorl, sensor2,
minClock, and echo have been abbreviated by sl1, s2,
mC, and e, respectively.

B. Applying Constraints

Once the initial structure of the automaton is generated, the
constraints are applied to it. For every CCSL constraint, it is
checked whether it states a subclock relation (denoted by C)
between two clocks. For all clocks c¢i,co € C with ¢; C ¢,
all states containing the subclock but not the superclock are
removed. This means, the set of states is adjusted for each
c1 C ¢q as follows:

Y—X\{s€eX|c1€sNhca ¢ s}

Furthermore, states containing two clocks excluding each
other (denoted by #) are removed. Hence, for all clocks
c1,co € C with c1#co the set of states is adjusted as follows:

Y—X\{seX|c1€5Nc2 € s}

Obviously, the ingoing and outgoing transitions of all
dropped states are removed as well.

Note that, in many cases, the number of states to be considered can already
be restricted at the very beginning. As an example, it is already obvious
from the CCSL constraints in Fig. 3(a) and discussed in Example 3 that only
two states are required. However, in order to keep the following descriptions
generic, such cases are not explicitly discussed in the following.

(d) Determining initial states

(c) Removing transistions

Vo = (cs1 = 0, de1 = false, cs2 =
0, ds2 = false, ce =0)

@ g ((es1 =1)Vds1) A(cs2 < 1)
u: (es1 = 0) A (ds1 = true)
A(cs2 ++) A (ce ++)
@ g (es1 <) A((es2 = 1) V (ds2))
A(ce < 1)
u: (cs1 4+ +) A (cs2 = 0) A (ds2 = true)
g ((cs1 =1) V —ds1) A(es2 < 1)
u: (cs1 = 0) A (ds1 = true) A(es2 ++)
@ g (cs1 <1)A(e1 <1)
u: (es1++) A (es2 ++)

(e) Refining guard conditions and update functions

Fig. 4. Determining the generic representation

Example 5. In the considered example, the constraints
isPeriodicOn and delayedBy indicate subclock rela-
tions (see lines 5, 8, and 9 in Fig. 2), i.e. the periodic
clocks sensorl as well as sensor2 are both subclocks of
minClock and echo is a subclock of sensorl. Hence, all
states containing sensorl or sensor2 but not minClock
as well as all states containing echo but not sensorl are
removed. Moreover, the clocks echo and sensor2 exclude
each other (see line 7 in Fig. 3(a)), so that all states containing
both are removed as well. The resulting automaton is shown
in Fig. 4(b).

At this stage, some more transitions can be removed. In
fact, certain CCSL constraints may reveal that clocks cannot
tick directly after each other. Thus, transitions between states
containing these clocks can be removed. Although this can
also be handled later when guard conditions are refined (which
would never evaluate to true for such transitions), dropping
them before simplifies the remaining steps significantly.

Example 6. Consider the i sPeriodicOn-constraints of the
example (see lines 8 and 9 in Fig. 2). Since the periods
are greater than 0, it can be concluded that there can
never be a valid transition between two states containing the
respective subclock. Hence, all transitions from states contain-
ing sensorl to states containing sensorl are removed.
The same happens with transitions from/to states containing
sensor?2. The resulting automaton is shown in Fig. 4(c).

Next, the initial states are determined. At the beginning,
all states are assumed to be initial states. However, all clocks
which are dependent from other clocks (i.e. have to wait for
other clocks) obviously cannot initiate the timing behavior.
Hence, whenever a CCSL constraint states that a clock ¢ € C is
dependent on another clock ¢’ € C (e. g. clocks with an offset

have to wait for a triggering clock tick), all states including ¢
are not considered an initial state. Formally, the initial states
are defined by

So—X\{oceX|Ic€o:cdependson €C\ {c}}

Example 7. Thus far, all five states left in the automaton and
shown in Fig. 4(c) are assumed to be initial states. However,
there exists a dependency between two clocks: echo has to
wait until sensorl has ticked one time. As a consequence,
all states including the clock echo cannot initiate the timing
behavior and, hence, they are not considered to be initial
states. Fig. 4(d) shows the resulting automaton.

Finally, the guard conditions g and the update functions
for the transitions are refined with respect to the CCSL
constraints. For this purpose, the set }V of global variables
is initialized with

« natural numbers Ny which are applied as counters e. g. to

control periodicity or delays as well as

e Boolean variables B which are applied to monitor

whether a clock has already ticked or not.

For all variables, the initial assignment is added to Vj.
Then, for all transitions we refine ¢ and uw depending on
the respective constraints. For this purpose, a rather direct
mapping as illustrated in the following example is applied.

Example 8. The guard conditions and update functions for
the transitions which remained in the automaton shown in
Fig. 4(d) have to be refined. While the excluding constraint
(line 7 in Fig. 2) has already been handled above (by excluding
the corresponding states from the automaton at all), this par-
ticularly requires the consideration of the isPeriodicOn
and delayedBy constraints (see lines 5, 8, and 9 in Fig. 2).

These constraints obviously require a counter vari-
able cciocr € Ng (in order to check whether the period or
the delay has been completed) and a Boolean variable d.joc};
(in order to store whether the restricted clocks have ticked
before) for each of the restricted clocks clock. Note that, in
the example, a clock can either be s1, s2, or e, while the
latter just needs a counter and no Boolean variable. Then,
states o € X including clock (i.e. with clock € o) may
only be entered either (1) if the period/delay (stored in cciock)
satisfies the respective CCSL constraint or (2) if clock has
simply not ticked yet (stored in d.jocr). In a similar fashion,
entering a state o € Y sets the existing dgocr-variables
for all clock € o to true (since all clock € o are
ticking in the following step) and leaving such states updates
the corresponding ccoc-variables. For the latter, this means
either resetting the counter (if the corresponding clock just
ticked in o) or increasing it by one (if the corresponding
reference clock ticked).

Overall, this leads to a revision of the guard conditions and
update functions as shown in Fig. 4(e).

Following the scheme described above, almost all CCSL
constraints can automatically be mapped into the generic
representation. An exception is uncontrollable behavior,
e.g. clocks ticking according to external sensor input. How-
ever, if the automaton satisfies certain characteristics these
constraints are automatically satisfied as well. Hence, sup-
porting uncontrollable behavior boils down to a particular
verification task which can e.g. be conducted by established
verification methods as discussed in the next section.

V. DISCUSSION & APPLICATION

Using the method described above, timing behavior pro-
vided in CCSL is generically represented by means of a tran-
sition relation. Now, this can be used for various purposes for
which only very problem-specific design tools were available
thus far. In this section, we discuss possible application areas
of the proposed methodology and compare them to related
work. Afterwards, the feasibility of the approach is exemplary
demonstrated by means of the running example.

A. Application and Comparison to Related Work

An important issue after the specification of timing con-
straints is to check e.g. (1) whether the resulting CCSL
constraints are consistent, i. €. do not contradict each other and
thus allow for an execution of the clocks without deadlocks,
as well as (2) whether they indeed have been specified as
intended. To conduct these checks, a few approaches have
previously been proposed, cf. [3], [4], [5], [6]. Here, each
constraint is represented by a single automaton. Moreover, they
represent ticking sets in terms of transitions rather than states.
For some constraints, this leads to an infinite number of states.
To deal with that, the authors of [3], [4], [5], [6] restrict the
number of transitions.

Our solution approaches this problem from a different
direction which allows for an easier consideration of many ver-
ification tasks. We rely on a finite representation from which
serious design flaws can directly be detected. For example, if
CCSL constraints result in an automaton composed of states
with no outgoing transitions (or outgoing transitions which
will never satisfy the guard conditions), a typical deadlock
scenario is identified.

TABLE I
CHARACTERISTICS OF THE RESULTING AUTOMATA

INSTANCE ~ STATES (¥X) TRANS. VAR.
sensors4d 5 13 5
sensors6 20 117 9
sensors8 80 1053 13

In addition to that, well-known and powerful methods for
(bounded) model checking (such as e.g. [8], [9], [10], [11])
can directly be applied on the obtained transition relation in
order to check more sophisticated properties. Moreover, the
obtained generic representation obtained by our approach can
directly be combined to a transition relation representing the
functional behavior of a system (obtained e. g. by approaches
as proposed in [10], [11]). In doing so, non-functional timing
constraints can be considered together with functional spec-
ifications. Particular for generic verification frameworks as
envisioned e.g. in [13], [15], [16], this is an important benefit.

Another important use case for CCSL descriptions is code
generation, i.e. the derivation of a proper implementation
of the specified timing behavior. A practical approach for
this purpose has recently been presented in [7]. However,
this solution relies on a rather heavy data-structure as well
a complex analysis scheme including e.g. a categorization,
several lists, etc. In contrast, the generic representation of
timing constraints proposed in this work provides an easy and
obvious basis for code generation. In fact, once an automaton
has been found to be correct, it can directly be translated into
an implementation by (1) mapping all states to an encoding
in terms of state signals (which are connected to the clocks)
and (2) mapping all transitions to if-statements ensuring the
correct assignment to the state signals.

On the contrary, the proposed approach obviously suffers
from the possibly exponential size of the automaton. In the
generic approach as described in Section IV, a power set
construction is conducted which represents the bottleneck
of the solution. However, this worst case behavior can be
avoided in many cases. For example, when CCSL constraints
as discussed before in Fig. 2 are considered, it can already
been derived that only five states (rather than 24 —1 =15)
are required. Determining more sophisticated bounds for all
possible cases remains an open problem for future work, but
certainly provides further room for improvement.

B. Exemplary Evaluation

In order to evaluate the applicability of the proposed ap-
proach, the running example considered above (i. e. the CCSL
constraints from Fig. 2) was subject to more detailed investi-
gations. More precisely, we applied the resulting generic de-
scription to selected code generation and verification tasks. In
order to evaluate the scalability of the generic representation,
we additionally did not only consider this example with four
clocks (denoted by sensors4), but also derivations including
six and eight clocks (denoted by sensors6 and sensorsS8,
respectively). To this end, corresponding CCSL constraints
have been added for the newly introduced clocks.

Applying the approach proposed in Section IV to the
resulting CCSL instances yielded generic representations with
characteristics as summarized in Table I. The columns denote
the name of the instance (INSTANCE) as well as the number of
states (STATES), the number of transitions (TRANS.), and the
number of variables (VAR.). All automata have been derived
in negligible run-time, i.e. within a few seconds.

TABLE II
VERIFICATION RESULTS (CONSISTENCY)

INSTANCE #TRANS. STEPS RUN-TIME RES.
sensors4 2 1.7 4
50 35 v
100 5.9 v
sensors6 2 33 4
50 24.0 v
100 73.0 v
sensors8 2 48.1 4
50 825.7 v
100 2583.3 v

TABLE III
VERIFICATION RESULTS (DEADLOCK)

INSTANCE #TRANS. STEPS RUN-TIME RES.
sensors4 3 2.3 X
10 39 X
30 11.7 X
sensors6 3 7.1 X
10 19.9 X
30 122.5 X
sensors8 3 225.7 X
10 928.0 X
30 8138.2 X

Afterwards, typical design tasks have been conducted in
which the generic representation has explicitly been utilized.
Since code generation can be performed by a rather simple
mapping scheme (as discussed above), our evaluations on
verification are summarized in more detail in the following.

More precisely, we utilized the resulting generic description
in order to automatically prove whether

1) the originally given CCSL description is consistent,
i.e. allows for a consistent execution at least for a given
number of transition steps,
and

2) the originally given CCSL description is deadlock-free,
i.e. no path from an initial state to another state exists
from which no further ticks can be executed anymore.

To this end, the generic description together with the respective
verification task has simply been passed to a model checker
(in this case, the solution introduced in [10] which has been
originally proposed for the verification of UML/OCL models).

Table II and Table III summarize the obtained results for the
consistency- and the deadlock-checks, respectively. Again, the
first column denotes the name of the instance (INSTANCE),
while afterwards the number of considered transition steps
(#TRANS. STEPS), the overall run-time (in CPU seconds and
obtained on an Intel(R) Core(TM) i5-3320M machine with
2.60 GHz and 8 GB of memory; RUN-TIME), and the result
(RES.) is provided. For the last column, a v/ denotes that
consistency/deadlock-freeness has been proven; otherwise, X
denotes that an corresponding flaw has been found.

The results confirm the applicability of the proposed ap-
proach for verification purposes. In fact, the considered tasks
could have been addressed in acceptable run-time and, for a
given CCSL constraint, consistency could have been proven
by utilizing an existing model checker rather than devel-
oping a specific CCSL-based solution. More importantly,
the proposed solution even helped unveiling a severe de-
sign flaw which was hidden the entire time in the consid-
ered running example: The execution of the state sequence
{mc} — {mC, s1, s2} — {mC} leads to a deadlock. This
is because the periodicity forces s1 and s2 to tick in the
next step (mC ticks always), but if s1 ticks, e has to tick as
well (because of the delayedBy constraint). The exclusion
between s2 and e eventually leads to a contradiction and,

hence, no further transition can be taken at that point. While
not obvious at a first glance, this flaw can be detected using the
proposed generic representation (as indicated by column RES.
in Table IIT). Again, all these results have been achieved
without explicitly developing a specific CCSL-checker but
entirely relying on existing tools.

VI. CONCLUSIONS AND FUTURE WORK

This work introduced a generic representation of MARTE
CCSL constraints which can easily be utilized for many
purposes such as verification, code generation, etc. Besides
the definition of the representation, also a procedure to derive
it from the given CCSL constraints is provided. A discussion
with respect to related work as well as an exemplary evaluation
showed the promise of the proposed generic representation.
Future work focuses on improving the size of the automaton
during the generation process as discussed in Section V-A as
well as more detailed evaluations of the proposed methodology
in further application areas.

ACKNOWLEDGMENTS

This work has been partially supported by the Graduate
School SyDe, funded by the German Excellence Initiative
within the University of Bremen’s institutional strategy and by
the German Research Foundation (DFG) within the Reinhart
Koselleck project DR 287/23-1 and a research project under
grant no. WI 3401/5-1.

REFERENCES

[1] Object Management Group, OMG Systems Modeling Language (OMG
SysML™). Object Management Group, 2012.

[2] , UML Profile for MARTE: Modeling and Analysis of Real-Time
Embedded Systems. Object Management Group, 2011.

[3] F. Mallet and L. Yin, Correct Transformation from CCSL to Promela
for verification. Institut National de Recherche en Informatique et en
Automatique, 2012.

[4] J. Suryadevara and L. Yin, “Timed Automata Modeling of CCSL Con-
straints,” in International Workshop on Formal Techniques for Safety-
Critical Systems, 2012, pp. 152-157.

[5] L. Yin, F. Mallet, and J. Liu, “Verification of MARTE/CCSL Time
Requirements in Promela/SPIN,” in International Conference on En-
gineering of Complex Computer Systems, 2011, pp. 65-74.

[6] C. André, F. Mallet, and J. DeAntoni, “VHDL Observers for Clock Con-
straint Checking,” in International Symposium on Industrial Embedded
Systems, 2010, pp. 98-107.

[7] J. Peters, R. Wille, and R. Drechsler, “Generating SystemC Implemen-
tations for Clock Constraints Specified in UML/MARTE CCSL,” in
International Conference on Engineering of Complex Computer Systems,
2014, pp. 116-125.

[8] X.Li, Z. Liu, and J. He, “Consistency checking of UML requirements,”
in International Conference on Engineering of Complex Computer
Systems, 2005, pp. 411-420.

[9] J. Cabot, R. Claris6, and D. Riera, “Verifying UML/OCL Operation
Contracts,” in Integrated Formal Methods, 2009, pp. 40-55.

[10] M. Soeken, R. Wille, and R. Drechsler, “Verifying Dynamic Aspects of
UML Models,” in Design, Automation and Test in Europe Conference,
2011, pp. 1-6.

[11] M. Gogolla, L. Hamann, F. Hilken, M. Kuhlmann, and R. B. France,
“From application models to filmstrip models: An approach to automatic
validation of model dynamics,” in Modellierung, 2014, pp. 273-288.

[12] E. Ebeid, D. Quaglia, and F. Fummi, “Generation of SystemC/TLM code
from UML/MARTE sequence diagrams for verification,” in Symposium
on Design and Diagnostics of Electronic Circuits & Systems, 2012, pp.
187-190.

[13] R. Wille, M. Gogolla, M. Soeken, M. Kuhlmann, and R. Drechsler,
“Towards a generic verification methodology for system models,” in
Design, Automation and Test in Europe Conference, 2013, pp. 1193—
1196.

[14] C. André and F. Mallet, Clock Constraints in UML/MARTE CCSL.
Institut National de Recherche en Informatique et en Automatique, 2008.

[15] C. Hilken, J. Peleska, and R. Wille., “A unified formulation of behavioral
semantics for SysML models,” in International Conference on Model-
Driven Engineering and Software Development, 2015.

[16] C. Hilken, J. Seiter, R. Wille, U. Kiihne, and R. Drechsler, “Verifying
consistency between activity diagrams and their corresponding OCL
contracts,” in Forum on Specification and Design Languages, 2014.

