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Abstract—Due to the large complexity of today’s circuits and
systems, all components e.g. in a System on Chip (SoC) cannot
be designed from scratch anymore. As a consequence, designers
frequently work on components which the{) did not create
themselves and, hence, design understanding becomes a crucial
issue. Approaches for feature localization help by pinpointing
to distinguished characteristics of a design. However, existing
approaches for feature localization mainly focused on the Register
Transfer Level; existing solutions for the Electronic System Level
(using languages such as SystemC) have severe limits. In this
work, we propose an approach for advanced feature localization
in SystemC designs. B{ this, we overcome major limitations of

reviously proposed solutions, in particular the missing support
or dynamically generated designs, while keeping the proposed
solution as non-intrusive as possible. The benefits of our approach
are confirmed by means of a case study.

I. INTRODUCTION

Current chip designs are becoming more and more complex.
As designs tend to shift towards System-on-Chips (SoCs) and
even Networks-on-Chips (NoCs), both, the amount of features
realized in a single design and the amount of atomic elements
needed to realize that functionality is growing significantly.
As a consequence, such designs are increasingly realized
through the re-use of existing parts and external Infellectual
Property (IP) [1]. These parts may even form a hierarchy, with
complex functionality being implemented in blocks that, in
turn, are composed of several blocks themselves. This results
in a complex functionality being implemented in various layers
across the design. Additionally, more designers are usually
collaborating to work on a single design. As designs get
larger, a separation of concerns is usually carefully organized
for both, the design and the people working on it. By this,
designers are enabled to work in large teams on a single
system [2]. Consequently, designers frequently need to work
on parts of an implementation that they are not familiar
with. Hence, establishing the needed design understanding as
quickly as possible is crucial [3].

Methods for feature localization provide an alternative if
a documentation is e.g. outdated or incomplete. They aid
designers by pinpointing them to distinguished characteristics
of a design and, by this, allow them to quickly locate imple-
mentations of certain features of a system. Supported by that,
the designer avoids a manual inspection of large parts of the
design and can directly focus on those parts that matter for
the currently considered design task.

For this purpose, several methods for feature localization
have been proposed (see e.g. [4], [5]). The underlying tech-
niques usually involve running several simulations which are
supposed to trigger certain features. At the same time, it is
traced which parts of the design were used in the respective
run. Based on that information, the implementation of a given
feature can usually be located in the given implementation. But
while these feature localization techniques provide an effective
way to direct a designer to the part of the design that is relevant
for the current task, most of the existing solutions can only be
applied to designs at the Register Transfer Level (RTL).

However, in order to meet the demand of shorter devel-
opment cycles and working prototypes early in the design

process [6], systems are increasingly designed at the more
abstract Electronic System Level (ESL) — which motivates
the need for feature localization for this abstraction level.
Unfortunately, corresponding support for implementations in
SystemC — the current de-facto standard at the ESL [7] — is
very limited thus far. To the best of our knowledge, the only
approach for feature localization at the ESL has been presented
in [8].

In this work, we propose an approach for advanced fea-
ture localization. For this purpose, a smart combination of
SystemC/C++ utilities for line coverage analysis such as
gcov together with the scheme of Aspect-Oriented Program-
ming (AOP, [9]) is applied. By this, a hybrid static/dynamic
coverage metric is introduced that enables the designer to pre-
cisely get pinpointed to features in existing SystemC designs.
The proposed solution clearly overcomes the limitations of
previously proposed approaches, i.e. additionally considers dy-
namically generated designs, while remaining as non-intrusive
as possible and, hence, applicable to a wide variety of SystemC
projects.

II. FEATURE LOCALIZATION

Designers need to be able to understand the respective
components of a design as well as their relation to each other.
In particular, they need to efficiently grasp all the features
of a system which are important to implement a particular
improvement, extension, or bugfix. Those features are usually
distinguished characteristics of a design, defining the expected
output or behaviour of the system resulting from a specific
input.

However, identifying those features and, by this, getting
a sufficient understanding of the design in acceptable time
is a cumbersome task. Often, the documentation is not as
detailed as needed or became obsolete due to changes in the
implementation that have not entirely been propagated [10].
As a consequence, feature localization is a crucial step within
the design process which, thus far, has mainly been conducted
manually (e.g. by inspecting the HDL implementation). This
added a time-consuming and, hence, cost-intensive step to
today’s design flows in which neither any new functionality is
added nor a single bug is fixed.

In order to aid this process, researchers developed automatic
methods for feature localization (see e.g. [4], [5]). They aid
the designer by automatically locating features based on so-
called Coverage Items (Cls), i.e. parts of the implementation
whose execution can be tracked. If the execution of these CIs
is tracked, a designer can easily check whether a particular
feature does or does not depend on the respective parts of
the implementation. More precisely, if an execution (or a
run) triggering a CI includes the feature the designer is
looking for, he/she can conclude that the respective parts
of the implementations may relate to the considered feature.
Performing several runs, possible CIs and, by this, responsible
parts of the implementation can further be refined.

Overall, methods for feature localization narrow down the
items, i.e. the parts of the implementation, that need further
inspection to a tiny fraction. By this, they significantly aid
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Fig. 1. Simplified representation of an initialized pkz_switch system.
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designers to quickly determine the relevant parts of the imple-
mentation in order to conduct their improvements, extensions,
or bugfixes. However, existing solutions for feature localiza-
tion have a severe limitation which is discussed next.

In fact, feature localization of SoCs mainly focused on the
Register Transfer Level (RTL) and its corresponding program-
ming languages such as VHDL [4], [5]. However, due to
the increasing complexity, designers strive for higher level
of abstractions — particularly in early stages of the design
process. In fact, design at the Electronic System Level (ESL)
with SystemC as its de-facto standard [7] is established in
industry today. But here, automatic feature localization is
limited significantly — particularly due to the missing support
of dynamically generated designs in SystemC.

In fact, to the best of our knowledge, the only approach
for feature localization at the ESL has been proposed in [8].
Here, motivated by the fact that SystemC is purely based
on C++ [11], existing C++ coverage tools such as gcov and
the respective coverage metrics have been applied. But this
approach is restricted to the static code description of the
given SoC. The dynamic behavior supported by SystemC —
particularly differentiating between multiple instantiations of
the same type of class — are not supported. As a consequence,
features might not be trackable.

Example 1. Consider the simplified representation of the
pkt_switch system, one of the standard examples which are
provided by SystemC, as shown in Fig. 1. The switch in the
center distributes data and is connected to four senders and
receivers which generate and receive arbitrary packages, re-
spectively. The senders (receivers) are instances of a respective
class sender (receiver) and, therefore, rely on the same
source code.

This leads to severe problems for automatic feature local-
ization which entirely relies on a static view of the source
code. In fact, those methods are unable to differentiate between
a feature that is statically defined in the source code and a
feature that is dynamically defined through the instantiation
within the elaboration phase. As an example, those approaches
would not be able to differentiate between the feature “send
to 0” and “send to 1.

III. PROPOSED SOLUTION

In this section, an approach for an advanced feature local-
ization for SystemC designs is proposed. The main goal is
to overcome the limitations of previously proposed solutions,
i.e. the static focus and, hence, missing support for dynami-
cally generated designs. At the same time, we aim for keeping
the proposed solution as non-intrusive as possible, i.e. we
propose a solution which prevents the designer from significant
changes of their implementation just for feature localization.
In order to accomplish that, a smart combination of SystemC-
utilities for line coverage analysis such as gcov together with
the scheme of Aspect-Oriented Programming (AOP, [9]) is
applied. The next section introduces the general idea of the
presented approach. Afterwards, specifics concerning AOP and
its application for SystemC are described. The benefits of the
solution are later outlined in a case study in Section IV.
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Fig. 2. The proposed coverage analysis scheme.

A. Considering Dynamically Generated Designs

Methods for the analysis of code coverage form the foun-
dation for almost all approaches for feature localization [12],
[13]. Line coverage e.g. provides a detailed per-line-of-source
listing of parts of the program which have been executed in a
given run. However, simply applying corresponding methods
for line coverage analysis such as gcov does not always pro-
vide a satisfactory result. As discussed above, corresponding
analyses are static and, while indeed pinpointing to respec-
tive lines of code, the precise instantiation (and by this the
precise component of the design dynamically generated in the
elaboration phase) would remain unknown.

In order to address this, we propose the insertion of another
dimension when performing line coverage analysis. Instead of
only providing the designer with the total amount of times
a single line has been executed during a run, we aim for
providing the designer with the total amount of executions
of a line per instance.

Example 2. Let’s assume a system in which two compo-
nents a and b are dynamically generated from a common
base code. Furthermore, let’s assume that, during simulation,
only component a is triggered. A static analysis would only
unveil that the respective lines of the common code basis have
been triggered n times. In contrast, having the total amount
of executions per instance would unveil that component a
has been triggered n times while component b has not been
triggered at all.

Such a more elaborated result would lead to a much more
accurate feature localization. In the example, it gets obvious
that component a triggered the coverage item (and might
include the feature the designer is looking for) while com-
ponent b seems irrelevant in this case.

In order to differentiate which instance actually executes
the code, the existing scheme is enriched by an analysis
of the this-reference of the respective module. During the
compilation of C++ programs, functions that are not to being
executed from a static context get an additional parameter; the
this-pointer. This reference allows access to the instance of
the module which actually executes the respective function.
Using the this-pointer, one can track a unique identifier —
e.g. the name-field of the respective SystemC-object — and,
by this, keep track of which instance is currently executing a
particular part of code.

Relying on these ideas, feature localization is improved as
sketched in Fig. 2: Whenever a function is called (1), a com-
mon code line analysis tool (e.g. gcov) is additionally invoked.
This keeps track of which lines are triggered when running
the function (2) — as in any existing feature localization tools.
However, the tracked information is not stored globally, but
with respect to a unique identifier of the instance which runs
the function. For this purpose, the execution of the analyzer is
terminated together with the currently considered function (3).
In order to determine the unique identifier, the thi s-pointer
is read just before the execution of the function is terminated.
Invoking a classic coverage tool at each of those points and



mapping the information from this tool to the currently active
this-pointer records the full line-based coverage and adds
the information which object instance the according lines were
called from.

By this, dynamically generated components are explicitly
considered for feature localization. However, a naive real-
ization of this solution is not practical. In fact, a straight-
forward implementation of the proposed scheme would require
designers to perform significant changes in their existing
project. For each function, the respective parts for step (1) and
step (3) from Fig. 2 would have to be added — something which
should be avoided as it would introduce a lot of modifications
to the code that do not add any functionality and take a
considerable amount of time to write. Hence, in order to
realize the proposed scheme in a non-intrusive fashion, one
further measure is applied: the exploitation of aspect-oriented
programming.

B. Exploitation of Aspect-Oriented Programming

AOP is a programming scheme motivated by the follow-
ing scenario frequently occurring in system design: A new
functionality shall be implemented in an existing system
which, however, would require an extensive re-factoring of
the existing implementation (or even an entire re-development
from scratch).

Example 3. Consider again the pkt_switch-system from
Fig. 1. Each of the classes used in the implementation contains
an entry ()-method that updates the state and output of
the respective module. Let’s assume that this design shall
be enriched with a tracing functionality which keeps track
of each call of the respective entry ()-methods. Although
all modules of that example share this method, they do not
inherit it from a common base class. Hence, there is no single
location to add the respective extensions to. The designer is
left with the option of either

o enriching the entire system e.g. by an inheritance struc-
ture (which might be a lot of work and may result in other
designers having to adapt their code as well) or

o adding the respective code in all classes (which results in
redundant structures or global methods that are supposed
to be called only from a certain context — both considered
bad style which decreases maintainability).

For those cases, AOP provides the designer with an addi-
tional layer that allows him/her to describe the new behaviour
(almost) independently from the existing implementation.
Following this scheme, designers avoid huge re-factorings
but need to provide the implementation of the newly added
behaviour and a description of the position it is supposed to
be executed at. More precisely, AOP distinguishes between
separate component code (which represents the existing object-
oriented programming scheme that is used to describe a certain
structure and basic functionality) and a so-called aspect code
(which describes additional functionality that may be shared
by several components and does not fit into the existing
structure). These two kinds of code are written independently
and, before compilation, are merged by the so-called aspect
weaver. The aspect weaver takes the aspect code and inserts
it into the specified positions (so-called join points) in the
original source code.

Example 4. Using AOP, the desired tracing functionality
from Example 3 can be realized by leaving the existing
code as it is. Instead, the tracing functionality is separately
realized in an aspect. This aspect code also specifies that all
classes inheriting the sc_module-class and containing an
entry ()-method (i.e. sender, receiver, and switch) should
execute the newly added tracing implementation whenever
entry () is called. The resulting code consists of the original

SystemC model as well as a description of additional func-
tionality that describes where in the design (i.e. “after calling
the entry ()-method”) which functionality (i.e. “trace the
execution”) should be added.

The ability to transparently “weave in” aspect code just
before compilation allows for the insertion of additional
functionality to large source bases without further interaction.
Other designers of a given system do not even need to know
about new features being added: functionality that is needed
at some other point in the workflow can remain hidden from
them. This results in less complexity as designers are only
presented with implementations related to their respective
tasks — a clear separation of concerns.

In order to apply AOP in SystemC, or C++ in general,
AspectC++ [9] provides a proper implementation of the re-
spective programming scheme. AspectC++ performs thereby
two steps:

« First, weaving is applied, i.e. the original source code as
well as the respective aspect source code (which contains
its own keywords to specify the aspects but largely sticks
to the C++’s syntax) is taken and a corresponding woven
source is created. This code includes both, the original
functionality and the parts introduced in the aspects.

o Afterwards, the resulting source code (which is not nec-
essarily meant to be read or edited) is compiled; directly
leading to a binary executable which allows to perform
the new functionality.

C. Integration and Discussion

Following the AOP-based programming scheme allows for
a non-intrusive integration, i.e. the analysis functionality pro-
posed in Section III-A can easily be integrated into existing
SystemC projects. In fact, since SystemC is a C++ library,
AspectC++ can be used with hardly any changes. Only the
weaver needs to be built into existing pipelines. However, this
is a one-time setup and works on all major platforms [14].
Afterwards, a set of aspects can be used to add the new tracing
functionality to any given SystemC design.

This results in a system, in which function calls are mod-
ified: First, information recorded thus far (by the respective
line coverage analysis) is flushed prior to each function call.
By this, all results of the analysis are saved (in our implemen-
tation, they are directly written to disk) and associated with
the current scope (i.e. the instance which calls the function).
Then, calling function f is executed. Since the line coverage
analysis is still running, new information is gathered. Before
the function terminates, another flush is executed, i.e. the
newly collected information is saved again (now associated
to the instance which executed f).

The result is a list of coverage analysis files — all associated
to the instances on which the respective code was executed.
Overall, this leads to several advantages which make the
proposed solution very applicable for feature localization in
SystemC designs.

o The original source code does not need to be modified
in any way. Existing SystemC projects can easily be
analyzed by only modifying the compilation workflow
to include the aspect weaving step.

o The existing compilation setup can be used for the
resulting, woven code, as long as the given compiler
offers the coverage mechanisms that the designer wants
to apply.

¢ The SystemC library does not need to be modified in any
way. Unlike approaches that analyze a running SystemC
design by modifying e.g. the simulation kernel, the given
approach works purely on the user-generated code base.
This means that the approach can be applied to future
versions of SystemC without any further changes and that



TABLE I
RESULTS OF THE CASE STUDY

Feature Coverage Items 8] this
File Instance Lines
©0 receiver.cpp ~ RECEIVERO 40 — 41; 43; 45 - 51 X 4
switch.cpp SWITCH 194 — 195 v v
to 1 receiver.cpp ~ RECEIVERT 40 — 4T; 43; 45 - 51 X 4
switch.cpp SWITCH 201 — 202 v v
02 receiver.cpp RECEIVER2 40 — 41, 43; 45 - 51 X 4
switch.cpp SWITCH 207 — 208 v v
3 receiver.cpp ~ RECEIVER3 40 — 41; 43; 45 - 51 X 4
switch.cpp SWITCH 213 - 214 v v

it can be combined with setups that already rely on a
modified SystemC library.

e The proposed approach is flexible, i.e. various tools
and/or schemes for line coverage analysis can be cho-
sen. Since tracking the information obtained by these
tools/schemes can be realized using aspects, e.g. the
time-consuming gcov operations can easily be omitted
if performance is crucial.

o The proposed approach is platform-independent. As long
as a corresponding line coverage analysis tool is available
(which is the case for all major platforms), the proposed
solution can be implemented. This is possible, because
AOP-implementations such as AspectC++ are available
for all major platforms as well.

Besides that, the benefits of the proposed solution has also
been demonstrated by means of a case study. Corresponding
results are summarized next.

IV. CASE STUDY

The solution proposed above has been implemented and
evaluated by several case studies. In this section, the results
are representatively discussed and compared to the approach
presented in [8] — to the best of our knowledge the only
approach for feature localization of SystemC designs available
thus far. As representative, the pkt_ switch-system — one of the
standard examples in the SystemC-library which has already
been considered before in Fig. 1/Example 1 — is considered.

The design realizes a system for distributing data packages
and is assumed to be instantiated with four sender and
four receiver instances — all of them connected to a
central mcast_pkt_switch. The senders create packages
including a random payload which is distributed by the switch
(running on a slower clock) to the receivers. The system has
already been illustrated before in Fig. 1.

The features a designer may look for in this system may be
concerning the distribution of data. In particular, which parts
of the design are triggered when a package is sent to a specific
destination might be of interest. For this purpose, features
send to 0, send to I, send to 2, and send to 3 are defined
which are supposed to pin-point the designer to parts of the
implementations where the delivery of packages to receiver 0,
receiver 1, receiver 2, and receiver 3 are realized, respectively.

For the actual feature localization, five runs are performed.
One run simulates the original setup where packages with
an arbitrary payload are delivered to an arbitrary receiver.
The other runs simulate the delivery to one specific receiver
(as there are four receivers, four additional runs are required
for this). We configured the feature localization so that only
coverage items are reported which are always triggered when
also the respectively feature was triggered and vice versa. This
is sufficient for the considered purpose; however, alternative
criteria as discussed e.g. in [15] could easily be considered
as well (e.g. being sometimes triggered in runs that do not
contain the considered feature).

For all considered features, Table I provides the result ob-
tained by the approach previously proposed in [8] and obtained
by the approach proposed in Section III. As it can clearly be
seen, the previously proposed approach pin-points the designer

only to parts of the code related to the switch-module. This
can easily be explained by the fact that the dynamically
instantiated receivers (where the feature that something is sent
to them is realized) are not considered by the purely static
approach from [8]. In contrast, the proposed methodology does
not only pinpoint the designer to the switch but in addition to
that even to the respective parts of the receiver. Moreover,
even the precise instantiation of the receiver is provided (see
column denoted by Instance). Obviously, this provides a much
more comprehensive feature localization.

V. CONCLUSION

In this work, we proposed a method for feature localiza-
tion at the Electronic System Level, i.e. based on SystemC
designs. For this purpose, a combination of SystemC-utilities
for line coverage analysis with the scheme of Aspect-Oriented
Programming has been applied. This enables the explicit
consideration of dynamically generated designs while, at the
same time, remaining as non-intrusive as possible. In fact, the
proposed solution can be integrated into a variety of existing
SystemC projects since neither the project source code nor the
SystemC kernel or the compiler need to be modified in any
way. As confirmed by case studies, the proposed approach
generates results of much better quality.
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