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Abstract—New prospects in several emerging technologies
such as quantum computation and certain aspects of low-power
design motivated an intensive consideration of the design of
reversible circuits. Since most of the existing synthesis approaches
usually generate circuits of high costs, post-synthesis optimization
is frequently applied. Here, the reduction of control line connec-
tions is a major focus as they are a main reason for high quantum
costs in the respective reversible circuits. Previous approaches
aimed for exploiting so-called common control lines for this
purpose. However, while these solutions indeed lead to substantial
improvements in the costs, they inherit some drawbacks and
restrictions.

In this work, we propose an alternative approach for the
reduction of common control lines in reversible circuits, which
(1) is based in the concepts of previously proposed solutions,
but (2) combines them in a new fashion. This enables us to
achieve the same or even better improvements, while – at the
same time – overcome their drawbacks. Experimental evaluations
confirm these benefits, i.e. significant improvements compared to
the previous methods can often be achieved without the need to
deal with their drawbacks.

Keywords—Reversible circuits, synthesis, optimization, quantum
costs, common control lines

I. INTRODUCTION

In the recent years, new prospects in several emerging
technologies came up which motivated a detailed consideration
of reversible logic. Here functionality is specified and, eventu-
ally, realized in a bijective fashion, i.e. a unique input/output
mapping is enforced. In particular, applications in the do-
main of quantum computation and certain aspects of low-
power design may profit from the corresponding functional
descriptions. More precisely, quantum computation [1] offers
a new way of computing which allows for speed-up in solving
many important problems such as database search [2] or
factorization [3]. This is because, instead of bits, qubits are
used to represent information during a quantum computation.
Besides the conventional values (i.e. logical 1 and logical 0),
qubits can assume a superposition of state 0 and state 1. As a
result, a set of qubits can represent multiple states at the same
time enabling enormous computational speed-ups. Reversible
circuits play a significant role in this area, since each quantum
gate operation is inherently reversible.

Low-power design may, in the future, profit from reversible
logic because of observations by Landauer [4]. He proved that,
during a computation, each information loss causes a certain
amount of power dissipation. Now, most of the conventional,
i.e. irreversible, circuits available thus far frequently lose infor-
mation (e.g. when performing the basic AND operation, two

input bits are mapped to a output bit, i.e. one bit of information
is lost). These losses lead to a frequent power dissipation
which, with increasing miniaturization, might become crucial
in the near future. Entirely relying on reversible computation
never leads to an information loss and, hence, may avoid
the corresponding power dissipation. Moreover, Bennett [5]
showed that any circuit which aims for a (theoretical) power
dissipation of zero, indeed has to be reversible. Recently,
this has been experimentally confirmed in [6]. Reversible
logic has also found applications in the design of low power
encoders [7].

Motivated by the reasons cited above, researchers started
working towards the development of (automatic) design meth-
ods for such circuits. In particular, the synthesis of reversible
circuits has become an intensely studied topic in the last
decade. Many synthesis approaches exploiting e.g. permuta-
tions [8], [9], truth-tables [10]–[12], decision diagrams [13],
or exclusive-sum-of-products (ESOP) [14]–[16] have been
proposed. In most of the cases (except for very small circuits),
these synthesis approaches do not generate optimal results
with respect to the circuit cost. Therefore, post-synthesis
optimization is frequently applied to further reduce the costs
of a circuit.

The reduction of control line connections is thereby a
major focus. This is caused by the fact that gates with many
control lines are a main reason for high quantum costs in the
respective reversible circuits – reducing their amount allows
for substantial reductions. Hence, researchers particularly tried
to make use of so-called common control lines, i.e. equal or
similar control line connections in neighboring gates. They
offer the possibility of sharing which allows for a significant
reduction of control lines. Accordingly, several approaches
exploiting common control lines have recently been proposed.
For example, in [17] common control lines are shared by
adding additional signal lines to the circuit. The optimization
approach from [18] exploits so-called multiple target lines,
i.e. basically merges reversible gates with identical control
lines to a single one. The respective ideas are reviewed in
somewhat more detail later in Section III.

However, although these optimization approaches indeed
lead to substantial improvements in the costs, they come
with some drawbacks and restrictions: Either an addition of
circuit lines or a restriction to a rather small set of common
control lines connections to be optimized. Hence, they do
not fully unleash the potential of exploiting common control
connections in reversible circuits.



In this work, we propose an alternative scheme for the
optimization of reversible circuits. We propose a post-synthesis
optimization technique which exploits the characteristics of
reversible circuits – in particular common control connections
– based on the concepts presented in [17], [18]. But we
combine these techniques in a new fashion which allows for
achieving the same or even better improvements without the
need to deal with their drawbacks.

Experimental evaluations confirm that, applying the pro-
posed approach, significant improvements compared to the
methods in [17] and [18] can often be observed. At the same
time, we overcome their drawbacks.

The remainder of this paper is structured as follows.
Section II provides the background on reversible logic. A
brief review of the approaches proposed in [17] and [18] is
given in Section III which eventually leads to a sketch of the
general idea of our solution. Afterwards, the detailed algorithm
is described in Section IV. Section V summarizes the results
obtained by our experimental evaluation and, finally, the paper
is concluded in Section VI.

II. BACKGROUND

To keep the paper self-contained, this section provides
some background on reversible circuits. For a more detailed
introduction, readers are referred to [1].

Definition 1. A multiple-output Boolean function Bn → Bn is
said to be reversible if and only if it maps each input pattern
to a unique output pattern.

A reversible function can be realized by a reversible circuit,
G = g1, g2, . . . gk, where each gi is a reversible gate. Many
reversible gates have been proposed in the past [1]. Among
them, the Toffoli gate [19] is widely used and also considered
in this paper.

Definition 2. Given a set of Boolean variables X =
{x0, x1, . . . , xn−1}, a multiple-control Toffoli gate g(C; t) is
a tuple of a possibly empty set C ⊂ X of control lines and a
single target line t ∈ X \C. The Toffoli gate inverts the value
on the target line t if and only if all the control lines are set
to 1 or if C = ∅.

In case of |C| = 0 and |C| = 1, the Toffoli gate g(C; t) is
called NOT gate and CNOT gate, respectively.

Example 1. Fig. 1a shows a Toffoli gate with two control
connections (denoted by •) and a single target connection
(denoted by ⊕). A circuit composed of several Toffoli gates
is shown in Fig. 1b.

The costs of a reversible circuit are commonly measured
using the quantum cost metric as originally introduced in [20]
and refined in later work. The quantum cost of a circuit is the
sum of the quantum costs of the individual reversible gates.

For reversible circuits, the quantum costs depend on the
number of control connections i.e. the control size of the
each gate. For example, a Toffoli gate with no or one control
connection has quantum costs of one, whereas, a Toffoli gate
with two control connections has costs of five. The detailed
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Fig. 1: Toffoli gate and Toffoli circuit

quantum costs for remaining reversible gates can be found
in [20], [21].

In many cases, the objective of synthesizing a reversible
circuit involves the realization of an irreversible Boolean func-
tion. This requires the irreversible function to be embedded
into a reversible one [22] using additional constant inputs and
garbage outputs defined as follows:

Definition 3. A constant input to a reversible circuit is one
that has a fix input value (either 0 or 1).

Definition 4. A garbage output from a reversible circuit is one
which is don’t-care for all possible input conditions.

III. MOTIVATION AND GENERAL IDEA

The optimization of reversible circuits has significantly
been considered in the recent past. A major focus has been
put on the reduction of control line connections as they con-
stitute as main cause for high quantum costs in the respective
reversible circuits. A frequently applied approach was thereby
the reduction of common control lines, i.e. equal or similar
control line connections in neighboring gates. They frequently
occur in reversible circuits and, hence, lead to redundant com-
putations of the respective factors1. Optimization approaches
addressing this objective in the past allowed for substantial
reductions in common control line connections and, hence,
significantly reduced costs. At the same time, they often inherit
drawbacks and restrictions which needed to be traded-off and
considered, respectively.

In this section, two prominent optimization approaches pre-
sented recently (namely in [17] and [18]) are briefly reviewed
and their drawbacks and restrictions are discussed. Afterwards,
the general idea of a new solution is proposed which combines
the core ideas of these previously proposed approaches in a
clever fashion. By this, the discussed drawbacks and restric-
tions are addressed and, in fact, reversible circuits with even
smaller costs than those obtained before are generated.

1The terminology “factor” has frequently been used here since
the consideration of an equal or similar control set C for
gates gi(Ci, ti), gi+1(Ci+1, ti+1), . . . with Ci ∩ Ci+1 ∩ · · · = C
is essentially considering a factor of the respective AND function for these
control lines.
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Fig. 3: Exploiting additional circuit lines

A. Exploiting Additional Circuit Lines

In [17], the authors proposed one alternative to reduce
common control lines in reversible circuits. The main idea
was to extend the respective reversible circuits by additional
circuit lines which are used to buffer the respective value of
a factor (obtained by the common control lines) to be re-used
at a later time. More precisely, they introduced one or more
so-called helper lines whose (1) inputs are set to a constant
value 0 and (2) whose output is used as a garbage output.
This provided a storing entity and allowed for significantly
reducing redundant control connections. The idea is clarified
in the following example.

Example 2. Consider the reversible circuit depicted in Fig. 2.
The gates in this cascade have a common control factor
F = {x0, x1, x2} (highlighted by a dashed rectangle). Hence,
the cost of this circuit can be reduced as shown in Fig. 3 by
adding an additional line h (at the bottom of the circuit) as
well as the gates g(F, h) before and after the cascade. This
leads to additional quantum cost of 2×14 = 28. However, the
factored gates can reuse the result of F leading to a reduction
of two control lines per gate. The removed control lines are
shown as dashed white circles in Fig. 3. In total this reduces
the quantum cost from 54 to 39.

B. Exploiting Multiple Target Lines

A complementary approach to reduce common con-
trol lines has been proposed in [18]. Here, the observa-
tion is exploited that many reversible circuits are com-
posed of exactly the same control line connections and
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Fig. 4: Exploiting multiple target lines

differ only in their target lines2. That is, cascades such
as gi(Ci, ti), gi+1(Ci+1, ti+1), . . . with Ci = Cj , ti /∈ Cj ,
and ti+1 /∈ Ci frequently occur. Instead of considering each
of those gates (and its costs) solely, an alternative struc-
ture has been proposed, in which only one of those gates
(e.g. gi(Ci, ti)) is applied first. Afterwards, the next gate
(with the different target line) is realized by placing two
further gates of the form g({ti}, ti+1) before and after gi.
By this, the switching activity of target line ti (triggered by
the common control lines Ci) is reused: If the value of the
target line ti switches, then also the target line ti+1 switches.
Otherwise, all values remain unchanged. In a similar fashion,
this is conducted for all further gates. This exactly realizes
the functionality of gi(Ci, ti), gj(Ci+1, ti+1), . . . . Again, the
following example clarifies the idea.

Example 3. Reconsider the reversible circuit depicted in
Fig. 2. The gates g2 and g3 in this cascade have exactly same
control line connections {x0, x1, x2, x3} with different target
lines. Due to that, the switching activity of the target line of
the gate g2 is reused leading to the complete removal of all
the control connections from gate g3. The removed control
connections are shown by dashed white circles in Fig. 4.
Hence, the cost of this circuit can be reduced as shown in
Fig. 4 from 54 to 36 by replacing gate g3 with the CNOT
gates g′3 before and after gate g2 in the cascade.

C. Discussion and General Idea

The optimization approaches reviewed above complemen-
tary address the objective of reducing the amount of common
control connections and, by this, the resulting quantum costs of
many reversible circuits. In fact, the experimental evaluations
summarized in [17] and [18] unveiled reductions in the quan-
tum costs of up to 70% and 66%, respectively. However, the
proposed solutions come with some drawbacks and restrictions
and do not fully unleash the potential of exploiting common
control connections. More precisely:

• The solution presented in [17] and reviewed in Sec-
tion III-A requires additional circuit lines. This is a
serious drawback since the number of circuit lines
directly correspond to the number of qubits in respec-
tive quantum circuit applications. As qubits are usually

2Accordingly, such structures are considered as a single gate with multiple
target lines in [18].



considered a very limited resource, the designer must
trade-off whether possible reductions in the quantum
costs pay off against the increase in the number of
qubits3.

• The solution presented in [18] and reviewed in Sec-
tion III-B is restricted to a rather small set of common
control lines connections to be optimized. In fact, this
solution can only be applied if an exact match between
common control lines can be detected. While this is
particularly suited for circuits obtained by synthesis
schemes based on so-called ESOP descriptions (as
applied e.g. in [14]–[16]), its effect is significantly
smaller on other circuits. In fact, the full potential of
common control lines is not used and further possible
reductions remain unexploited.

In this work, we propose an alternative scheme for the
optimization of reversible circuits. We re-use the core ideas
and of the previously proposed solutions, but combine them
in a new fashion which allows for (1) avoiding the drawbacks
and shortcomings discussed above and (2) leads to even more
significant improvements.

The general idea is as follows: As in [17], we consider
cascades of reversible gates with common (not necessarily
equal) control connections; but avoid buffering the respective
factors by using an additional line. Instead, we keep the first
gate of the cascade unchanged and, as in [18], exploit the
switching activity of its target line in order to realize the
functionality of the remaining gates (by adding cheaper gates
before and after it). But, in contrast to [18], we allow this
also for subsets of common control lines. Then, further control
lines of an original gate (not represented by the switching
activity of the target line) are simply added to the newly
introduced gates. More precisely, we consider cascades of the
form Gd = gi(Ci; ti), gi+1(Ci+1; ti+1), . . . , gi+k(Ci+k, ti+k)
with a common control factor F = (Ci∩Ci+1∩· · ·∩Ci+k) and
no overlapping target lines, i.e. {ti}∩{ti+1}∩· · ·∩{ti+k} = ∅.
Those cascades are substituted with an alternative cascade
where

• the first gate of the cascade gi(Ci; ti) with control
connections Ci and target connection ti remains un-
changed
and,

• all remaining gates gj(Cj ; tj) ∈ {gi+1, . . . , gi+k}
are substituted by Toffoli gates of the form
g({ti} ∪ (Cj \ F ); tj) which are placed before and
after the first gate gi.

3A more detailed study on the trade-off between the number of circuit lines
and the quantum costs has been conducted in [23].

x0

g′3

x1

g′2

x2

g1

x3

g′2

x4

g′3

x5

x6

x7

Fig. 5: Exploiting target line activity

Example 4. Reconsider the reversible circuit shown in Fig. 2.
The first gate g1 and second gate g2 in the circuit share the
control connections {x0, x1, x2}. Now, we keep the gate g1
and substitute gate g2 by adding g′2(C

′;x6) before and after
gate g1, where, C ′ = {(C1 ∩ C2) ∪ x5} and C1 and C2 are
the control sets of gate g1 and g2, respectively. In a similar
fashion, we reduce the control connections of the last gate g3.
This leads to a circuit shown in Fig. 5 with a reduction in
quantum cost from 54 to 26.

Using the above idea, an algorithm for optimizing the re-
versible circuits can be formulated. The next section describes
the detailed steps of the algorithm.

IV. ALGORITHM

In this section, we now propose an algorithm to reduce the
quantum cost of a given reversible circuit based on the idea
presented in the previous section. More precisely, we show
how to determine the common set of controls from multiple-
control Toffoli gates in the circuit. Afterwards, a suitable
example illustrates its application.

Algorithm [Common Control Reduction] Consider a
reversible circuit G.

1) Traverse all the gates of G from left to right.
2) Extract a sub-circuit Gd consisting of gates

Gd = gi, gi+1, gi+2, . . . , gi+k such that
(
⋂

gj(Cj ;tj)∈Gd
tj) = ∅. If no further sub-circuit

is left to be considered, terminate.
3) Check whether there exists a common set of con-

trol connections, i.e. whether (
⋂

gj(Cj ;tj)∈Gd
Cj) 6= ∅

holds. If this is not the case, continue with another
cascade in Step 2.

4) Compute the set of common control lines
F = (

⋂
gj(Cj ;tj)∈Gd

Cj).
5) Traverse all gates gj(Cj ; tj) ∈ gi+1, gi+2, . . . , gi+k

and
a) remove each gj as well as
b) add a new gate g({ti} ∪ (Cj \F ); tj) before

and after gate gi.
6) Calculate the quantum cost (QC) of the resulting new

circuit G′d.
7) If (QC(G′d) < QC(Gd)), then replace Gd with G′d.

Otherwise, keep the original cascade Gd.
8) Continue in step 2.
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Example 5. Consider the circuit shown in Fig. 6a. Apply-
ing the steps introduced above, the possible sub-circuits are
determined (marked by the dashed rectangle) and then, the
functionally equivalent circuits are substituted leading to the
circuit shown in Fig. 6b. In this case, the costs of the circuit
are reduced from 88 to 68.

V. EXPERIMENTAL EVALUATION

This section provides a summary of the experimental
results obtained by the proposed optimization technique.
The method described above has been implemented in C++
and evaluated using circuits from the RevLib benchmark li-
brary [24]. All experiments have been conducted on an Intel
Core i5-2600 with 8 GB of memory.

During the experimental evaluations, circuits optimized by
the proposed approach have been compared to the results

• available at the RevLib benchmark library [24],

• generated by the approach proposed in [17] which
exploits helper lines in order to buffer the value of
common control lines as reviewed in Section III-A4,
and

• generated by the approach proposed in [18] which
exploits multiple target lines as reviewed in Sec-
tion III-B.

The results are summarized in Table I. The first two
columns give the name of the circuit and the number of
circuit lines (#Lines), respectively. In the following columns,
the quantum costs for the previously proposed approaches

4Here, two comparisons (with one and with two helper lines, respectively)
have been conducted.

(i.e. from RevLib, from [17] with 1 helper line and two helper
lines, as well as from [18]) are reported. Finally, the last
columns give the quantum costs obtained by the proposed
approach as well as the percentage improvement in quantum
costs with respect to the previously proposed solutions. Note
that, for some circuits, no results were available in [18]; this
is denoted by “–” in Table I. All results have been obtained in
negligible run-time (i.e. just a few seconds).

The results confirm the benefits of the proposed opti-
mization approach: For all considered circuits, substantial
improvements with respect to the costs of the original circuit
(taken from RevLib) are obtained. Moreover, even with respect
to the circuits taken from [17], [18] – which have already been
optimized – very impressive further reductions are observed.
In the best cases (i.e. table3), the improvements in quantum
costs can further be reduced by just over 70%, 60%, and 20%
compared to the solutions from [17] with 1 helper line, [17]
with two helper lines, and [18], respectively. In contrast,
in some cases (e.g. misex1, C17, cu, dc2, root, sqr6,x2),
the quantum cost of the optimized circuit produced by the
proposed method is larger than that of [17]. But considering
the significant potential for the other circuits, the proposed
approach indeed turns out to be beneficial.

Besides that, the solution proposed here completely over-
comes the drawbacks of previously proposed solution. This
particularly holds with respect to the method from [17] which
relies on adding further lines to the circuit. While this generally
allows for an easier cost reduction (as e.g. also observed
in [23]), it is a serious drawback for quantum computation.
Caused by the fact that the number of circuit lines corresponds
to the number of qubits, circuit lines are usually assumed a
highly limited resource. The solution proposed here allows
for the significant reductions reported above without adding
any single circuit line. Compared to [18], the potential of
reducing the amount of common control lines is much better
exploited. While the approach in [18] is restricted to exact
matches between common control lines, our approach also
optimizes subsets of common control lines. This enables the
further reductions as reported in Table I.

VI. CONCLUSION

In this work, we proposed an alternative approach for
the reduction of common control lines in reversible circuits
and, hence, an improvement for quantum cost reduction. The
general idea is thereby similar to the methods previously
applied in [17], [18]. We combine the methods proposed earlier
in a new fashion which enables us to achieve the same or
even better improvements. At the same time, drawbacks of the
approaches from [17], [18], i.e. the need for additional circuit
lines as well as the restricted applicability, respectively, are
avoided. Experimental results confirmed these benefits.

Future work focuses on transferring the findings of this
work to other gate libraries, e.g. gates additionally composed
of negative control lines or based on the library introduced
in [25]. Besides that, the consideration of the common control
line exploitation as introduced here directly for synthesis
methods such as [10], [11], [14] is left for future work.



TABLE I: Experimental evaluation

QUANTUM COSTS OBTAINED BY PREVIOUS APPROACHES QUANTUM COSTS OBTAINED BY THE PROPOSED APPROACH
REVLIB [24] SECT. III-A [17] SECT. III-B [18] IMPROVEMENTS W.R.T.

CIRCUIT #LINES (w/ 1 helper line) (w/ 2 helper lines) RevLib [17] W/ 1 [17] W/ 2 [18]
table3 209 28 97537 76317 53496 26903 20467 79% 73% 62% 24%
C7552 119 21 1458 1036 813 – 339 77% 67% 58% –
apex4 103 28 222208 183087 157792 69846 63272 72% 65% 60% 9%
in0 162 26 23016 15673 11777 9410 7022 69% 55% 40% 25%
ex1010 155 20 165244 137510 120110 61646 50562 69% 63% 58% 18%
decod 137 21 1458 1036 813 510 448 69% 57% 45% 12%
misex3 180 28 139047 125578 113218 56627 48559 65% 61% 57% 14%
misex3c 181 28 132292 119233 108156 56456 47546 64% 60% 56% 16%
sao2 199 14 4858 3963 2378 2274 1876 61% 53% 21% 18%
inc 170 16 1823 1271 947 900 730 60% 43% 23% 19%
apla 107 22 3384 2452 1900 1620 1430 58% 42% 25% 12%
pm1 192 14 324 216 155 – 137 58% 37% 12% –
cm42a 125 14 324 216 155 177 139 57% 36% 10% 21%
dist 144 13 5762 4000 3179 3051 2523 56% 37% 21% 17%
misex1 178 15 859 578 427 436 428 50% 26% 0% 2%
dc2 222 15 1720 1188 923 – 930 46% 22% -1% –
dk17 224 21 1601 1227 700 – 872 46% 29% -25% –
f2 158 8 209 164 117 125 115 45% 30% 2% 8%
root 197 13 2645 1795 1344 – 1474 44% 18% -10% –
cm163a 213 29 739 650 522 561 421 43% 35% 19% 25%
wim 220 11 199 145 120 – 114 43% 21% 5% –
mlp4 184 16 3446 2577 2292 – 2152 38% 16% 6% –
sqr6 204 18 957 690 596 – 607 37% 12% -2% –
cu 219 25 1140 864 426 950 804 29% 7% -89% 15%
x2 223 17 575 415 370 509 429 25% -3% -16% 16%
C17 204 7 90 65 50 78 68 24% -5% -36% 13%
radd 250 13 587 443 408 – 541 8% -22% -33% –
pcler8 190 21 313 202 159 – 305 3% -51% -92% –

All results have been obtained in negligible run-time (i.e. just a few seconds).
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