
Verifying SystemC using Stateful Symbolic Simulation∗

Vladimir Herdt1 Hoang M. Le1 Rolf Drechsler1,2
1Institute of Computer Science, University of Bremen, 28359 Bremen, Germany

2Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
{vherdt, hle, drechsle}@informatik.uni-bremen.de

ABSTRACT
Formal verification of high-level SystemC designs is an im-
portant and challenging problem. Recent works have pro-
posed symbolic simulation in combination with Partial Or-
der Reduction (POR) as a promising solution and experi-
mentally demonstrated its potential. However, these sym-
bolic simulation approaches have a fundamental limitation
in handling cyclic state spaces. The reason is that they are
based on stateless model checking and thus unable to avoid
revisiting states in a cycle. In this paper, we propose a novel
stateful symbolic simulation approach for SystemC. For the
efficient detection of revisited symbolic states, we apply sym-
bolic subsumption checking. Furthermore, our implementa-
tion integrates a cycle proviso to preserve the soundness of
POR in the presence of cycles. We demonstrate the scala-
bility and the efficiency of the proposed approach using an
extensive set of experiments.

1. INTRODUCTION
The C++-based description language SystemC [11] has

become the standard for modeling electronic systems at high
levels of abstraction. These abstract SystemC designs serve
as an executable specification for subsequent development
steps in the design flow. Therefore, ensuring the correct-
ness of high-level SystemC designs is crucial, especially for
safety critical systems, as undetected errors will propagate
and become very costly.

Due to their scalability and ease-of-use, simulation-based
approaches are still prevalent for SystemC verification. How-
ever, in contrast to formal verification, they cannot prove
the absence of errors and are very susceptible to subtle
bugs caused by corner-case scenarios. Unfortunately, for-
mal verification of SystemC is very challenging due to its
object-oriented nature and event-driven simulation seman-

∗This work was supported in part the German Federal Min-
istry of Education and Research (BMBF) within the project
EffektiV under contract no. 01IS13022E and by the German
Research Foundation (DFG) within the Reinhart Koselleck
project DR 287/23-1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
DAC ’15, June 07 - 11, 2015, San Francisco, CA, USA
Copyright 2015 ACM 978-1-4503-3520-1/15/06...$15.00
http://dx.doi.org/10.1145/2744769.2744927

tics [15]. The overall challenge in developing a SystemC ver-
ifier is threefold. First, it must obviously consider all pos-
sible inputs of the Design-Under-Verification (DUV). Sec-
ond, a typical high-level SystemC DUV consists of multiple
asynchronous processes, whose different orders of execution
(also referred to as schedules) can lead to different behav-
iors, these must also be considered to the full extent by the
verifier. Third, the verifier is required to deal with the full
complexity of C++ to extract a suitable formal model.

Recently, an Intermediate Verification Language (IVL) for
SystemC has been proposed [13]. The IVL is compact and
easily manageable but at the same time powerful enough to
model the behavior of SystemC designs. The IVL allows
to separate the development of a SystemC verifier into two
components: a front-end to translate a DUV into IVL and a
back-end to verify this IVL description. Consequently, one
can focus on addressing the first two challenges to increase
the scalability and efficiency of the back-end in handling
large state spaces.

As a viable solution for this task, recent works have pro-
posed symbolic simulation [5, 4, 13], which is basically a
combination of symbolic execution [12] with complete explo-
ration of all possible process schedules. These approaches al-
low the verification of safety properties specified in the form
of source code assertions. In [4, 13], symbolic simulation is
further combined with Partial Order Reduction (POR) [9,
8] to avoid visiting redundant schedules. The whole state
space of a DUV, which consists of all possible inputs and
process schedules, can thus be exhaustively and efficiently
explored.

However, these approaches are fundamentally limited in
handling cyclic state spaces. Cycles arise naturally in many
high-level SystemC designs due to the use of unbounded
loops inside SC THREADs. The limitation is due to the
fact that the core algorithm employed by these approaches
is based on a stateless search. Essentially, no record of
already visited states is kept and thus, re-exploration of
states in a cycle cannot be avoided. This might cause the
search to be non-terminating if the symbolic simulation is
not bounded. Consequently, existing SystemC symbolic sim-
ulation approaches are unable to prove properties on cyclic
state spaces and thus can be considered incomplete.

To overcome the aforementioned limitation, it is necessary
to employ a stateful search in symbolic simulation. Two is-
sues must be solved to enable this combination. First, sym-
bolic simulation stores and manipulates symbolic expres-
sions, which represent sets of concrete values. Therefore, the
state matching process, required by a stateful search to de-
cide whether a state has already been visited, involves non-
trivial comparison of complex symbolic expressions. Second,

a naive combination of POR with stateful search can poten-
tially lead to unsoundness, i.e. assertion violations can be
missed. This is due to the (transition/action) ignoring prob-
lem, which refers to a situation, where a relevant transition
is not explored.

Contributions.
In this paper, we propose a novel stateful symbolic simu-

lation approach for SystemC. For the efficient detection of
revisited symbolic states, we employ symbolic subsumption
checking, inspired by [1]. If the set of concrete states rep-
resented by a symbolic state s2 contains the set of concrete
states represented by a symbolic state s1, s1 is subsumed by
s2 and it is not necessary to explore s1 if s2 has already
been explored. Thus, subsumption checking can lead to
a reduction of the state space, which we denote as State
Subsumption Reduction (SSR). We present a powerful ex-
act subsumption checking method which involves solving a
quantified SMT formula. As this computation is potentially
very expensive, we also propose several optimizations. Fur-
thermore, to preserve the soundness of POR, our implemen-
tation integrates a cycle proviso tailored for SSR. We show
the potential of our approach using an extensive set of bench-
marks.

Related Work.
KRATOS [6] is the state-of-the-art SystemC model checker

for handling cyclic state spaces. As input language, KRATOS
accepts threaded C, which is similar to the IVL proposed
in [13]. The underlying model checking algorithm combines
an explicit scheduler and symbolic lazy abstraction. POR
is also integrated into the explicit scheduler to prune redun-
dant schedules. For property specification, simple C asser-
tions are supported. Although this approach is complete,
its potentially slow abstraction refinements may become a
performance bottleneck. SCIVER [10] is another complete
model checker for SystemC. It translates a SystemC DUV
into a sequential C model, then applies high-level induction
on top of existing C model checkers. However, due to the
absence of POR, it does not scale well to designs with a large
number of processes.

There are also a handful of other formal verification ap-
proaches for SystemC which we do not discuss here. They
are either incomplete or have very limited scalability. For a
detailed review of these works we refer to the Related Work
section of [6].

In the context of symbolic model checking for Java, a sub-
sumption checking technique similar to ours has been con-
sidered [1]. However, the authors applied this technique
to sequential Java programs, while we combine subsump-
tion checking with POR under the concurrency semantics of
SystemC.

The ignoring problem has first been identified in [14].
Since then, a number of cycle provisos has been proposed
as solution in combination with different search strategies,
see e.g. [9, 3, 7]. However, in the context of SSR, these pro-
visos are unsuitable, since they are too restrictive. In this
paper we use an adapted proviso from [7], for the combina-
tion of POR and SSR. To the best of our knowledge, such a
proviso has not yet been proposed.

2. PRELIMINARIES

2.1 SystemC and IVL
SystemC is a C++ class library that includes an event-

driven simulation kernel. The structure of a SystemC design
is described with ports and modules, whereas the behavior
is described in processes which are triggered by events. Sys-
temC provides three types of processes with SC THREAD
being the most general type, i.e. the other two can be mod-
eled by using SC THREAD.

The IVL as proposed in [13] provides modeling primitives
for SC THREADs (called threads for simplicity), events and
corresponding synchronization functions (i.e. wait and no-
tify in different variants). The IVL supports Boolean and
integer data types of C++ together with all arithmetic and
logic operators. The control flow of a thread is modeled us-
ing conditional goto statements. For verification purposes in
the context of symbolic execution, the functions assume and
assert are provided. An IVL example is shown in Fig. 1 (ex-
planation follows in Section 3.1). To improve the readability,
we use high-level control structures instead of conditional
gotos.

The simulation semantics of SystemC (see [11]) is also
precisely followed. Essentially, if multiple IVL threads are
runnable, one of them will be non-deterministically selected.
This thread is then executed non-preemptively until it fin-
ishes or suspends itself by calling wait. This causes a con-
text switch back to the scheduler, which can again select
another runnable thread. If no runnable thread is available,
the scheduler performs pending delta or timed notifications
accordingly to activate waiting threads.

2.2 SystemC Symbolic Simulation
Symbolic simulation of SystemC designs as proposed in [13,

5, 4] is a combination of symbolic execution and complete
exploration of all process schedules.

Symbolic execution analyzes the behavior of each indi-
vidual SystemC process/IVL thread pathwise by treating
inputs as symbolic values. Along an execution path, the
design state is represented by a set of symbolic expressions
and a path condition PC, which must be satisfied by the ex-
pressions. At each conditional goto statement, the execution
path s is forked into two independent paths sT and sF due
to two possible evaluations of the condition c. The PC for
each path is updated accordingly as PC(sT) := PC(s) ∧ c
and PC(sF) := PC(s) ∧ ¬c. An SMT solver is used to
determine whether sT and sF are feasible, i.e. their PC is
satisfiable. Only feasible paths will be explored further. For
verification purposes, assume(c) adds c to the current PC
to prune irrelevant paths and assert(c) calls an SMT solver
to check for assertion violations, i.e. PC ∧ ¬c is satisfiable.

POR is also employed to improve the scalability of sym-
bolic simulation by avoid visiting redundant process sched-
ules. Each process is separated into multiple transitions. A
transition corresponds to a list of statements that is executed
non-preemptively following the SystemC semantics. Thus
every (non-terminated) process has a currently active transi-
tion, which is runnable, iff the process is runnable. The first
transition begins at the first statement of the thread. Sub-
sequent transitions continue right after the context switch
of the previous transition.

POR requires a dependency relation between transitions.
Intuitively, two transitions t1 and t2 are dependent, if their
execution does not commute, i.e. t1t2 and t2t1 leads to dif-
ferent results. In SystemC context, t1 and t2 are dependent
if one of the following holds: 1) they access the same variable
with at least one write access, 2) one immediately notifies an
event that the other awaits, 3) a transition is suspended by
the other. Transition dependencies are used at runtime to
compute a subset of runnable transitions, called a persistent

Table 1: Example data for the IVL example

PC v C(v) runnable
s0 x1 ≥ 0 ∧ x1 ≤ 2 x1 {0, 1, 2} {I1, G1}
s1 x1 ≥ 0 ∧ x1 ≤ 2 x1 {0, 1, 2} {G1}
s2 x1 ≥ 0 ∧ x1 ≤ 2 x1 {0, 1, 2} {I2, G2}
s3 x1 ≥ 0 ∧ x1 ≤ 2 x1 + 1 {1, 2, 3} {G2}
s4 x1 ≥ 0 ∧ x1 ≤ 2 ∧ x1 + 1 < 2 x1 + 1 {1} {I2, G2}
s5 x1 ≥ 0 ∧ x1 ≤ 2 ∧ x1 + 1 ≥ 2 x1 {1, 2} {I2, G2}
s6 x1 ≥ 0 ∧ x1 ≤ 2 ∧ x1 + 1 ≥ 2 x1 + 1 {2, 3} {G2}
s7 x1 ≥ 0 ∧ x1 ≤ 2 ∧ x1 + 1 ≥ 2 x1 {1, 2} {I2, G2}

1 event e;
2 int v = ?(int);
3
4 thread increment {
5 while (true) {
6 wait e;
7 v += 1;
8 }
9 }

10
11 thread guard {
12 while (true) {
13 assert (0 <= v && v <= 2);

14 notify e, 0;
15 wait_time 0;
16 if (v >= 2) {
17 v -= 1;
18 }
19 }
20 }
21
22 main {
23 assume (0 <= v && v <= 2);
24 start;
25 }

Figure 1: An IVL example

set [9], in each state. Exploration of transitions, and hence
processes, is limited to the persistent sets.

The above description depicts a basic symbolic simula-
tion approach for SystemC. Many improvements are possi-
ble such as path merging [4] or computation of a stronger
dependency relation using model checking [2].

3. STATE SUBSUMPTION REDUCTION
This section presents the main concepts of SSR in stateful

symbolic simulation. We start with a motivating example,
that shows the benefits of SSR and demonstrates that SSR
and POR are complementary.

3.1 Motivating Example
The IVL description in Fig. 1 consists of two threads:

increment (I) and guard (G). They communicate through
a global variable v and use the event e for synchronization.
The increment thread increments v and then blocks until e is
notified. The guard thread is scheduled to run once in every
delta cycle. It ensures that v does not exceed the maximum
value and performs a delta notification of the event e. In
this example the maximum value is 2. Both threads consist
of two transitions, denoted as I1,I2 and G1,G2 respectively,
separated by the context switches in Line 6 and Line 15. The
whole simulation is unbounded and safe, i.e. the assertion in
Line 13 always holds.

A representative part of the complete state space is shown
in Fig. 2. Circles represent states and edges depict transi-
tions between them. A diamond represents a conditional
branch, where both branches are feasible. The dashed tri-
angles represent state space parts that are omitted to sim-
plify the description. Initially, before the simulation starts
(Line 24), v is assigned a symbolic integer literal x1 in Line 2.
Then v, and thus x1, is constrained to the values {0, 1, 2} in
Line 23, resulting in the initial state s0.

Now consider the transition sequence I1G1I2G2I2G2. The
relevant data of the involved states is shown in Table 1.
It shows the path condition (PC), the symbolic expression
representing variable v, the set C(v) of all concrete values

x1 ≥ 0 ∧ x1 ≤ 2

v ∈ {0, 1, 2}

G2

G2

I2

x1 + 1 < 2 x1 + 1 ≥ 2

v ∈ {1} v ∈ {1, 2}

s0

s2

G1I1

I1G1

I2

G2

G2

s4 s5

Subsumption

Transition

s7

POR

...

...

...

s1

s3v ∈ {1, 2, 3}

s6

Equality

Figure 2: State space for the IVL example

of v satisfying the path condition, and the set of runnable
transitions.

After I1 is executed and thread increment is blocked by
event e, s1 is reached. Then, G1 performs a delta notification
of e, and after a delta notification phase, the state s2 is
reached, where both I2 and G2 become runnable.

Next, I2 increments v to x1 + 1 and reaches s3. Then G2

resumes from Line 16. Both, the branch condition cT = v ≥
2 and its negation cF = v < 2 are feasible in Line 16, with
the current value of v = x1 + 1 and path condition x1 ≥
0 ∧ x1 ≤ 2. Thus the execution will fork two independent
paths. The corresponding path conditions will be extended
with cT and cF , respectively. In the path where cT holds,
v gets decremented in Line 17, whereas nothing happens
in the other path. Eventually both paths will reach the
context switch in Line 15, resulting in the states s5 and s4,
respectively.

Execution of I2G2 from s5 will reach the state s6 and
then s7. Note that the execution of G2 from s6 does not
fork at the conditional branch. The reason is that v ∈ {2, 3}
at this point, thus the negated branch condition v < 2 is
not satisfiable. The state s7 is equal with s5, as shown in
Table 1, thus s5,s6 and s7 = s5 form a cycle.

A stateless search cannot detect the cycle and would ex-
plore it infinitely unless the search is bounded. Conceptu-
ally, a stateful search, that is capable to detect the equality
of C(v) and runnable in s5 and s7, would solve the problem.

However, much stronger reduction can be achieved by check-
ing subsumption of states. For example, the exploration of
I2G2 from s5 is actually unnecessary. The reason is C(v)
of s5 is a subset of C(v) of s2 and the runnable sets are
identical. Thus, any concrete states that are reachable from
s5 can also be reached from s2. We say that s5 is subsumed
by s2, and analogously, s4 is also subsumed by s2

1. Thus
the exploration of transitions from both s4 and s5 would be

1But neither s4 nor s5 is subsumed by any state from
{s0, s1, s3} since they have different runnable transitions.

prevented by SSR. This is not possible with a simple state-
ful search based on equality checking. On large cyclic state
spaces, SSR is expected to explore significantly less states.

Additionally, POR can be combined with SSR as comple-
mentary reduction technique to further reduce the explored
state space. In this example the execution of G1I1 from
the initial state s0 is pruned by POR, since I1 has already
been explored from s0 and it is independent with any other
transition.

However, as mentioned earlier, care must be taken to avoid
unsoundness when applying POR in cyclic state spaces, and
especially here in combination with SSR. In the following we
introduce the concept of weak reachability and a cycle pro-
viso based on this concept to solve the problem. The actual
procedure for subsumption checking between two symbolic
states is detailed in Section 4.

3.2 Weak Reachability
SSR results in the exploration of a reduced state space,

denoted as AR. Whenever it is detected, that a state s1 is
subsumed by a state s2, denoted as s1 4 s2, s1 is not further
explored. We say that there exists a weak transition from s1
to s2 in this case. This concept can be naturally extended
to weak reachability. A state s′ is weakly reachable from s, if
it is reachable from s through a sequence of normal or weak
transitions. Intuitively when a state s′ is reachable from a
state s in the complete state space AG, a state s′′ will be
weakly reachable from s in AR, such that s′ 4 s′′ holds.
Thus, reachability of concrete states and as a consequence,
assertion violations are preserved through SSR.

Example 1. In the state space shown in Fig. 2, s7 is reach-
able from s5 by the sequence of transitions (trace) I2G2 in
AG. In AR, s5 is weakly reachable from itself by the same
trace as follows: first s2 is reached from s5 by a weak transi-
tion and than s5 is reached from s2 by the trace I2G2. Since
s5 and s7 are equivalent, s7 4 s5 holds.

3.3 Cycle Proviso
A cycle proviso is required, to prevent transition ignoring

when applying POR in the context of a stateful search and
checking properties more elaborate than deadlocks. Oth-
erwise, a relevant transition might be permanently ignored
due to a cycle in the reduced state space. We have adapted
the proviso CS

2 from [7], to the notion of weak reachability
that arises in SSR, resulting in the novel proviso CS

2W .

CS
2W For every state s in AR there exists a weakly reachable

state s′ from s in AR, such that s′ is fully expanded,
i.e. every runnable transition in s′ is explored.

In contrast the CS
2 proviso requires normal reachability

of a fully expanded state, which would limit the reduction
achieved by SSR. Recall the IVL example presented in Sec-
tion 3.1. Since e.g. s5 4 s2 holds, it is not necessary to
further explore s5, thus no state is reachable from s5 in AR.
However, the CS

2 proviso would enforce that a fully expanded
state is reachable from s5, resulting in the exploration of a
larger state space.

A search algorithm that explores persistent sets and sat-
isfies the CS

2W proviso preserves assertion violations, as the
following theorem states. However, the applicability of SSR
and POR is not limited to the verification of safety proper-
ties.

Theorem 1 (Assertion Violation Preserving). Let AR be a
POR and SSR reduced state space, which satisfies the cycle

proviso CS
2W . Let w be a sequence of transitions (trace) in

AG leading to an error state from the initial state s0. Then
there exists a trace wr in AR such that an error state is
weakly reachable from s0.

An error state is reached, when an assertion violation is
detected during transition execution. The above theorem
can be shown by induction over the length of w. However,
the proof is omitted due to the page limitation.

4. SYMBOLIC SUBSUMPTION CHECKING
Before describing the actual procedure for subsumption

checking between a new state s1 and an already visited state
s2, we start with the definition of execution states.

4.1 Execution State
Essentially, an execution state consists of a path condition

PC, a name-to-value mapping vars of variables and the ker-
nel state KS. The kernel state contains the status of each
thread, the current simulation time and a list of pending no-
tifications. The kernel state only contains concrete values.
It is thus included in the concrete state parts and irrelevant
for symbolic subsumption checking. The path condition and
variable values, in contrast, can be symbolic expressions or
concrete values.

For simplicity of representation, we assume that only global
variables are used2. Let V = {v1, . . . , vn} be the set of all
variables, the mapping vars of a state s can be denoted as
{(v1 : es1), . . . , (vn : esn)}, where esi is the value of vi in s. We
also refer to SP (s) = {(PC : PC(s), v1 : es1, . . . , vn : es2)} as
the symbolic state parts of s.

4.2 Exact Symbolic Subsumption
Detecting that s1 is subsumed by s2 requires to show that

the set of concrete states represented by a state s1 is a subset
of concrete states represented by s2. A necessary condition
for subsumption is thus KS(s1) = KS(s2). Furthermore,
if es1i and es2i are two concrete values, they must also be
equal. Therefore, before trying subsumption on symbolic
expressions, an equality test for these concrete state parts is
performed. As an optimization we abstract away the current
simulation time during this test, if the simulation is not
bounded by time and the control flow of the program does
not depend on the simulation time.

The subset condition for subsumption above can now be
rephrased as follows: if a concrete state can be constructed
from s1 by assigning valid concrete values to its symbolic
literals, then the same concrete state can also be constructed
from s2. The Exact Symbolic Subsumption (ESS) algorithm
generates a quantified formula F (s1 4 s2) that naturally
encodes this requirement, as shown in the following:∃x1..xp : PC(s1) ∧

∧
i∈{1,...,n}

es1i = fi

 =⇒

∃y1..yq : PC(s2) ∧
∧

i∈{1,...,n}

es2i = fi


Each term fi is a fresh symbolic literal corresponding to
the type of the variable vi. The symbolic literals x1, . . . xp

(y1, . . . , yq) are all symbolic literals that appear in the vari-
able values or the path condition of s1 (s2). In order to

2The actual implementation supports local variables by
matching stack frames.

s1 4 s2 ? ESM

yes

FC
success

fail ESS

yes

no

no

success

fail

match

mismatch

Figure 3: Optimized ESS flow

show that F is valid, we check its negation ¬F for unsatisfi-
ability. Any SMT solver with support for quantifiers can be
employed.

Example 2. Consider SP (s1) = (PC: x1 6= 0, a: 2 ∗ x1,
b : x2) and SP (s2) = (PC: True, a: y1 + 1, b: y2 + y3).
All symbolic literals contained in s1 and s2 are {x1, x2} and
{y1, y2, y3}, respectively. Two fresh symbolic literals f1 and
f2 will be introduced with corresponding types for the vari-
ables a and b. The ¬F (s1 4 s2) formula is as follows:

[∃x1, x2 : (x1 6= 0) ∧ (2 ∗ x1 = f1) ∧ (x2 = f2)]∧
¬ [∃y1, y2, y3 : True ∧ (y1 + 1 = f1) ∧ (y2 + y3 = f2)]

4.3 Optimizations
The ESS algorithm detects symbolic subsumption pre-

cisely, but it can be computationally very expensive due to
the use of quantifiers. Therefore, we devise three optimiza-
tion techniques:

1. Explicit Structural Matching (ESM) heuristically de-
tects state equivalence (a special form of subsumption)
by matching the structure of symbolic expressions;

2. Filter Check (FC) tries to refute subsumption by check-
ing a simpler formula without quantifiers;

3. Expression Simplification (SIMP) is a generic tech-
nique that reduces the size of symbolic expressions and
the path condition, thus also the size of the SMT for-
mulas.

ESM and FC can in many cases avoid expensive ESS queries
as shown in Fig. 3.

4.3.1 Explicit Structural Matching
The ESM heuristic is based on the simple observation that

two symbolic expressions are semantically equal, if they are
structurally equal. ESM checks whether every pair (es1i , es2i)
as well as (PC(s1), PC(s2)) are equal except for the renam-
ing of symbolic literals. Every symbolic literal has to be
mapped to exactly another type-compatible symbolic literal.
Matching the path conditions ensures that the mapped sym-
bolic literals have the same constraints on both states. For
example, ESM detects equivalence between SP (s1) = (pc:
x1 > 5, x1 + 1) and SP (s2) = (pc: x2 > 5, x2 + 1) if x1 and
x2 have the same type.

4.3.2 Filter Check
The FC heuristic constructs a random concrete state sC

from s1 and checks if sC can be constructed from s2. If the
check fails, s1 cannot be subsumed by s2, and thus an ESS
query is not necessary. This situation is shown on the left
side of Fig. 4. Otherwise, s1 might be subsumed by s2, but
not always as depicted on the right side.

The concrete state sC is obtained by employing an SMT
solver to solve PC(s1) and get a complete model (i.e. every
symbolic variable is assigned to a concrete value). Such a
model is always available, since the path to s1 has been

s1

s2

s1

s2

Single concrete state sC ∈ s1

Figure 4: Filter check principle

shown to be feasible before. Now, sC can be constructed
from s2, iff the following formula is satisfiable:

PC(s2) ∧
∧

i∈{1,...,n}

es2i = esCi

One implementation detail that is crucial to the overall
performance of FC is to create and cache sC when the fea-
sibility of the path to s1 is checked. This avoids an unnec-
essary solver query by FC to solve PC(s1) again.

4.3.3 Expression Simplification
Symbolic expressions are simplified based on term rewrit-

ing, e.g. folding of concrete arguments (1 + x + 2 7→ x + 3)
or simplification of special cases (x ∨ ¬x 7→ T).

The path condition is a conjunction of terms PC = c1 ∧
... ∧ cn representing constraints. During symbolic simula-
tion, symbolic literals go out-of-scope when the variable us-
ing them is overwritten. For example, if x1 is only used by
the variable v, then x1 goes out-of-scope when v is assigned
to a new literal x2. If a constraint ci, which contains both
out-of-scope and in-scope literals, does not exist, the out-
of-scope literals can be safely removed. Constraints, which
contains only these literals, also become irrelevant and thus
are eliminated. This process is performed using standard
garbage collection techniques.

5. EXPERIMENTS
We have implemented the proposed approach and evalu-

ated it using an extensive set of benchmarks from the liter-
ature on SystemC verification [2, 10, 6, 13] and some new
benchmarks. All experiments are performed on a 3.4 GHz
AMD machine running Linux. The time and memory limits
are set to 1000 seconds and 4GB, respectively. The abbrevia-
tions T.O. and M.O. denote that the time and memory limit
has been exceeded, respectively. The result tables show the
benchmark name in the first column and the verification re-
sult, with S for safe and U for unsafe, in the second column.
All runtimes are specified in seconds.

First we have performed a comparison of the different
optimization techniques which have been discussed in Sec-
tion 4.3, for our symbolic state matching algorithm ESS.
Table 2 shows the results of the base algorithm (ESS), with
structural matching (+ESM), with filter check (+FC), with
expression simplifications (+SIMP) and a combination of
all techniques (+ALL). All configurations use symbolic ex-
pression simplifications based on term rewriting. The Z3
solver3 is used to handle all symbolic queries, since it pro-
vides quantifier support as required for the ESS algorithm.
It can be observed that every optimization technique results
in improvements compared to the base ESS algorithm. The
combination of all optimization techniques yields the overall
best results. The last column shows the observed factor of
improvement (FoI) compared to the base algorithm.
3Available at http://z3.codeplex.com

Table 2: Comparison of ESS optimizations (runtime in seconds)

Benchmark V ESS ESS+ESM ESS+FC ESS+SIMP ESS+ALL FoI
buffer.p9 S 323.241 193.952 444.074 329.708 196.310 1.65
mem-slave-tlm-bug2.5 U 26.677 26.474 17.292 26.174 18.018 1.48
pressure-sym.50.5 S 8.244 6.973 8.470 8.203 7.271 1.13
pressure-sym.nb.50.5 S 229.240 228.437 192.680 230.193 188.766 1.21
token-ring2.12 S 280.526 255.262 184.093 244.308 122.981 2.28
token-ring-bug2.20 U 8.479 8.573 7.969 8.388 7.041 1.20
token-ring-bug.20 U 7.626 7.669 6.323 7.657 6.502 1.17
token-ring.40 S 223.562 216.143 192.283 226.818 167.107 1.34

Table 3: Comparison with Kratos (runtime in seconds)

Benchmark V ESS+ALL KRATOS FoI

kundu S 5.988 1.129 0.19
mem-slave-tlm-bug2.1 U 4.735 1.896 0.40
mem-slave-tlm-bug2.5 U 18.018 30.702 1.70
mem-slave-tlm-bug.1 U 3.746 2.482 0.66
mem-slave-tlm-bug.5 U 5.230 192.143 36.74
mem-slave-tlm.1 S 5.934 3.166 0.53
mem-slave-tlm.5 S 4.599 264.163 57.44
pressure-safe.50 S 3.884 184.896 47.60
pressure-safe.100 S 6.147 T.O. ∞
pressure-sym.50.5 S 7.271 202.594 27.86

buffer.p8 S 83.624 75.069 0.90
buffer.p9 S 196.310 T.O. ∞
condition-builder.16 S 5.494 22.156* -
condition-builder.32 S 10.682 475.397* -
pressure-sym.nb.50.5 S 188.766 154.878* -
rbuf2-bug1.2 U 3.284 49.286 15.01
rbuf2-bug2.2 U 3.052 47.801 15.66
simple-fifo-1c2p.10 S 8.367 15.712 1.88
simple-fifo-1c2p.20 S 14.759 106.184 7.19
simple-fifo-1c2p.50 S 38.957 T.O. ∞
simple-fifo-bug-1c2p.20 U 7.147 54.729 7.66
simple-pipeline S 3.046 7.443 2.44
symbolic-counter.1.3 S 2.498 7.954 3.18
symbolic-counter.1.6 S 4.304 34.579 8.03
symbolic-counter.1.12 S 8.932 767.717 85.95
token-ring2.12 S 122.981 110.560 0.90
token-ring2.20 S 740.698 M.O. ∞
token-ring-bug2.17 U 6.089 88.252 14.49
token-ring-bug2.20 U 7.041 M.O. ∞
token-ring-bug.10 U 4.667 0.525 0.11
token-ring-bug.20 U 6.502 M.O. ∞
token-ring.13 S 9.096 4.279 0.47
token-ring.15 S 11.039 126.983 11.50
token-ring.40 S 167.107 M.O. ∞
toy-sym S 3.494 3.410 0.98
transmitter.90 U 16.012 M.O. ∞
transmitter.100 U 19.590 266.907 13.62

KRATOS is called with the options: -opt_cfa 2 -inline_threaded_function 1
-dfs_complete_tree=false -thread_expand=DFS -node_expand=BFS -po_reduce -po_reduce_sleep
-arf_refinement=RestartForest

Consequently, this optimized version of ESS is compared
with KRATOS in its most recent version [6], which is the
state of the art SystemC model checker for handling cyclic
state spaces as mentioned earlier. The results are presented
in Table 3. The table is divided into two halves by a double
line. The upper half shows benchmarks with acyclic state
spaces, whereas the more important cyclic state spaces are
shown in the lower half.

Our approach shows very competitive results compared
to KRATOS. Improvements up to two orders of magnitude
can be observed, as shown in the last column (FoI). This
can especially be observed with up-scaled benchmarks, e.g.
the token-ring, symbolic-counter, mem-slave-tlm and pres-
sure benchmarks. On some benchmarks, KRATOS shows
better results but the runtime differences are not significant.
Furthermore, on some safe benchmarks, KRATOS reports
spurious counterexamples. These benchmarks are marked
with * and not considered in the comparison.

6. CONCLUSION
A stateful symbolic simulation approach has been pro-

posed in this paper for the efficient and complete verification
of safety properties in high-level SystemC designs. With
the proposed approach, safety properties can be completely
proven on cyclic state spaces, which has not been possi-
ble before with symbolic simulation. The well-known state
explosion problem is alleviated by integrating two comple-
mentary reduction techniques, namely POR and SSR. The
former allows to prune redundant schedules, whereas the lat-
ter can increase the effectiveness of symbolic state match-
ing significantly. In addition to an exact algorithm for sub-
sumption detection, we proposed several optimizations to
improve its efficiency. The experiments using an extensive
set of benchmarks demonstrated the efficiency of these opti-
mizations and the competitiveness of the stateful symbolic
simulation with the state of the art.

7. REFERENCES
[1] S. Anand, C. S. Păsăreanu, and W. Visser. Symbolic execution

with abstract subsumption checking. In SPIN, pages 163–181,
2006.

[2] N. Blanc and D. Kroening. Race analysis for SystemC using
model checking. ACM Trans. Des. Autom. Electron. Syst.,
15(3):21:1–21:32, June 2010.

[3] D. Bosnacki, S. Leue, and A. Lafuente. Partial-order reduction
for general state exploring algorithms. In A. Valmari, editor,
Model Checking Software, volume 3925 of Lecture Notes in
Computer Science, pages 271–287. Springer, 2006.

[4] C.-N. Chou, C.-K. Chu, and C.-Y. R. Huang. Conquering the
scheduling alternative explosion problem of SystemC symbolic
simulation. In ICCAD, pages 685–690, 2013.

[5] C.-N. Chou, Y.-S. Ho, C. Hsieh, and C.-Y. R. Huang. Symbolic
model checking on SystemC designs. In DAC, pages 327–333,
2012.

[6] A. Cimatti, I. Narasamdya, and M. Roveri. Software model
checking SystemC. IEEE Trans. on CAD of Integrated
Circuits and Systems, 32(5):774–787, 2013.

[7] S. Evangelista and C. Pajault. Solving the ignoring problem for
partial order reduction. Int. J. Softw. Tools Technol. Transf.,
12(2):155–170, May 2010.

[8] C. Flanagan and P. Godefroid. Dynamic partial-order reduction
for model checking software. In POPL, pages 110–121, 2005.

[9] P. Godefroid. Partial-Order Methods for the Verification of
Concurrent Systems: An Approach to the State-Explosion
Problem. Springer, 1996.

[10] D. Große, H. M. Le, and R. Drechsler. Proving transaction and
system-level properties of untimed SystemC TLM designs. In
MEMOCODE, pages 113–122, 2010.

[11] IEEE Std. 1666. IEEE Standard SystemC Language Reference
Manual, 2011.

[12] J. C. King. Symbolic execution and program testing. Commun.
ACM, 19(7):385–394, July 1976.

[13] H. M. Le, D. Große, V. Herdt, and R. Drechsler. Verifying
SystemC using an intermediate verification language and
symbolic simulation. In DAC, pages 116:1–116:6, 2013.

[14] A. Valmari. Stubborn sets for reduced state space generation.
In Int’l Conf. on Application and Theory of Petri Nets, pages
1–22, 1989.

[15] M. Y. Vardi. Formal techniques for SystemC verification. In
DAC, pages 188–192, 2007.

