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Abstract—Modeling languages such as UML or SysML allow
for the validation and verification of the structure and the behav-
ior of designs even in the absence of a specific implementation.
However, formal models inherit a severe drawback: Most of them
hardly provide a comprehensive and determinate description of
transitions from one system state to another. This problem can be
addressed by additionally specifying so-called frame conditions.
However, only naive “workarounds” based on trivial heuristics
or completely relying on a manual creation have been proposed
for their generation thus far. In this work, we aim for a solution
which neither leaves the burden of generating frame conditions
entirely on the designer (avoiding the introduction of another
time-consuming and expensive design step) nor is completely
automatic (which, due to ambiguities, is not possible anyway).
For this purpose, a systematic design methodology for the assisted
generation of frame conditions is proposed.

I. INTRODUCTION

Nowadays, formal models are more and more used in
the design of complex, embedded systems as they allow for
a precise specification of corresponding designs even in the
absence of a specific implementation. A significant benefit of
those descriptions is additionally provided by the fact that they
allow for the detection of design flaws in a very early stage.
Then, eliminating these flaws is by far easier and cheaper as
if they were detected later in the actual implementations.

The Unified Modeling Language (UML, [1]) is a widely es-
tablished, general-purpose language and is applied in software
as well as hardware design. Employing the Object Constraint
Language (OCL, [2]), further restrictions can be applied on
the respective models and behavioral aspects can be defined
precisely; in particular the functionality of operations. Due
to their general acceptance and wide usage, we concentrate
on UML/OCL models in the remainder of this paper1. The
description means provided by the combination of UML and
OCL allow for the creation of very sophisticated models.
However, constraints provided in terms of declarative con-
straint languages like OCL can often be formally satisfied
in many different fashions – allowing for intended, but also
unintended behavior. This is crucial, since a comprehensive
and determinate description of the transition from one system
state to another is not provided in these cases.

This problem is known as the frame problem [3] and
can be addressed by additionally specifying so-called frame
conditions. These define which elements of the model are
eligible to changes during the execution of an operation and,
even more important, which are not. Various approaches for
formulating frame conditions have been discussed [4], [5].
One recently suggested scheme is the specification of so-called
invariability clauses (following the “modifies only”-approach
proposed in [5]). Although this construct is not yet part of
the OCL standard, it is already applied in scientific studies
(see e.g. [6]) and considered in both, academia and industry.
However, the actual process of generating frame conditions
for a given model (e.g. in terms of invariability clauses) is a

1Nevertheless, the methodology proposed here can similarly be applied to
models provided in other modeling languages as well.

cumbersome task which requires the consideration of a signif-
icant amount of model elements as well as their relations and
side effects [7], [8]. Thus far, only naive “workarounds” exist
that do not provide a satisfactory solution. They either apply
rather trivial heuristics or completely rely on a manual creation
– requiring designers with a deep design understanding and,
eventually, leading to a new, time-consuming and error-prone
design step (this is discussed in more detail later in Section III).

In this paper, we envision a solution to this problem. We
respect that, due to ambiguities of formal models, a completely
automatic approach will not be possible or would lead to
unsatisfactory results. At the same time, we aim for not
leaving the burden of generating frame conditions entirely on
the designer. As a consequence, a systematic methodology
for the generation of frame conditions is proposed which
assists the designer in a comprehensible fashion and with
automatic methods in this process. More precisely, in a first
step, analyses are performed on the model which lead to the
creation of so-called hypotheses, i.e. proposals and suggestions
of model elements to be considered for invariability clauses.
Already this significantly aids the designer by pinpointing
her to relevant model elements which need to be investigated
when generating frame conditions. Afterwards, the designer
is provided with evaluations on how the generated hypotheses
would restrict the behavior of the model in detail. This leads to
plausibility checks based on which the designer can make well-
informed decisions on whether to add, to refine, or to discard
a hypothesis. By this, designers are provided with a systematic
methodology on how to deal with the frame problem for the
first time.

The remainder of this work is structured as follows:
Section II provides a brief review on both, formal models
provided in UML/OCL as well as the frame problem. The
central problem of generating frame conditions, including the
basic idea of the proposed solution, is covered in Section III.
Afterwards, our envisioned systematic methodology for the
generation of hypotheses as well as their evaluation is outlined
in Section IV and Section V, respectively. Section VI discusses
the resulting methodology and concludes the paper.

II. BACKGROUND

This section briefly reviews the main description means
of UML/OCL which are considered in this work. First, we
cover how to specify the structure and behavior of systems.
Afterwards, the frame problem of behavioral models and
possible solutions in terms of frame conditions are discussed.
All aspects are illustrated by means of a running example.

A. Structure and Behavior in UML/OCL
In general, UML/OCL offers a broad variety of description

means which allow for the specification of the structure and
the behavior of systems. Class diagrams are usually applied
to represent the structure of a system. Here, classes describe
the main components of a system. Each class is composed of
attributes (representing the information that is stored in the
class) and operations (representing possible actions that can
be executed in order to change the system state).



Speaker
volume: Integer
file: String
setVolume(volume: Integer)

Microphone
enabled: Boolean

CallingApp
inCall: Boolean
placeCall(number: String)
talk()
closeCall()

MusicApp
songs: Sequence(String)
currentSong: Integer
playNextSong()

MessagingApp
enabled: Boolean
sendMessage()

Phone
credit: Integer
topup(amount: Integer)

context CallingApp::placeCall(number: String)
pre: not inCall and phone.credit >= 10
post: inCall and phone.credit = phone.credit@pre - 5
context CallingApp::talk()
pre: inCall and phone.credit >= 10
post: phone.credit = phone.credit@pre - 10
context CallingApp::closeCall()
pre: inCall
post: not inCall

context MessagingApp::sendMessage()
pre: enabled and phone.credit >= 5
post: phone.credit = phone.credit@pre - 5

context MusicApp::playNextSong()
pre: currentSong < songs->size() - 1
post: currentSong = currentSong@pre + 1
post: phone.speaker.file = songs->at(currentSong)

inv microOnWhenInCall: enabled = phone.callingapp.inCall

context Phone::topup(amount: Integer)
pre: credit >= 0
post: self.credit = self.credit@pre + amount

Fig. 1. UML/OCL model of a smartphone specification

Example 1. Throughout the paper we are making use of a run-
ning example which is shown in Fig. 1. The model represents
an early design of a smartphone with apps. Specifications for
both, the designated software components (apps) as well as the
designated hardware components (speaker, microphone), are
provided in terms of individual classes which have attributes
and operations depending on their purpose.

In order to express further properties or restrictions, textual
constraints provided in OCL can be added to a model – so-
called invariants. These are associated to a certain class and
must be satisfied by all system states.
Example 2. In order to constrain that the microphone of the
smartphone system in Fig. 1 is only enabled in conversations,
invariant microOnWhenInCall (associated to Microphone) has
been added to the model. This invariant accesses the
CallingApp and its inCall-attribute in order to determine
whether a call is currently taking place and, hence, to restrict
its own enabled value.

Finally, the behavior of operations can be refined by pre-
and postconditions – again provided in OCL. Pre- and post-
conditions (denoted by pre and post) are considered only in the
context of an operation call. More precisely, an operation can
only be invoked if its corresponding precondition is satisfied.
Afterwards, the succeeding system state needs to satisfy the
operation’s postcondition.
Example 3. Consider the operation CallingApp::placeCall of
the smartphone system in Fig. 1. According to the precondition,
this operation can only be invoked if the user is not already
engaged in a call (denoted by not inCall) and still has more
than 10 units of credits left (denoted by phone.credit >= 10).
After the execution of this operation, a system state must be
reached where inCall is set to true and where the phone’s credit
is reduced by 5 units in comparison to the pre-state (which is
referred to using the annotation @pre).

B. The Frame Problem of Behavioral Models

The abstract fashion of models provided in UML/OCL
enables engineers to precisely describe a system in early stages
of the design process. These formal descriptions already allow
for the validation and formal verification of design drafts even
in the absence of a specific implementation. Common issues
which can already be addressed at this level and for which
corresponding (automatic) methods have been proposed in the
past are, e.g., structural aspects like consistency of models
(see e.g. [9], [10]), and behavioral aspects like reachability
of certain good or bad states (see e.g. [11], [12]).

However, particularly when the validation and verification
of behavioral descriptions is considered, UML/OCL models as
well as other formal models inherit a severe drawback: Most of
them hardly provide a comprehensive and determinate descrip-
tion of the transition from one system state to another through
an operation call. In fact, the declarative descriptions provided
by the pre- and postconditions often specify the system state
before and after the execution of the respective operation with

a particular focus on obvious model elements only – leaving
possible constraints and restrictions on the remaining model
elements open. Furthermore, the corresponding descriptions
often seem unique from an intuitive designer’s perspective, but,
in fact, allow several interpretations from a formal perspective.
Example 4. Consider the operation MusicApp::playNextSong()
of the smartphone system in Fig. 1. From a designer’s per-
spective, the pre- and postconditions shall describe that the
attribute currentSong, which represents the current integer
position of the playlist songs, is increased by one and the
current song is put on the Speaker’s file. The behavior of
currentSong is indeed clearly described by the first post-
condition. However, the second postcondition formally allows
for several interpretations, i.e. could be satisfied in various,
unintended ways. For example, literally any song could be put
on the Speaker’s file, since no restrictions are applied on the
sequence songs. Besides that, no information or restriction is
provided on the behavior of the remaining model elements.

Focusing on obvious model elements and intuitive descrip-
tions is understandable and also a necessity – in particular
in early design stages where the respective models have to be
comprehended by a large group of various stakeholders. At the
same time, the resulting ambiguities lead to inaccurate descrip-
tions which poses major challenges for validation, verification,
and later implementation. For these purposes, it is essential to
know precisely which model elements are eligible to changes
even if these changes are not specified in detail.

A straight-forward solution to address this so-called the
frame problem [3] is to additionally enrich the model by so-
called frame conditions. For this purpose, again OCL can
be applied: In a naive fashion, all model elements which
are to remain unchanged can be forced to do so e.g. by
adding terms like model_element = model_element@pre to the
postconditions. However, this approach is error-prone and
and impracticable for larger systems where side-effects and
implicit dependencies can easily be overlooked. Instead, recent
discussions, besides others particularly those in [4], [5], have
shown that it is often more elegant to specify what may change
rather than what may not change. This modifies only-scheme
led to the introduction of so-called invariability clauses – a
shorthand notation which can be employed to specify variable
model elements and their scope of change in a very precise,
but compact fashion [5]. Even though this construct is not yet
part of the OCL standard, it is received well and has already
been used frequently, e.g. in [6].
Example 5. Consider again MusicApp::playNextSong() from
Fig. 1. Following the intended meaning, only the properties
currentSong and file are supposed to be changed. These modi-
fications are supposed to be conducted only within the scope of
the MusicApp on which the operation is called (self) and within
the scope of the Speaker object phone.speaker, respectively.
Hence, a suitable frame condition resolving all the ambiguities
discussed above can be formulated by the invariability clause
modifies only: self.phone.speaker::file, self::currentSong.



III. GENERATION OF FRAME CONDITIONS

Invariability clauses offer a convenient way for the spec-
ification of frame conditions which significantly improves
the expressiveness of UML/OCL models. On the one hand,
they allow designers and stakeholders to keep focused on
the more intuitive description of the system. At the same
time, they provide necessary clarifications on ambiguities and
inaccuracies for the applied verification engines. However,
actually generating the clauses for a given model remains a
cumbersome task. In particular for larger models, the number
of elements as well as their relations and side effects to be
considered becomes significantly large. At the same time, no
systematic approach for the generation of frame conditions
exists so far.

As a consequence, frame conditions are hardly applied in
practice. Hence, the frame problem reviewed in the previous
section basically remains unsolved – to the best of our knowl-
edge, for all existing validation and verification approaches.
Thus far, the frame problem is either not covered at all or
simple “workarounds” are used to deal with missing frame
conditions, namely solutions based on:

• Manual specification, i.e. completely rely on a manual
refinement of the model like, e.g., the “filmstripping”-
approach proposed in [12]. However, this leaves the burden
solely on the designer who requires the respective design
understanding and, at the same time, is time-consuming
and error prone. A noteable case study that demonstrates
weaknesses and limits of this strategy can be found in [7].

• Implicit specification, i.e. simply apply naive schemes such
as enforcing all model elements which are not restricted
by originally provided constraints to remain unchanged
(and, hence, ignore implicit relations and side-effects of the
respective model elements). Approaches such as proposed
in [11] are representatives for this.

In order to avoid the problems caused by these unsatis-
factory solutions, the generation of frame conditions has to
become an integral part of the design process. For this purpose,
a solution is required which neither leaves the burden of the
generation entirely on the designer (avoiding the introduction
of another time-consuming and expensive design step) nor
is completely automatic (which, due to the ambiguities and
inaccuracies, will not lead to satisfactory results anyway).

In this work, we propose such a solution by providing a
systematic design methodology for the generation of frame
conditions. While eventually the designer has to decide on the
explicit addition of invariability clauses, we propose to assist
her with automated methods for the generation and evaluation
of so-called hypotheses. More precisely, the proposed method-
ology leads to the generation of frame conditions in two steps:

• First, analyses are performed on the model which lead
to hypotheses, i.e. proposals and suggestions of model
elements to be considered for invariability clauses.

• Second, the designer is provided with evaluations on how
the generated hypotheses would restrict the behavior of
the model in detail. Based on this, she can make a well-
informed decision on whether to add, to refine, or to discard
a hypothesis.

In the remainder of this paper we will outline first ideas
on these two steps, especially on the assistance by automated
methods.

IV. GENERATION OF HYPOTHESES

Relying on the modifies only-scheme, the problem of gener-
ating frame conditions boils down to the question which model
elements shall or shall not be restricted by invariability clauses.
While a definitive classification on that cannot always be
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Fig. 2. AST for the postcondition of MusicApp::playNextSong()

provided automatically due to the ambiguities and inaccuracies
discussed above, it can be observed that, for each operation, a
distinction between the following categories can be made:

• Variable elements, i.e. model elements that are evidently
meant to be modified by the respective operation since
this modification is (precisely) constrained. These elements
have to occur in the invariability clause.

• Ambiguous elements, i.e. model elements where it remains
unclear whether they are supposed to be modified within
a state transition or not. These properties may occur in the
invariability clause, but require further inspection.

• Unaffected elements, i.e. model elements that are evidently
not meant to be affected by the respective operation. These
elements are not to occur in the invariability clause as
they are not at all involved in the respective operation and,
hence, should simply keep their current value.

Already such a classification of the model elements signif-
icantly aids the designer in the generation of frame conditions.
In fact, it pinpoints her to ambiguous elements which require
a more detailed consideration, while variable and unaffected
elements only need to be approved and can, afterwards, directly
be added to the invariability clauses or not, respectively.

In order to generate hypotheses for this classification,
we propose to focus on the postconditions of the respective
operation as the primary source. Postconditions constrain
the changes performed during an operation call; all model
elements which might be modified can likely be assumed
to be referenced therein. For this purpose we envision an
automatic analysis of the Abstract Syntax Trees (AST) which
are constructed from the postconditions using the metamodel
for OCL expressions (defined in [2, Chapter 8.3]) and provide
a semantic profile of the postconditions.
Example 6. Consider the AST in Fig. 2 which represents
the postcondition of the operation MusicApp::playNextSong().
Here, each node and link is labelled by the corresponding
expression type and relation kind, respectively. In the left sub-
tree, only the model element file is recognized variable as it
is the last element in a chain of PropertyCallExpressions. The
first part of this chain is used to construct the corresponding
scope-term self.phone.speaker::file. From the right sub-tree,
the elements songs and currentSong are classified ambiguous,
since they occur in an argument term. Note that OCL formally
considers the right-hand-side of an equation as the argument
of the “=”-operation called on the left-hand-side. Thus, the
model element songs would be classified variable if both sides
of the equation were swapped.

Postconditions are not always unambiguous, as illustrated
by Example 4. Addressing this issue, standard interpretations
for ambiguous OCL constructs have been suggested in [13]
based on an extensive field study. Although the motivation
and conclusions were quite different, the observations of this
study can also be transferred to the context considered here.



Additionally, there may also be elements which do not
occur in the operation’s postconditions, but are connected to
other model elements that were identified to be variable in
a different way. Clearly, these dependencies also have to be
considered in order to obtain a complete set of hypotheses for
the invariability clauses.
Example 7. Consider the constraint that the microphone shall
be enabled during phone calls (as expressed by the invari-
ant microOnWhenInCall of the Microphone class in Fig. 1).
Assume that the attribute inCall has been classified as a
variable element. Then, the attribute enabled shall be clas-
sified accordingly. The appropriate scope-term is computed by
backwards navigation, i.e. Microphone→Phone→CallingApp
becomes CallingApp→Phone→Microphone, resulting in the
scope-term self.phone.microphone::enabled.

V. VALIDATION OF HYPOTHESES

The automatic scheme proposed in the previous section
provides hypotheses whether model elements shall be included
in the invariability clauses or not. For finally generating the
frame conditions, these hypotheses are validated and ambigu-
ities are further eliminated. In this section, we outline how
existing verification approaches and modeling tools can be
applied to assist the designer in this task.

A very effective measure to validate the plausibility of a
hypothesis is to consider corresponding execution scenarios
for the respective operation. Existing consistency checkers or
model finders such as provided by [10] can be applied for this
purpose. They can be used to create scenarios in which e.g. a
pre-state satisfying all preconditions and a post-state satisfying
all postconditions occur such that only variable model elements
are modified. If no such scenario can be determined, the
respective classification might be too weak, i.e. further model
elements should be considered as variable (e.g. from the set of
ambiguous elements). At the same time, those scenarios can be
used to validate that only model elements show changes that
are supposed to do that. Moreover, the designer may specify
own execution scenarios, preferably including as much changes
between pre- and post-states as possible. Then, these scenarios
can be analyzed and used to determine whether ambiguous
model elements are meant to be variable or unaffected.

Further support for the validation of hypotheses can be
provided by modeling tools such as [14]. They allow for
highlighting variable and ambiguous model elements in the
class diagram and, hence, pinpoint the designer to ambiguous
model elements left to be specified. These can be addressed
individually by defining execution scenarios to be determined
by consistency checkers or model finders. More precisely, the
designer may query the determination of a scenario that
becomes possible only if a highlighted model element is
considered to be variable or if the scope-term of a model
element is modified, but is not possible for the original form.
Doing this systematically, first for object instantiation and
destruction, then for modification of associations, and, finally,
for changes of attributes, all ambiguities are successively elim-
inated. Eventually, an invariability clause results that precisely
describes the intended frame conditions.

VI. DISCUSSION & CONCLUSION

In this work, we considered the generation of frame condi-
tions for behavioral formal models e.g. based on UML/OCL.
For this purpose, we proposed a systematic methodology
which, first, generates hypotheses of model elements to be
considered for invariability clauses and, afterwards, validates
the plausibility of them. Automatic analysis schemes for the
generation as well as validation of the hypotheses assist the
designer in this process. For the first time, this provides a
systematic approach on how to deal with the frame problem.

As an obvious drawback, the proposed methodology still
relies on a manual interaction with the designer. However, this

would be required by any other solution as well – ambiguities
of descriptions can never completely be captured by automated
methods and, eventually, have always to be finally decided
by the designer. However, the methodology provided here
significantly assists the designer in this process by providing
suggestions as well as plausibility checks.

Previously proposed solutions (i.e. the “workarounds” dis-
cussed in Section III) are far away from providing such an
extensive support. In fact, only naive schemes (e.g. considering
a model element as variable if and only if it is referenced in
a postcondition) have been applied thus far.

In contrast, the methodology proposed here offers the
following two advantages:

• The designer is provided with proposals and sugges-
tions of model elements to be considered for invari-
ability clauses. Already taking those in a naive fashion
would lead to much more elaborated frame conditions
than those obtained by previously proposed methods.

• The designer is extensively assisted during the val-
idation of the proposed model elements. This leads
to a clear and fast definition of frame conditions.
Moreover, these validations may even pinpoint the
designer to possible inconsistencies in the design.

To the best of our knowledge, the methodology proposed
here is the first systematic approach to this problem.
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