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Abstract—Modeling languages such as UML or SysML in
combination with constraint languages such as OCL allow for
an abstract description of a system prior to its implementation.
But the resulting system models can be highly non-trivial and,
hence, errors in the descriptions can easily arise. In particular,
too strong restrictions leading to an inconsistent model are
common. Motivated by this, researchers and engineers developed
methods for the validation and verification of given formal
models. However, while these methods are efficient to detect the
existence of an inconsistency, the designer is usually left alone
to identify the reasons for it. In this contribution, we propose
an automatic method which efficiently determines reasons ex-
plaining the contradiction in an inconsistent UML/OCL model.
For this purpose, all constraints causing the contradiction are
comprehensibly analyzed. By this, the designer is aided during
the debugging of his/her model.

I. INTRODUCTION

Modeling languages, such as the Unified Modeling Lan-
guage (UML) [1] and the Systems Modeling Language
(SysML) [2], [3] as some of the best-known representatives,
received much attention in the past. They allow for a pre-
cise description of a system at a high level of abstraction
before precise implementation steps are performed. For this
purpose, UML provides appropriate models which hide pre-
cise implementation details while being expressive enough to
specify a complex system. Within UML, the Object Constraint
Language (OCL) [4] enables the enrichment of the respective
models by textual constraints which add further information to
the description. Using OCL, it is possible to define invariants
which restrict valid system states or to describe further prop-
erties as well as relations between the specified components1.

The resulting models may be composed of numerous dif-
ferent components with various relations, dependencies, or
constraints and usually lead to non-trivial descriptions where
errors can easily arise. This may lead to an inconsistent
description, where certain UML and OCL constraints contra-
dict each other. Then, no valid system state can be derived
from the model anymore – obviously a serious design error.
Detecting such flaws in early stages of the development is
an important task since correcting an inconsistent UML/OCL
model is easier than fixing a resulting error in the actual
implementation.

Motivated by this, researchers and engineers developed
corresponding methods and tools for the validation and ver-
ification of system descriptions given as a formal model.
As an example, the UML-based Specification Environment
(USE) [5] provides well-established methods that can be ap-
plied e. g. to automatically generate test cases for the respective
UML/OCL models [6]. Besides that, researchers began to
exploit formal methods for the verification of UML/OCL
models. Approaches based on theorem provers like PVS [7],
HOL-OCL/Isabelle [8], and KeY [9] have been applied for this
purpose. They are capable of checking very large models, but
often require a strong formal background of the designer. As a
consequence, researchers started to investigate the application
of fully automatic proof engines including methods based on
constraint programming (CSP) [10], [11], [12], description

1In this paper, UML/OCL is used as modeling language, but the presented
approach can easily be transferred to other modeling languages, e. g. SysML.

logic [13], [14], the modeling language Alloy based on re-
lational logic [15], [16], or Boolean satisfiability (SAT) [17],
[18].

These approaches are particularly helpful in order to de-
termine a valid system state of the model. Furthermore they
are useful, even if the description is inconsistent, since these
approaches help to detect the existence of a contradiction. But,
in such cases they do not provide any further details on the
reason for the contradiction. Hence, the designer is left alone
to debug the model, i. e. to identify the UML/OCL constraints
that caused the contradiction.

In this contribution, we propose an automatic method which
aids the designer in this process. A methodology is introduced
which efficiently determines so-called reasons of the contra-
diction, i. e. a subset of all UML/OCL constraints of a model
which forms a contradiction and, hence, explains the inconsis-
tency. For this purpose, we exploit the formal proof techniques
which have already successfully been applied to initially check
for the existence of a contradiction. The resulting problem
formulation is extended so that UML/OCL constraints can be
disabled in order to derive a valid system state from the model.
By exhaustively analyzing all possible combinations that got
disabled in order to allow a valid system state, the desired
reasons can automatically be determined. Previously proposed
approaches for debugging UML/OCL models (discussed in
detail in Section III-B) only provided approximations of the
reasons. In contrast to this, the solution proposed in this work
determines all minimal reasons explaining the problem.

The remainder of this work is structured as follows: The
next section briefly introduces the terminology used in the
following. Afterwards, a precise problem formulation and
discussion of related work is provided in Section III. The
general concept of the proposed solution is then sketched and
illustrated in Section IV, before details on its implementation
and evaluation are given in Section V. Finally, the paper is
concluded in Section VI.

II. PRELIMINARIES

In order to keep the paper self-contained, this section
provides a brief review on UML/OCL and introduces the
notation used to describe the respective models and system
states.

Definition 1: A model M = (C,R) is a tuple of
classes C and relations R (also known as associations). A
class c ∈ C contains attributes and operations. A relation
r = (c1, c2, (l, u)) consists of two classes c1 and c2 from C.
The tuple (l, u) represents the lower and the upper bound,
i. e. each instance of c1 shall be connected with at least l but
at most u instances of c2. Such a pair of bounds is called
UML constraints in the following. The lower bound is an
arbitrary natural number, while the upper bound is either a
positive natural number or infinity. Besides that, the model
can additionally be enriched by textual constraints which can
be provided in OCL and are denoted as invariants. The set I
represents all OCL invariants of a model. Each invariant i ∈ I
belongs to a class c ∈ C and defines an OCL constraint.

Example 1: Consider the model given in Figure 1 which
consists of two classes, A and C. Both are connected by two
relations. The first relation r1 states that each object of C



A
v: Integer
w: Boolean

C
u: Integer

r1: 2 r2: 1
as cs

i2: A.allInstances().forAll(a|a.v = 8)
i3: C.allInstances().forAll(c|c.u = 3)

i1: v <= 10 implies w

Figure 1: A model example

A1:A
v = 9
w = true

C1:C
u = 3

(a) An inconsistent instantiation of the model.
A1:A

v = 8
w = true

C1:C
u = 3

A2:A
v = 8
w = true

(b) An consistent instantiation of the model.

Figure 2: Two model instantiations

is connected with exactly two objects of A. Due to the fact
that the lower and upper bound are equal, only one bound
is notated. The second relation states that each object of A
is connected with exactly one object of C. Additionally, three
OCL invariants are provided which restrict the values of the
attributes.

Note that, in the following, we mainly make use of the
convention which denotes sets by upper case letters and single
elements by lower case letters.

Furthermore, for the sake of simplicity, we restrict ourselves
to binary associations. This restriction is not too strong. In fact,
it has been shown that models containing n-ary associations
can be mapped into an semantically equivalent model solely
composed of binary associations by adding some invariants
to the affected classes [19]. Modeling languages such as
EMF [20] do not support n-ary associations at all.

Definition 2: An instantiation of a model M = (C,R) with
a set of invariants I is called system state. Furthermore, a
system state is called valid, if all UML and OCL constraints
are satisfied. If at least one of the different constraints is not
satisfied, the instantiation is called invalid. A valid instanti-
ation must be also composed of at least one object of any
class. If a valid instantiation of a model exists, then the model
is called consistent.

Example 2: Consider again the model shown in Figure 1.
The instantiation of the model presented in Figure 2a is
invalid, because the restriction given by the relation r1 is not
satisfied for the object C1, which is an instance of class C.
In fact, it is not possible to determine a valid instantiation
composed of one object of class A and one object of class C,
because the object of C can never be connected with two
different objects of class A. Additionally, the invariant i2 is
also not satisfied, because the attribute v of object A1 is
assigned 9. But in order to satisfy i2, attribute v is assigned
8 for all objects of class A.

In contrast, a valid instantiation of the model is shown
in Figure 2b. Here, object C1 is connected with exactly two
objects of class A, namely object A1 and object A2. Each
object of class A is connected with only one object of class C,
i. e. the UML constraints r1 and r2 are satisfied. However,
a valid instantiation must also satisfy the remaining three
constraints given by the invariants. Invariant i1 requires that,
for every object of class A, where the attribute v is smaller or
equal to 10, the Boolean attribute w is set to true. As v is 8
for both instances and w is true, invariant i1 is satisfied. The
invariant i2 (i3) is also satisfied, because the attribute v (u)
of all object instances of class A (class B) are set to 8 (3).
Therefore a valid system state has been determined and this
also shows that the model provided in Figure 1 is consistent.

III. PROBLEM FORMULATION AND RELATED WORK

In this section, the design task of debugging inconsistent
model descriptions is introduced and motivated. For this
purpose, a model is provided which works as running example
throughout the remainder of this paper. Besides that, we briefly
review previously proposed solutions to this problem and
discuss their potential for improvement which motivated the
work at hand.

A. Debugging Erroneous Models
Although system models based on UML/OCL rely on a

high level of abstraction (hiding a significant amount of im-
plementation details), the respective descriptions can be highly
non-trivial and, hence, complex to comprehend. Consequently,
errors in the descriptions can easily arise and are often hard to
detect. This may lead e. g. to an inconsistent description from
which no valid instantiation can be derived. Motivated by this,
researchers and engineers developed various methods aiming
at the verification and validation of UML/OCL models (see
e. g. [5], [10], [16], [17], [18]).

These methods are very efficient in detecting whether all
descriptions in a UML/OCL model are consistent or not. For
consistent models, they often even determine a valid system
state of the model and, by this, provide a so-called witness
confirming that an instantiation of the model indeed is possi-
ble. However, in cases where the description is inconsistent,
methods such as introduced in [5], [10], [16], [17], [18] only
report that a contradiction exists – without any details on
the reason(s) for this. In these cases, the designer is left
alone to debug the model, i. e. to identifiy the reasons for the
contradiction.

Example 3: Consider the UML/OCL model as shown in
Figure 3 which is used as running example in the remainder
of this paper. The model describes a system composed of four
classes including several attributes which are constrained by
several UML constraints (i. e. relations together with their
multiplicities) as well as OCL constraints (i. e. invariants).
Additionally, it is assumed that 2, 5, 3, and 7 objects shall
be instantiated from the classes A, B, C, and D, respectively.
However, although maybe not obvious at a first glance, this
model is highly over-constrained. In fact, the following con-
tradictions prohibit a valid instantiation of this model2:

1) A trivial contradiction is inherent in the invariant i5.
Here, the logical expression by itself is not valid.

2) Somewhat harder to debug are contradictions which
span over several invariants. In the model, this is the
case for the invariants i3, i1, and i2. The invariant i3
enforces all attributes v of each instance of class A to
be set to the value 8. Adding invariant i1, the attribute w
always has to be true. However, invariant i2 requires this
attribute to be false for exactly one connected instance
of class A.

3) In a similar fashion, UML constraints may lead to
a contradiction. This is the case for the association
between the classes A and C. Since 2 objects are derived
from Class A and 3 objects are derived from class C, the
multiplicities of this relation (represented by r1 and r2)
are violated.

4) Finally, contradictions may have its origins in the combi-
nation of both, UML and OCL constraints. For example,
this is the case for the combination of the invariants i4
and i7 and the relation r7. Both, the invariants and
the relation, enforce restrictions on the number of links
from instantiations of class D to instantiations of class C
which are in violation to each other.

Without any additional help, debugging an inconsistent
UML/OCL description is a cumbersome and time-consuming
task. Hence, methods that automatically approximate or even
exactly determine reasons for a contradiction are desired. A

2Note that the model was built to serve as a proper example including
various types of contradictions which may occur in practice.



A
v: Integer
w: Boolean

C
u: Integer

B
x: Integer
y: Integer

D
z: Boolean

r1: 2 r2: 1
as cs

r3: 2

r4: 5

as

bs

r6: 3

r5: 5

cs

bs

r7: 3

r8: 0..7

cs

ds

i3: A.allInstances().forAll(a|a.v = 8)
i4: C.allInstances().forAll(c|c.u = 3)
i5: B.allInstances().forAll(b|b.x = 11 and b.x = 12)

i2: as->one(a|a.w = false)

i1: v <= 10 implies w

i6: cs->forAll(c|c.u < 10)
i7: cs->forAll(c|c.ds->size() = cs.u->sum() )

Figure 3: Running example

reason is thereby a subset of all UML/OCL constraints which
forms a contradiction and, hence, have to be considered by the
designer for debugging. The definition for a reason is given
as follows.

Definition 3: A UML/OCL model is over-constrained or
inconsistent if the conjunction of all UML constraints such as
relations including their multiplicities specified in R as well
as OCL constraints such as invariants specified in I are not
satisfiable and, thus, no valid instantiation is possible. Then, a
reason R for the contradiction is a non-empty set of constraints
R ⊆ R∪I such that the conjunction of all constraints ci ∈ R
forms a contradiction, i. e. ∧

ci∈R
ci

is equivalent to 0.
Example 4: As discussed in Example 3, the model shown in

Figure 3 is inconsistent due to four reasons, namely:
1. R1 = {i5}, 2. R2 = {i1, i2, i3}, 3. R3 = {r1, r2}, and
4. R4 = {i4, i7, r7}.

How to efficiently determine reasons for an inconsistent
UML/OCL model is considered in this work.

B. Previously Proposed Solutions
Determining reasons for inconsistent UML/OCL models has

been considered before. For example, approaches presented
in [21] and [22] provide respective solutions. Both utilize the
same solving engine which is already applied in the first place
to check whether a contradiction exists.

Torlak et al. have proposed an approach [21] which relies
on a technique called unsatisfiable core extraction (see also
e. g. [23], [24]). First, they check whether a given model is
consistent, i. e. free of a contradiction. For that purpose, they
translate the declarative UML/OCL description into a proposi-
tional formula which is given to a solving engine (e. g. a SAT
solver). In case of a contradiction, the solver will prove that no
satisfying solution and, by this, no valid instantiation exists.
Then, unsatisfiable core extraction determines a sub-set of the
propositional formula (a so-called unsatisfiable core) which
still is contradictory3. This subset is further optimized until
a minimal core results. Since each expression in the formula
represents invariants or relations of the UML/OCL model, a
minimal reason for the contradiction can be determined from
the resulting subset. However, a main problem of this approach
is that only one contradiction is determined in each turn.

3Many solving engines such as MATHSAT and Z3 already provide unsat
core determination as “in-house” functionality.

Example 5: Applied to the running example, the approach
presented in [21] may deliver the reason R1, i. e. the in-
formation that i5 is self-contradictory. Even after fixing this
error the designer is still left alone with a contradictory
UML/OCL model. In fact, the designer has to explicitly invoke
this approach four times until all contradictions have been
identified and fixed. Considering that unsat core extraction is
a computationally expensive process (i. e. requires significant
run-times), this provides potential for further improvement.

In [22], a complementary approach has been proposed.
Here, the propositional formula is enriched by additional
logic allowing to disable certain constraints. The number of
constraints to be disabled is thereby restricted by an integer k.

At the beginning, k is fixed to 1 (i. e. one invariant may
be disabled). If this still leads to a contradiction (checked
by the solving engine), k is increased. This procedure is
repeated until the solving engine determines the first solution.
Then, all solutions for the current value k are determined.
This eventually leads to so-called contradiction candidates,
i. e. a set of UML/OCL constraints which, once disabled,
would lead to a contradiction-free model. However, while
this may pin-point the designer to possible problems in the
model, this approach only provides limited explanations of
the contradiction.

Example 6: Applying the approach from [22] will lead to
the contradiction candidates r1, r2, r7, i1, i2, i3, i4, i5, and i7.
While this includes all contradictory constraints, no relation
between them is provided. In fact, this result only represents
the union of the actual reasons, i. e. R1 ∪R2 ∪R3 ∪R4. The
designer is left alone figuring out their relations to each other.

Overall, while the approaches proposed before already
offer proper solutions which aid the designer in debugging
contradictory UML/OCL models, they still offer room for
improvement. Either only a single reason is determined or all
contradictory UML/OCL descriptions are provided at once. In
this work, we propose an alternative, which determines all
minimal reasons and additionally groups them according to
their contradictions.

IV. PROPOSED APPROACH

In this section, we describe the proposed approach for an
advanced analysis of contradictions in UML/OCL models.
The general idea is thereby based on the previously proposed
solutions described above, i. e. we rely on a solving engine
which already has been applied to identify the existence of a
contradiction and we enrich the corresponding propositional
formula.

More precisely, given a UML model M = (C,R) with
OCL constraints I, we assume the model has been checked
for the existence of a contradiction by transforming it into the
propositional formula

fcon = Φ(M) ∧
∧
r∈R

JrK ∧
∧
i∈I

JiK,where (1)

• Φ(M) is a propositional sub-formula representing all
UML components in a system state such as objects,
attribute values, and links,

• JrK is a propositional sub-formula representing the given
UML relation r ∈ R, and

• JiK is a propositional sub-formula representing the given
OCL invariant i ∈ I.

For this purpose, existing approaches for UML/OCL vali-
dation and verification such as [5], [10], [16], [17], [18] can
be utilized. If the respectively applied solving engine cannot
determine a valid assignment for this instance, it has been
proven that the model is inconsistent and the designer must
have a look at all constraints in order to fix the model.

In order to provide the designer with the desired reasons,
we exploit the idea from [22], i. e. we enrich the corresponding
propositional formula so that UML relations or OCL invariants



Table I: Possible solutions derived from the running example
r1 r2 r3 r4 r5 r6 i6 r8 i1 i2 i3 i5 i4 i7 r7
- 1 - - - - - - - 1 - 1 - 1 -
- 1 - - - - - - - 0 1 1 - 1 -
- 1 - - - - - - - - 1 1 1 0 -
- 1 - - - - - - 1 - 0 1 1 0 -
- 1 - - - - - - 1 0 0 1 - 1 -
1 0 - - - - - - - 1 - 1 - 1 -
- 1 - - - - - - - 1 - 1 0 0 1
- 1 - - - - - - 0 1 0 1 1 0 -
- 1 - - - - - - - 0 1 1 0 0 1
- 1 - - - - - - 1 0 0 1 0 0 1
1 0 - - - - - - - 1 - 1 1 0 -
1 0 - - - - - - - 1 - 1 0 0 1
1 0 - - - - - - - 0 1 1 - 1 -
1 0 - - - - - - - 0 1 1 - 0 1
1 0 - - - - - - - 0 1 1 1 0 0
1 0 - - - - - - 1 0 0 1 - 1 -
1 0 - - - - - - 1 0 0 1 - 0 1
1 0 - - - - - - 1 0 0 1 1 0 0

at least one 1 – at least one 1 1 at least one 1

may be disabled. More precisely, the formula from Eq. 1 is
extended to

f ′con = Φ(M) ∧
∧
r∈R

(sr ∨ JrK) ∧
∧
i∈I

(si ∨ JiK) , (2)

where sc is a new free variable corresponding to a constraint
c. However, in contrast to [22], we do not restrict the total
number k of constraints to be disabled. Besides this, we also
need to extend Definition 3 as we are interested in minimal
reasons.

Definition 4: A reason R of an inconsistent model – as
defined in Definition 3 – is called minimal if no subset R′ ( R
exists such that ∧

c∈R′

ci

is already equivalent to 0.
Now, passing the formula from Eq. 2 to a solving engine

allows to investigate how enabling or disabling UML/OCL
constraints keeps or does not keep the model contradiction-
free. For example, an assignment determined by the solving
engine such as

sr1 = 1, sr2 = 1, sr3 = 1, sr4 = 1, sr5 = 1,
sr6 = 1, sr7 = 1, sr8 = 0, si1 = 1, si2 = 1,
si3 = 1, si4 = 1, si5 = 1, si6 = 1, and si7 = 1.

allows the conclusion that disabling all UML/OCL constraints
except r8 would lead to a valid instantiation of the model. Ob-
viously, this alone does not significantly help in identifying the
reasons for a contradiction. But observing all such possibilities
indeed provides a proper basis for a comprehensive analysis4.

To illustrate this, Table I lists all possible assignments to the
respective sc-variables that have been obtained by applying the
formula from Eq. 2 to the running example. More precisely,
a 1 denotes that the respective constraint has been disabled,
while a 0 denotes that it has been enabled. A - represents a
don’t care, i. e. the case that, for the considered assignment, the
value of the corresponding select variable (stating whether the
respective constraint is enabled or disabled) does not matter.
This allows to represent all solutions in a compact fashion. The
row at the bottom summarizes some of the properties which
are exploited for the analysis and discussed next.

In fact, some very substantial conclusions can be drawn
from Table I. For example, it can be observed that invariant i5
is disabled in all solutions. Hence, this invariant must be
self-contradictory; otherwise at least one solution where all
constraints except i5 are disabled should exists. This is sum-
marized by a 1 in the bottom row of the column i5. Similarly,
it can be concluded that the relations r3, r4, r5, r6, r8 and the
invariant i6 are never part of a minimal reason; otherwise the
value of the corresponding sc-variable could not arbitrarily be

4In a similar fashion, contradictions in inputs for constraint-based random
simulation are analyzed [25].

switched. This is summarized by a - in the bottom row of the
respective columns.

Another conclusion may be drawn from the first two
columns of Table I. Here, it is evident that at least one of the
two constraints is disabled in all solutions. This constitutes an
indication that r1 and r2 are part of a reason; otherwise at
least one solution should exists in which both are enabled. In
a similar fashion, this holds for i1, i2, and i3 as well as i4, i7,
and r7. All these cases are summarized by at least one 1 in
the bottom row of the respective columns.

All these observations represent single snapshots and prop-
erties which can be exploited to determine the reasons of
the contradiction. This eventually leads to the main idea
of the proposed approach for contradiction analysis: Using
the formula from Eq. 2 and an efficient solving engine, all
possible combinations of constraints are iteratively checked
starting with the smallest ones. For each combination, the
sc-variables are pre-assigned in a fashion that the respective
combinations are enabled. If no valid model can be derived
assuming this assignment, then a reason for a contradiction
has been determined. By excluding all supersets from already
determined reasons, minimality is guaranteed.

V. IMPLEMENTATION AND EVALUATION

This section describes the implementation of the proposed
contradiction analysis based on the ideas discussed above. A
big drawback of a straight-forward implementation is thereby
that the analysis relies on iteratively checking all possible com-
binations of constraints and, hence, is rather time-consuming.
Accordingly, an optimized approach is additionally proposed
which addresses this problem. Both implementations are eval-
uated by means of the running example.

A. Straightforward Approach
1) Implementation: The implementation of the proposed

ideas is explained with the help of the pseudo code depicted
in Figure 4. The algorithm starts with a proper representation
of the formula from Eq. 2 (f ′con) and the two sets R and S
which are both initialized to the empty set. R stores all reasons
that are found, while S is used to save all sc-variables that are
passed to the detailed analysis later.

Then, the number of combinations to be considered is
simplified based on the observations discussed in Section IV.
In other words, for each constraint it is checked if it is self-
contradictory (line 8) or not. If yes, the respective constraint is
added to the set of reasons R (line 10). Each of these checks
is conducted using the applied solving engine together with
an extended version of the formula from Eq. 2, i. e. to check
if sc is 1 for all solutions, the conjunction f ′con ∧ (sc = 0) is
carried out. If no valid solution can be determined from that,
it can be concluded that sc is always 1. Thus, c becomes a
reason.

If such a check fails (line 11), then the respective con-
straint c can be a part of a contradiction caused by the
conjunction of c with one or more other constraints. Thus, c
is passed to the detailed analysis by inserting the respective sc
into S (line 13).

The next step is to calculate all possible assignments for
the select variables which makes the model consistent. For
this purpose the extended formula from Eq. 2 is passed to the
solving engine and allSAT (line 15) will return all the desired
assignments A. This can be done naivly by just blocking the
last found solution and ask the solving engine for another
solution until the solver engine recognizes that there are no
more solutions.

Finally, the detailed analysis for all elements in S, repre-
senting the remaining constraints, is performed (line 17 to
24). First, the power set P(S) of S is created resulting in
all subsets (i. e. combinations) of constraints considered for
detailed analysis. Note that we exclude the empty set as well
as all sets which only contain one element from the power



ContradictionAnalysis
Input: f ′con

1: // initialization
2: // set of all minimal contradiction reasons
3: R← ∅
4: // sc variables for detailed analysis
5: S ← ∅
6: // first step, simple analysis
7: for all c ∈ R ∪ I do
8: if (f ′con ∧ sc = 0) ≡ 0 then
9: // c is self-contradictory

10: R← R ∪ {{c}}
11: else
12: // c is selected for detailed analysis
13: S ← S ∪ {sc}
14: // calculating all possible assignments
15: A← allSAT(f ′con)
16: // detailed analysis
17: for all X ∈ P(S) do
18: // from the smallest to the largest
19: if ∃X ′ ⊂ X : X ′ ∈ R then
20: // ensure minimality
21: continue
22: if 6 ∃ a ∈A : ∀ sc ∈ X : a(sc) = 0 then
23: // reason found
24: R← R ∪ {X}
25: return R;

Figure 4: Straightforward implementation

set (this is already covered by the simplifications before). Fur-
thermore, the elements of the power set are ordered according
to their cardinality. Then, for each subset X (i. e. for each
combination), the conjunction of the respective constraints is
tested for a contradiction. If X is a contradiction, then it is not
possible to get an assignment a ∈ A, where all corresponding
select variables are assigned 0. Thus the non-existence of such
an assignment implies that X is a contradiction (line 22). To
ensure minimality, each contradiction test of a subset X is only
carried out if no subset of X , i. e. X ′ ⊂ X , has already been
detected as a reason for a contradiction X ′ ∈ R (line 19-21).

In summary, the presented contradiction analysis procedure
computes all minimal reasons R that explain the contradiction
of the considered UML/OCL model.

2) Evaluation: In order to evaluate the algorithm shown
in Figure 4, we realized this approach as an Eclipse plugin
using both, Java and Xtend. As solving engine, we utilized
Satisfiability Modulo Theories (SMT) [26] which has already
been successfully applied in order to verify and validate
UML/OCL models [18].

Using the resulting tool, we were successful in automati-
cally determining all minimal reasons explaining the contra-
diction in the running example as discussed in Example 4.
By this, engineers are significantly aided in the debugging of
contradictory UML/OCL models. In fact, the resulting reasons
are more precise and complete compared to the results of
previously proposed solutions as discussed in Section III-B.
On the contrary, following this straight-forward scheme is
computationally expensive: For the running example, a total
of 9408 possible assignments have been analyzed requiring a
total run-time of approx. 8 CPU hours5. In order to address
this, an optimized implementation is proposed next.

B. Optimized Approach
1) Implementation: The huge number of assignments to

be analyzed represents a crucial obstacle of the proposed
approach. This is caused by the simple determination of all
assignments in Line 15 of the algorithm from Figure 4:
After the determination of a satisfying assignment, a so-called
blocking constraint is added which prevents the solving engine

5The experiment has been carried out on a Intel i5 with 2.6 GHz cores and
16 GB memory using a 3.11 kernel Linux.

from determining the same solution again. By this, all possible
assignments are solely obtained. However, for the purposes
considered here, explicitly determining all assignments is not
necessarily required. In fact, a reduced set of assignments is
sufficient.

Definition 5: Let a ∈ A be one assignment which was ob-
tained by the solving engine and S the set of all sc-variables.
Furthermore, let Sa be a subset of S (Sa ⊆ S) composed of
those sc-variables which are assigned 1 in a. Then a′ ∈ A
is called an overset6 of a, iff Sa ⊆ Sa′ . Blocking the partial
assignment including only the variables assigned 1 rather than
the complete assignment a, prevents the solving engine not
only from obtaining the same assignment again but also all
of its oversets. This results in a reduced set of assignments
(denoted A′).

Considering the reduced set of assignments significantly
shrinks the total number of assignments to be analyzed. At the
same time, the reduced set of assignments is still sufficient to
determine all minimal reasons for the contradiction.

Lemma 1: Checking not all possible assignments a ∈ A but
only the assignments a′ ∈ A′ of the reduced set, still allows
the determination of all minimal reasons for a contradiction.

Proof 1: As it is obivious that A′ is not emtpy, it suffices to
prove that no smaller reasons can wrongly be discovered by
the algorithm. This will be proven by contradiction. Let Rj
be a minimal reason to be detected by the algorithm using the
complete set of assignments A. Now assume that a smaller
reason Rj′ ( Rj would erroneously be detected by relying
on the reduced set A′.

Then, there would be an assignment a ∈ A in the
complete set such that, for all constraints in the smaller
reason Rj′ , the corresponding sc-variables are all assigned 0,
i. e. ∀ ci ∈ Rj′ : a(sci) = 0 (otherwise, this reason would
have been detected using the complete set A). Then, we can
distinguish two cases:

1) This assignment is in A′ (i. e. a ∈ A′): Then, the
algorithm would have not detected Rj′ as reason since
it violates the corresponding condition in line 22.

2) This assignment is not in A′ (i. e. a 6∈ A′): Then, a must
have been blocked before by another assignment a′ ∈ A′

with Sa′ ( Sa. But such an assignment can only have a
smaller number of sc-variables set to 1. Consequently,
all sc-variables in a assigned 0 will also be assigned 0
in a′. Again, the algorithm would have not detected Rj′

as reason since it violates the corresponding condition
in line 22.

Remark 1: Consider again the minimal reason
Rj = {c1, c2, . . . , ck}. In an optimal case, the algorithm
adds only k blocking constraints. In the worst case, up to 2k

blocking constraints are needed.
The actual number of blocking constraints added for Rj

depends only on the used solving engine and its internal
learning techniques which depend on heuristic methods.

In order to improve such an heuristic behaviour, the number
of disabled constraints is restricted as explained in [22]. At first
all assignments with only one disabled constraint are obtained
by the solver engine, if they exist. Then the number of disabled
constraints is increased by one and the solver engine is called
again. Note that, in contrast to [22], we will not stop after the
first bunch of assignments. Instead, we call the solving engine
for every possible number of disabled constraints and, by this,
we obtain a minimal list of assignments. Now, by blocking
only oversets of determined assignments and a structured
search for every possible number of disabled constraints, we
can still ensure that the collected assignments are a reduced
set of assignments as described in Definition 5.

According to these results, the algorithm shown in Figure 4
can easily be optimized by modifying Line 15. Here, instead
of an allSAT scheme which determines a complete set of
assignments, simply a reduced set of assignments according

6We are using the word overset to avoid confusions with the term superset.



Table II: Experimental results
Model |C| |R| |I| |O| #R Sizes #solve Run-time
CivStat 1 2 6 5 2 4 11 < 1 s
CivStat 1 2 6 5 2 4, 4 11 < 1 s
CivStat 1 2 7 5 2 4, 4, 4 13 3.3 s
CivStat 1 2 6 5 2 4, 4 11 < 1 s
CivStat 1 2 6 5 2 4 11 < 1 s
CivStat 1 2 7 5 2 4, 4, 4 13 2.7 s
CivStat 1 2 7 5 2 2, 3 11 2.2 s
CivStat 1 2 7 5 2 2, 3 11 2.2 s
CivStat 1 2 7 5 2 3, 3 11 < 1 s
CarRental2 9 14 7 5 1 3, 3 11 2.5 s
RunningExample 4 8 7 7 4 1, 2, 3, 3 34 5.3 s

Legend:
|C|: Number of classes |R|: Number of relations |I|: Number of invariants
|O|: Maximal number of considered object instantiations per class
#R: Number of reasons sizes: a list with the sizes of each reason
#solve: the number of sat solver calls

to Definition 5 is obtained. This is sufficient to perform the
following detailed analysis but, at the same time, significantly
reduces the number of analysis steps.

2) Evaluation: In order to evaluate the optimized approach,
the refined algorithm has been realized as an Eclipse plugin
as well. Here, the determination of assignments as described
above has been adjusted, while the rest of the algorithm
remains identical.

Also the improved tool enabled the automatic determination
of all minimal reasons explaining the contradiction in the
running example as discussed in Example 4. But this time,
only 18 rather than 9408 assignments were sufficient for this
purpose. As the solving engine had to be invoked respectively
fewer times, this led to a significant reduction in the required
run-time: Instead of more than 8 hours, the reasons have been
determined in just a few seconds. By this, the designer is
clearly aided during the debugging of his/her model.

In order to further evaluate the optimized solution, the
Eclipse plugin has also been tested with the well-known
models from the USE package [5]. For this purpose the
CivStat model has been edited nine times such that all nine
models became inconsistent and different. Furthermore, the
(inconsistent) CarRental2 model has been considered which is
a variation of the (consistent) CarRental (both are provided by
the USE package as well).

Table II summarizes the obtained results. The first columns
provide the name of the respective models followed by their
number of classes (|C|), their number of relations (|R|),
their number of invariants (|I|), their maximal number of
considered object instantiations per class (|O|), the number
of detected reasons (#R), the sizes of the detected reasons
(Sizes), the number of solver calls (#solve), and the over-all
run-time. Note that the number of solver calls includes all calls
with an UNSAT as result and thus, is not equal to the number
of assignments which have to be analyzed in order to get all
minimal reasons.

The numbers clearly show that the optimization of the pro-
posed solution can not only determine all minimal reason but
also does this in feasible run-time for the considered models.
The detection of one and more reasons for all considered
models does never require more than some seconds.

VI. CONCLUSION

In this contribution, we considered the automatic determina-
tion of reasons explaining the contradiction in an inconsistent
UML/OCL model. Most of the solutions for the validation and
verification of UML/OCL descriptions allow efficient checks
which show the existence of an inconsistency. But after that,
the designer is usually left alone to identify the reasons for
it. Previously proposed solutions for debugging of UML/OCL
models only provided either a single reason or all contradictory
UML/OCL descriptions at once.

We proposed an alternative which determines all minimal
reasons and additionally groups them according to their con-
tradictions. For this purpose, all possible combinations of
UML/OCL constraints are analyzed. It has been shown that

a naive implementation of the proposed idea provides the
desired result but requires a significant amount of run-time.
Accordingly, an optimization has additionally been introduced
addressing this issue. The resulting solution is capable of
efficiently providing the designer with a set of minimal reasons
which aids him/her during the debugging of inconsistent
UML/OCL models.
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