
Extracting Frame Conditions
from Operation Contracts

Philipp Niemann Frank Hilken Martin Gogolla Robert Wille
Department of Computer Science, University of Bremen, 28359 Bremen, Germany

e-mail: {pniemann,fhilken,gogolla,rwille}@informatik.uni-bremen.de

Abstract—In behavioral modeling, operation contracts defined
by pre- and postconditions describe the effects on model prop-
erties (i.e., model elements such as attributes, links, etc.) that
are enforced by an operation. However, it is usually omitted
which model properties should not be modified. Defining so-called
frame conditions can fill this gap. But, thus far, these have to
be defined manually – a time-consuming task. In this work, we
propose a methodology which aims to support the modeler in the
definition of the frame conditions by extracting suggestions based
on an automatic analysis of operation contracts provided in OCL.
More precisely, the proposed approach performs a structural
analysis of pre- and postconditions together with invariants
in order to categorize which class and object properties are
clearly “variable” or “unaffected” – and which are “ambiguous”,
i.e. indeed require a more thorough inspection. The developed
concepts are implemented as a prototype and evaluated by means
of several example models known from the literature.

I. INTRODUCTION

The modeling of behavior plays an important role in modern
system development. Being able to simulate models and to
detect errors early in the development significanly reduces the
costs to correct them. The Unified Modeling Language (UML)
together with the Object Constraint Language (OCL) offers
a broad spectrum of methods to describe behavior, e.g., by
means of activity diagrams or operation contracts using pre-
and postconditions.

In this work, we concentrate on the description of behavior
in class diagrams using operation contracts defined by OCL
pre- and postconditions. We propose a solution to a problem
that occurs when verifying such models. Pre- and postcon-
ditions describe the effects of an operation in a declarative
way, but – by design – do not pose an implementation. As
a result, verification engines have to make decisions about
which model properties may be changed in order to satisfy
the operation contract. However, this decision is not trivial
and cannot automatically be inferred from the constraints
themselves (Section II reviews this problem in more detail).

This problem of determining the precise behavior from a
declarative operation contract is called the frame problem. The
pre- and postconditions only focus on the desired effects of an
operation and typically omit those parts of the model that may
not change. However, this does not mean that they are indeed
unaffected, e.g., when implicit dependencies through invariants
or model constraints require changes. Several solutions (to
be discussed in detail in Section II as well) exist to enable
more precise definitions of the affected model properties by
manually describing all elements that may be affected by the

operation. But none of the approaches assists the modeler
in extracting the required information from the model. Thus,
the ability to precisely describe the operations comes with a
substantial cost.

As a solution, we propose a methodology1 which analyzes
operation contracts of a model and, based on that, categorizes
all model properties into three categories: variable proper-
ties that are definitely affected by the operation; unaffected
properties that are not related to the operation or shall not
change; and ambiguous properties that cannot automatically
be determined due to multiple possible interpretations of the
OCL expressions. The goal of this categorization is to assist
the modeler in precisely describing operations that behave as
intended and are ready to be used for verification purposes. In
fact, having to consider only a (small) subset of model prop-
erties (namely those categorized as ambiguous) significantly
reduces the time and effort required for this process.

As a result, our approach supports the modeler by an
automatic determination of those properties that are relevant
to the operation – based on the their occurrences in pre-
and postconditions as well as implicit relation to invariants.
The approach has been implemented in a prototype and
evaluated by means of several example models known from
the literature. Our evaluation clearly confirms the potential of
the proposed methodology.

The rest of the paper is structured as follows. In Section II
the considered problem is reviewed and discussed with related
work. Section III presents the methodology to categorize
model properties and, in Section IV, the methodology is
evaluated by means of several example models. The paper
closes with a conclusion and a presentation of future work in
Section V.

II. BACKGROUND

In this section, the frame problem of behavioral models in
terms of UML/OCL class diagrams is discussed and previously
proposed solutions are reviewed. This provides the necessary
background needed in order to keep this work self-contained
and motivates the methodology introduced in this paper.

1Preliminary ideas of the proposed methodology have already been sketched
before in [1]. In order to keep the present paper self-contained, we review the
motivation and formulation of the considered problem as well as the ideas
sketched before. But beyond that, we provide for the first time (1) a detailed
algorithmic description and implementation of the proposed methodology as
well as (2) an evaluation of the obtained results.

Speaker
volume: Integer
file: String
setVolume(volume: Integer)

Microphone
enabled: Boolean

CallingApp
inCall: Boolean
placeCall(number: String)
talk()
closeCall()

MusicApp
songs: Sequence(String)
currentSong: Integer
playNextSong()

MessagingApp
enabled: Boolean
sendMessage(msg: Message)
deleteReadMessages()
emptyTrash()

Message
read: Boolean

Phone
credit: Integer
hasNewMessages: Boolean
topup(amount: Integer)

context CallingApp::placeCall(number: String)
pre: not inCall and phone.credit >= 10
post: inCall and phone.credit = phone.credit@pre - 5

context CallingApp::talk()
pre: inCall and phone.credit >= 10
post: phone.credit = phone.credit@pre - 10

context CallingApp::closeCall()
pre: inCall
post: not inCall

context MessagingApp::sendMessage(msg: Message)
pre: enabled and phone.credit >= 5
post: phone.credit = phone.credit@pre - 5

context MessagingApp::emptyTrash()
pre: trash->size() > 0
post: trash->isEmpty()
post: Message.allInstances()->excludesAll(self.trash@pre)

context MessagingApp::deleteReadMessages()
post: trash = trash@pre->union(inbox@pre->select(m|m.read))

context MusicApp::playNextSong()
pre: currentSong < songs->size() - 1
post: currentSong = currentSong@pre + 1
post: phone.speaker.file = songs->at(currentSong)

inv microOnWhenInCall: enabled = phone.callingapp.inCall

inv inboxAlert: hasNewMessages = MessagingApp.allInstances()
->exists(mApp | mApp.inbox->exists(m | m.read = false))

context Phone::topup(amount: Integer)
pre: credit >= 0
post: self.credit = self.credit@pre + amount

inv eitherInboxOrTrash: inbox = null or trash = null

context Speaker::setVolume(volume: Integer)
pre: volume >= 0 and volume <= 100
post: self.volume = volume

inbox trash

Figure 1. UML/OCL model of a smartphone

A. Frame Problem
To demonstrate existing problems with declarative behavior

definitions in UML/OCL and to have a baseline for presenting
the proposed methodology, we use the model of a small,
modular smartphone depicted in Fig. 1. The central feature of
the class diagram is the Phone, having hardware attached to it
(on the left-hand-side of the figure), namely a Speaker and
a Microphone. Several applications using the hardware are
defined: a CallingApp handles phone calls; a MusicApp
handles played music; and a MessagingApp organizes mes-
sages. Invariants are in place to ensure valid structures.

A user interacts with the phone by invoking operations,
whose behavior is defined by OCL pre- and postconditions.
These OCL expressions follow the principle design by con-
tract [2] and state constraints that have to be satisfied before
the operation is called (preconditions) and after the operation
has terminated (postconditions). However, they do not pose
an implementation. This option is provided in UML/OCL in
order to be able to define abstract model definitions. But
this creates problems when trying to determine the effects
of such definitions. In fact, pre- and postconditions are not
deterministic and most likely allow for multiple possible post-
states – many of which the modeler had not intended.

Example 1. To give an example for multiple post-states,
consider the initial system state of the running example shown
at the top of Fig. 2. Calling the operation playNextSong()
on the MusicApp object may, besides many others, result in
either of the system states below the initial one. In the system
state in the center of Fig. 2, the currently available speaker
is now playing the next song – as it probably was intended.
However, the postconditions also allow the system state at the
bottom: here, the phone gets a completely new speaker that is
playing the next song from an extended (!) songlist, but has
a different volume set. Even worse, the postconditions of the
operation also allow for changing the phone’s current credit.

In order to avoid problems like that, the behavior of
operations has to be defined such that unintended changes
are explicitly prohibited. This problem is generally called the

:Speaker
volume=10
file=bach.mp3

:Phone
credit=10
hNM=false

:MusicApp
songs={bach.mp3, mozart.mp3}
currentSong=1

:Speaker
volume=10
file=mozart.mp3

:Phone
credit=10
hNM=false

:MusicApp
songs={bach.mp3, mozart.mp3}
currentSong=2

:Speaker
volume=10
file=bach.mp3

:Speaker
volume=5
file=haydn.mp3

:Phone
credit=7
hNM=false

:MusicApp
songs={bach.mp3, haydn.mp3,

mozart.mp3}
currentSong=2

p
l
a
y
N
e
x
t
S
o
n
g
(
)

Figure 2. Valid execution scenarios for the operation playNextSong()

frame problem [3] and is of particular interest for the verifi-
cation of behavioral models. In this context, one has to know
exactly which properties may change and which are unaffected
during an operation call. Otherwise, unintended side effects, as
illustrated in Ex. 1, make a meaningful verification impossible.
For this purpose, dedicated constraints – so called frame
conditions – are employed which explicitly describe model
properties that may change. They provide information about
(a) class properties, i.e., information regarding the existence
of class instances which is used to handle object creation
and destruction (OCL: Class::allInstances()), and
(b) about object properties, i.e., defining for each object which
attributes and links may change.

There are several approaches that address the frame problem
by trying to infer the frame conditions from the model. One
intuitive approach is to generally interpret the behavior of
operations with the additional informal statement “and nothing
else changes”. Then, properties that are not mentioned in the
postconditions are not meant to change. Recalling Example 1,
the phone’s current credit is not meant to change, because it is
not mentioned in the postconditions. However, this still leaves
the inaccuracies that are introduced by the OCL expressions
themselves. Additionally, it is not clear how interdependencies
to invariants are to be handled.

Example 2. The operation deleteReadMessages() of
the class MessagingApp moves all read messages from the
inbox to the trash. To do so, the postcondition defines
all read messages to be linked to the application via the
trash property. Now, some of those messages might have
been connected to the application via the inbox property,
which the operation does not state to be removed. However,
the operation is still sufficiently defined, because of the in-
variant eitherInboxOrTrash, which implicitly forces the
removal of the inbox links. These interdependencies between
postconditions and invariants are not at all intuitive and
the example makes clear that the clause “and nothing else
changes” is not suitable to clearly model the behavior of an
operation.

On the other hand, it is also infeasible to define all frame
conditions manually. This would result in a complete definition
of the operation’s behavior – including explicitly stating all
properties that may change and those that do not. This is
obviously very time-consuming and not maintainable. When-
ever the model is changed, all operations would have to be
checked and adapted to the changes. Therefore, the solution
to the frame problem is generally to define which properties
an operation is supposed to change and to infer the frame
conditions from the rest of the model. Thus, the modeler only
has to decide which model properties are meant to change.

B. Related Work

The definition of the frame problem originates from Artifi-
cial Intelligence (AI) [4]. The term is used there to describe
the problem of deducing the implications that follow a certain
action an AI is executing. A typical example is the considera-
tion whether the wall colors of a room change – given that an
action is performed in it. Being in the scope of the real world,
indefinitely many such considerations exist and the question
is how to efficiently find the relevant ones2. In contrast, the
advantage of abstract models such as UML/OCL models is the
abstraction from the real world, heavily reducing the elements
to be considered to a well-defined, finite subset.

In OCL there are several ways to describe frame conditions.
Unlike some other declarative languages, OCL operation con-
tracts currently do not have a special construct to list model
properties that are allowed to change during the operation call.
This leads to the situation that the frame conditions have to
be entirely defined as postconditions. As discussed above, this
is not feasible.

To overcome this issue, extensions for OCL have been
proposed to support the modeler in explicitly defining the
model properties that are affected by the operation. In [6],
invariability clauses have been introduced for this purpose.
Along the pre- and postconditions, these define which class
and object properties may change during the operation call
using the new keywords modifies (only).

Example 3. For the operation playNextSong() from Ex-
ample 1, two invariability clauses have to be added in order to
precisely define the intended changes of the operation, namely

2A nice little anecdote and detailed definition of the frame problem in
artificial intelligence can be found in [5].

that currentSong is incremented and the attribute file
of the speaker changes. To do so, the operation definition from
Fig. 1 is extended with the following invariability clauses:

in MusicApp modifies only: self::currentSong
in Speaker modifies only: phone.speaker::file

The clauses consist of the optional in part defining the
context, followed by the keywords modifies only (the
keyword only forbids object creation and destruction) and,
finally, a list of scope-terms defining which properties are
variable and for which set of objects, i.e., in which scope.

In contrast, the authors in [7] introduced the OCL primitive
modifiedOnly() – an OCL operation to restrict the set of
variable model properties from within the postconditions.

Example 4. To enhance the operation playNextSong()
(c.f. Example 3) with the modifiedOnly() expression, an
additional postcondition is added:

post: Set{currentSong,
phone.speaker.file}->modifiedOnly()

The modifiedOnly() primitive has the following semantic:
It evaluates to true when only properties from the specified set
were found to be modified in the post-state of the operation.

The usage of the operation modifiedOnly() is very
similar to the invariability clauses. However, the incorporation
into the postcondition poses the advantage that they can be
used inside of conditional expressions. This allows for an even
more precise definition than using invariability clauses at the
operation level and may help for complex, conditional oper-
ations. However, interfering the appropriate frame conditions
becomes much more elaborate in such cases.

Many other languages using declarative descriptions have
built-in functionalities that allow to define the elements of the
model that are meant to change. In the Eiffel language [8],
the keyword modifies followed by a list of variables
is used to declare modifiable properties. Z [9] uses the Ξ
predicate for the same purpose and JML [10] has the anno-
tation @modifiable. VDM [11] and CML [12] offer two
keywords rd and wr to denote properties that may only be
read and properties that may be written, respectively. Another
solution is described in [13], where graph transformation rules
are extended to allow for the definition of frame conditions.

In [3], the authors give an overview on some more of
the existing solutions and reveal problems with them as well
as propose a solution. The problems evolve around complex
operations with conditionals and operation contracts with
disjunctions, both of which result in potentially defining too
many properties as modifiable. The proposed solution is to
bind the definition of modifiable elements to conditions as
well. This idea is already possible with the OCL primitive
modifiedOnly() [7] discussed above.

C. Considered Problem

The related work reviewed in the previous section provides
various description means that enable modelers to address
the frame problem by precisely describing the behavior of

operations. However, all these description means only pro-
vide a syntax and semantic for the definition of the frame
conditions. The problem how to extract these conditions for a
given model and all its operations remains open. To the best
of our knowledge, existing solutions for that rely on simple
“workarounds” only, i.e., methods based on:

• Manual definition, i.e., methods which completely rely on
a manual refinement of the model like, e.g., the approach
proposed in [14]. This leaves the burden solely on the
modeler who requires the respective design understanding
and, at the same time, is time-consuming. A noteable case
study that clearly illustrates the weaknesses and limits of
this strategy can be found in [15].

• Implicit definition, i.e., methods which simply apply naive
schemes such as enforcing all model properties which are
not restricted by originally provided constraints to remain
unchanged (and, hence, ignore implicit relations and side-
effects of the respective model properties). Approaches
such as proposed in [16] are representatives for this.

In order to avoid the problems caused by these unsatis-
factory solutions, improvements in the extraction of frame
conditions are required, i.e., solutions which neither leave the
burden of the extraction entirely on the modeler (avoiding the
introduction of another time-consuming and expensive design
step) nor are completely automatic (which, due to ambiguities
and inaccuracies, will not lead to satisfactory results anyway).
In this work, we are proposing such a solution.

III. EXTRACTION OF HYPOTHESES

In order to extract frame conditions for a particular op-
eration, all properties of the model have to be considered.
For each of them, it has to be determined which of these
properties shall be variable and, if so, for which objects,
i.e., for which scope. These questions may not always be
answered by means of automatic methods, due to the fact that
the models’ semantics, especially the OCL constraints, often
allow for several interpretations. Consequently, we propose
an automatic model analysis to provide preliminary answers
(called hypotheses in the following) by means of a distinction
between the following categories:

• Variable properties, i.e., properties that are evidently
meant to be modified by the respective operation since
this modification is (precisely) constrained.

• Unaffected properties, i.e., properties that are evidently
not meant to be affected by the respective operation.
These properties should simply keep their current value.

• Ambiguous properties, i.e., properties where it remains
unclear whether they are supposed to be modified by the
operation or not. Hence, they have to be inspected more
thoroughly by the modeler.

Already such a classification of the properties significantly
aids the modeler in the definition of frame conditions. In
fact, it filters out rather definite cases and pinpoints the
modeler to a subset of properties which require a more detailed
consideration.

In the remainder of this section, we describe how hypotheses
based on this classification can be extracted automatically from
a given model. To this end, a brief overview of the general

methodology is sketched, before details on the respective
implementations are provided. The quality of the hypotheses
obtained by the proposed approach has been assessed by
means of an evaluation whose results are later summarized
in Section IV.

A. General Methodology
As arbitrary changes are to be allowed for properties that are

defined to be in an operations’ frame of change, the classifi-
cation variable is only to be assigned when there is strong
evidence for it and precise information about the affected
objects is known. Following the “and nothing else changes”
scheme (cf. Section II-A), we, thus, restrict our attention to
properties that are mentioned within the contractual scope
of the current operation and exclude properties from our
consideration which are not at all involved in the respective
operation. For this purpose, we focus on the three sources that
define the scope of operations in contractual designs:

• Postconditions are the main source as they constrain the
post-state and, therefore, describe the changes performed
during an operation call in a direct manner.

• Invariants define further requirements that have to be
satisfied at all times, in particular also in the post-state
of the operation in addition to postconditions. To this
end, they may establish implicit dependencies to further
properties which are relevant for the frame conditions as
they require additional modifications in order to reach a
valid system state.

• Preconditions provide assured information about the pre-
state of an operation call, i.e., precise values or properties
that can be useful to clarify whether properties keep or
change their value during the operation call.

While focusing on these constraints already gives a good
approximation of the set of possibly relevant properties and
immediately excludes properties for which there is no clear
evidence for a relation to the operation, definitive decisions
on the properties’ variability cannot always be provided au-
tomatically. Instead we apply a heuristic approach to derive
hypotheses from the respective OCL constraints, i.e. tuples
composed of a property, a scope-term (describing the set of
objects on which the hypothesis applies), and a preliminary
classification (variable, ambiguous, or unaffected).

Example 5. Consider the operation setVolume() of the
Speaker class from our running example (cf. Fig. 1). Here,
we extract the hypothesis that setting the volume does not
affect which music is currently played (Speaker::file)
on the same speaker (self). This hypothesis is represented
by the tuple (Speaker::file, self, unaffected).

To extract these hypotheses, we apply the following flow:
1) Extract a basis set of hypotheses from the operation’s

postconditions.
2) Scan the model’s invariants for implicit dependencies on

further properties that might be affected and add them
as corresponding hypotheses. Repeat this step until no
further dependencies are found.

3) Try to use semantic information from the preconditions
to clarify ambiguities.

OperationCallExp

=

PropertyCallExp

trash

OperationCallExp

union

VariableExp

self

PropertyCallExp

trash@pre

IteratorExp

select

VariableExp

self

PropertyCallExp

inbox@pre

PropertyCallExp

read

VariableExp

self

VariableExp

m
VariableExp

m

source

source

argument

source

source

argument

source

source

body

sourceiterator

Figure 3. AST for the postcondition of deleteReadMessages()

To this end, we make use of Abstract Syntax Tree (AST) rep-
resentations of the constraints in order to found our approach
on a rigorous and unique basis. These ASTs are established
using the rigorousness of the meta-model for OCL expressions
(defined in [17, Chapter 8.3]) and can be easily obtained from
standard OCL parsers. The AST is a unique representation
of an OCL constraint and already provides a rough semantic
profile that will be used for extracting hypotheses.

Example 6. Consider the AST in Fig. 3 which represents the
postcondition of the operation deleteReadMessages()
of the MessagingApp class from our running example
(see Fig. 1). Here, each node and edge is labelled by the
corresponding expression type and relation name, respectively.
Note that the references to self are not explicitly provided in
the postcondition, but are added automatically by the parser.
The most important (expression) types for our purpose are
PropertyCallExp, which refers to an actual property of
the model, and OperationCallExp, IteratorExp, etc.,
which provide information about the dependency of these
properties. All of these expressions have a source that re-
fines their scope. OperationCallExps, IteratorExp,
etc. may additionally have a parameter (called argument,
body or alike).

In the following subsections we will describe in detail how
the hypotheses are extracted from the operations’ contractual
scope, i.e. from postconditions and invariants, and how ambi-
guities may be clarified using the semantic information from
the preconditions.

B. Extraction from Postconditions

The primary source for the extraction of hypotheses are
the postconditions of the considered operation. Postconditions
constrain the changes performed during an operation call; most
properties which are supposed to be variable can be assumed
to be referenced therein. However, as discussed in Example 1,
those constraints are not always unambiguous.

Addressing this issue, standard interpretations for ambigu-
ous OCL constructs have been suggested in [18] based on an
extensive field study. Although the motivation and conclusions
were quite different, the observations of this study can also

be transferred to the context considered here. This leads to
the derivation of the following three principles for extracting
hypotheses from postconditions:

1) All properties referenced within the postconditions may
– but are not necessarily meant to – be affected.

This main principle is an adapted and relaxed form of the noth-
ing else changes heuristics described in [18] and is also applied
by “implicit definition” approaches reviewed in Section II-C
where – much more strictly – all referenced properties are
automatically considered variable. This principle requires that
a separate hypothesis is extracted for each property and each
scope-term in which it occurs. Different classifications may
result from multiple references of the same property and will
eventually have to be combined to a single hypothesis.

Example 7. Consider again the postcondition from Fig. 3.
There are two references to the property trash. One of these
will lead to a variable, the other to an ambiguous classification
(details on this will be presented later in Example 8). But as
both references have the same scope self, a single hypothesis
will be extracted from both with the more definite classification
variable.

2) In general, properties used as an operation parameter
are not meant to be variable.

To illustrate this principle, consider again the postcondition of
playNextSong() (cf. Example 1):
phone.speaker.file = songs->at(currentSong)

Here, the argument of the at-operation, i.e., currentSong,
is not meant to be variable. Note, however, that there are a
few exceptions from this principle, e.g. arithmetic and logical
operations, where the operands can be used interchangeably.

3) Properties that are referenced in postconditions are
meant to be variable if and only if
a) they are referenced within a sub-term that allows

for this categorization (cf. Principle 2),
b) they are the last element of a navigation chain, and
c) they refer to the post-state of the operation (i.e. are

not marked @pre).
The third principle refines under which circumstances the def-
inite classification variable is eventually applied to a property–
taking into account that the change of properties can only be
constrained properly if they are referenced from an appropriate
context. Following this concept, a reference to the pre-state
(“@pre”) is not sufficient to constrain a change. The same is
true for front and inner elements of navigation chains, e.g. in
phone.speaker.file only file is considered variable
since a change of phone or phone.speaker cannot be
constrained properly here.

These main principles eventually lead to Algorithm 1 which
realizes the extraction of hypotheses. The technical details of
this algorithm are now discussed in detail and will afterwards
be illustrated by means of Example 8.

To extract hypotheses from a postcondition using Algo-
rithm 1, the corresponding AST is traversed and the following
case distinction with respect to the node’s type is conducted:

Leaves of the AST (Lines 1–2): No hypotheses are created
for these nodes, since they are either of type LiteralExp

Input: AST node, context information
Output: Set of Hypotheses

1 if node is a leaf then
2 result← empty set of hypotheses
3 else if type of node is PropertyCallExp then
4 scope← determineScope(source)
5 sourceHyps← extract hypotheses from source
6 update hypotheses in sourceHyps to ambiguous
7 propertyHyp← new Hypothesis (property, scope)
8 result← union of sourceHyps and propertyHyp
9 else // OperationCallExp or alike

10 update context information
11 mergeRules← lookForRulesAndPatterns(context)
12 mergedHyps← ∅
13 foreach sub-tree s (source / argument / ...) do
14 subHyps← extract hypotheses from s with

respect to context
15 merge subHyps into mergedHyps using the

mergeRules
16 end
17 result← mergedHyps
18 end

Algorithm 1: Extract hypotheses from OCL expression

(constant literal) or VariableExp (referring to a set of
objects). However, the latter are used to determine scopes for

References to properties (Lines 3–8): Here, first the prop-
erty’s scope is computed from the source sub-tree (Line 4).
Note that hypotheses extracted from this sub-tree are down-
graded to ambiguous (according to Principle 3b) because this
part corresponds to the front part of the navigation chain which
points to the property (Lines 5–6). According to Principle 1,
a separate hypothesis is created for each reference to a
property (Line 7)3. Each property is provisionally classified
variable here – except for the case that it is marked @pre
and Principle 3c can immediately be applied4. Consequently,
to eventually obtain the appropriate classification, a reclassifi-
cation is performed when processing

Other (inner) nodes of the AST (Lines 9–18): In these nodes,
hypotheses resulting from different sub-trees are merged
(Lines 13–16) – the most crucial part of the algorithm. In
the simplest case, the hypotheses from the sub-trees are
identical. Then, they can simply be adopted “as is” for the
currently considered node. Otherwise, the classification may
be downgraded depending on the sub-trees they originate
from. While doing that, competing hypotheses for the same
property and scope (as illustrated in Example 7) may occur.
Then, the hypotheses are merged based on a set of static rules
(which merge the hypotheses based on the expression type and
operation name) as well as design patterns (which merge the
hypotheses based on the specific context). More precisely:

• A selection of representative static rules are summarized
in Table I. Here, the first column denotes the respec-

3Note that this (Line 7) is indeed the only place where new hypotheses are
created. At all other occasions, hypotheses are only updated or merged, as in
Line 8 and later in Line 15.

4If only the pre-state or both the pre- and post-state of a property is
referenced, it is indicated that changes to this property are intended, though,
in the first case, the modifications are not explicitly defined or constrained.
Consequently, we log the states in which a property is referenced.

tive expression type according to the metamodel. In
the second column, relevant components corresponding
to sub-trees within the AST are listed. Details on the
classification are provided in the third column, while
the last column provides which scope-terms are to be
extracted. A special case are disjunctions (e.g., or and
implies): here a variable hypothesis is only adopted
if it occurs in both sub-trees, otherwise it is adopted as
ambiguous and additionally marked (as this may indicate
an incomplete definition).

• As an example of a design pattern, consider the fol-
lowing issue: According to the static rule, the left-
and right-hand side of an equality sign are treated in-
terchangeably by default. However, if one side is a
reference to a property in the post-state (PropertyCall-
Exp), then the “=” is interpreted as an assignment
operator (“= means assignment”) and hypotheses from
the other side are downgraded to ambiguous. Another
special pattern is property=property@pre, i.e., an
explicitly specified frame condition which leads to the
classification unaffected. Moreover, in order to capture
instantiation and destruction of objects, we keep track
of a few key patterns, namely several operations called
on Class.allInstances() (e.g. includes(),
excludes(), and size()) and the OCL primi-
tive Object.oclIsNew(). If these are recognized
(Line 10), a special flag is activated that allows for
adding a corresponding hypothesis on the class property
allInstances().

In a similar fashion, other cases are handled.

This algorithm is now demonstrated by means an example.

Example 8. Consider again the AST in Fig. 3
which represents the postcondition of the operation
deleteReadMessages() (cf. Example 6). Starting
with the root node (=), first the design pattern “= means
assignment” is recognized (Line 11), since the source is
a reference to a property in the post-state. Consequently,
all hypotheses from the argument sub-tree will later be
downgraded. However, following the flow of the algorithm,
the next step is to process the source sub-tree (Line 13–16).
Here, an empty set of hypotheses is extracted from the leaf
self (Lines 2/5) and a new hypothesis for trash is created:
(MessagingApp::trash, self, variable) (Line 7). From
the argument sub-tree of the root node, the properties
trash and inbox are classified ambiguous, since they
are marked @pre. The property read with scope-term
self.inbox@pre is classified unaffected as it occurs
within a select (static rule). When merging the hypotheses
from both sub-trees at the root node level (Line 15),
the competing hypotheses for self::trash (source:
variable, argument: ambiguous) are merged to a single
variable hypothesis (cf. Example 7). Due to the design
pattern recognized at the very beginning, the hypotheses
for inbox (only referenced in the pre-state) and read
are to be downgraded to ambiguous. However, they are
eventually adopted unchanged as they already are ambiguous
or unaffected, respectively.

Table I
CLASSIFICATION SCHEME FOR EXTRACTING HYPOTHESES FROM OCL EXPRESSIONS

Expression type Components Classification Scope-terms
PropertyCallExp source Classify variable only in accordance to Principle 3 source::referredProperty
OperationCallExp source,

parameter
Adopt classifications from source “as is” except
for the following cases: If the referred operation is
arithmetic (e.g. +,-,*,/), then downgrade the classi-
fication to ambiguous. For the parameter sub-tree
(if applicable), downgrade all classifications, except
for logical operations (e.g. and, or, implies).

IteratorExp source,
body,
iterator

Adopt classifications from body “as is” if the it-
erator returns a Boolean (e.g., exists, forAll,
one), but not if the iterator returns a collection (e.g.,
select, closure, any).

IfExp condition,
thenExpression,
elseExpression

Process subexpressions and lift their classifications
(variable supersedes ambiguous supersedes unaf-
fected)

If a property is only referenced in either
of then- and else-branch, use the (negated)
condition for the scope-term

VariableExp Ignore, if contains parameter, result value, or iterator
variables; else use for scope-term

self::property,
Class.allInstances()::property

LiteralExp Ignored, since expression only denotes a constant –

Finally, the following preliminary hypotheses are extracted:
• (MessagingApp::trash, self, variable),
• (MessagingApp::inbox, self, ambiguous),
• (Message::read, self.inbox@pre, unaffected).

Overall, following the outlined principles and schemes, an
initial, preliminary classification of properties with respect to
the three categories (i.e., variable, ambiguous, and unaffected)
is automatically conducted. In the next step, we will investi-
gate whether there are further relevant properties that have not
been classified so far, but to which a dependency exists via
the models’ invariants.

C. Extraction from Invariants
The classification of properties based on their occurrence in

postconditions as described above is a promising starting point.
However, there may also be properties which do not occur
in the operation’s postconditions, but are connected to other
properties that were identified to be relevant for the operation
(variable or ambiguous) in a different way.

Example 9. Consider the constraint that the microphone
shall be enabled during phone calls (expressed by the
invariant microOnWhenInCall of the Microphone
class in Fig. 1). Assume that the attribute inCall
has been classified variable. Then, the attribute
enabled shall be classified accordingly. The appropriate
scope-term is computed by backwards navigation,
i.e. Microphone→Phone→CallingApp becomes
CallingApp→Phone→Microphone. The finally
extracted hypothesis reads (Microphone::enabled,
self.phone.microphone, variable).

Clearly, these dependencies have to be considered in order
to obtain a complete set of properties for the frame conditions.
Note that a direct connection between the corresponding
classes via associations as in Example 9 is actually not
required; dependencies can rather also be established with an
allInstances()-call as illustrated in the following example.

Example 10. The smartphone has an alert for new messages
that is triggered if one of the messaging apps has new
messages. This functionality is expressed by the invariant
inboxAlert (associated to the Phone class in Fig. 1).
Consequently, if the inbox of any MessagingApp or

the read attribute of any Message is allowed to change,
then also hasNewMessages is affected. Strictly speak-
ing, this is true for all instances of Phone since the de-
pendency is established via allInstances()-calls. This is ex-
pressed by the hypothesis (Phone::hasNewMessages,
Phone.allInstances(), ambiguous).

Hence, in order to reveal all such implicit dependencies,
we perform a dependency analysis for the properties that have
been determined to be relevant (variable or at least ambiguous)
thus far. For a complete analysis, we have to consider all
invariants of all classes. More precisely, the invariants are
covered in a similar fashion like postconditions, i.e. with a
slightly revised version of Algorithm 1. However, the gained
hypotheses are not directly merged with the existing ones, but
are used to discover dependencies to properties that were not
considered relevant thus far. If such a property is referenced
together with a variable or ambiguous property within the
same invariant (more precisely: within the same branch with
respect to disjunctions), there are two types of connections
that lead to different classification results:

• if the property is classified variable within the invariant
and at least one other variable property is referenced, a
hypothesis with classification variable is added.

• if the property itself is only classified ambiguous within
the invariant or no other property is referenced in a scope
for which a hypothesis with classification variable exists,
a hypothesis with classification ambiguous is added.

This analysis is applied iteratively until no more implicit
dependencies are found. Overall, this gives a complete subset
of properties for which there is (strong) evidence that they
are relevant for the operation’s frame conditions. Clearly,
the invariant analysis may produce hypotheses that will be
discarded later, but it reveals dependencies some of which
are likely to be missed when generating frame conditions
manually.

D. Disambiguation using Preconditions
The analysis of postconditions and invariants which has

been performed so far, provided a set of hypotheses on
properties that are likely to be relevant for the operation’s
frame conditions. In distinct cases, semantic information from
the preconditions can be used to clarify ambiguous hypotheses.

Example 11. Consider the operation emptyTrash() of
class MessagingApp from Fig. 1. The postcondition requires
that the trash is empty after the execution of the operation
(post: trash.isEmpty()). In contrast, the precondition
requires that the trash contains at least one message in
the pre-state (pre: trash.size()>0). Consequently, the
property trash is definitely meant to be variable and, if it
was previously determined to be unaffected or ambiguous, the
corresponding hypothesis has to be updated accordingly.

However, in order to directly incorporate this information
and to update hypotheses automatically, we would require
a methodology to interpret the semantics of the pre- and
postconditions with respect to aspects of properties like being
undefined, being empty, ranges of values, etc. at an abstract
level, i.e. without having any concrete instantiation of the
model. As such a methodology is far out of reach, we rather
again apply a slightly modified version of Algorithm 1 to
the preconditions. However, the hypotheses gained from this
are only used to check whether a property occurs in the
precondition for which an ambiguous or unaffected hypothesis
exists for the same scope. If so, the hypothesis is marked
accordingly such that the modeler can take this knowledge
into account when considering the ambiguous hypotheses.
However, the preconditions are rather secondary, although they
are not entirely insignificant, and the key parts of our approach
are clearly the extraction of hypotheses from postconditions
and invariants.

IV. EVALUATION

In the previous section, we proposed a methodology to
extract hypotheses about the relevance of properties in order
to aid designers in the generation of frame conditions for
operations. To this end, we applied a heuristic approach
that analyzes postconditions, invariants, and preconditions. In
order to evaluate the quality of the obtained hypotheses, the
proposed approach has been tested using several example
models known from the literature. The results are summarized
and discussed in this section.

A. Setup and Considered Examples

In order to perform the evaluation, we implemented our
approach as a prototype using the Eclipse OCL framework
and the Xtend language. We then applied our approach to
several test models known from the literature – some of which
have been explicitly constructed with respect to the frame
problem and are, thus, relevant and representative examples.
More precisely, the following models have been considered:
(1) the running example from this paper (i.e., the Smartphone
model from Fig. 1), (2) a model representing a toll collect-
ing system (TollCollect, [19]), (3) a model representing a
scheduling process, e.g., of a CPU (Scheduler, [20]), (4) a
model representing the process of lending books (Library,
[21]), (5) a model representing the civil status of human beings
(Civil Status, [22]), (6) a model representing a traffic light
preemption (TrafficLight, [23]), and (7) a model representing
an access system at an (Airport_CML, [24]).

More details about the models as well complete lists of the
extracted hypotheses have been compiled into a separate docu-
ment which is available online for the reader’s evaluation [25].

B. Obtained Results

Our results are summarized in Table II. For each model,
we first provide statistical information of the models (size,
number of constraints, number of properties). Then, for each
operation of the model, details on the extracted hypotheses
are summarized. The first column contains the name of the
operation (denoted by Operation). In the second column, the
total number of extracted hypotheses is provided. If a single
number is shown here, hypotheses were only extracted from
the operation’s postconditions, i.e., no implicit dependencies
to further properties were determined. If a sum n + m is
shown, then n hypotheses resulted from the analysis of the
postconditions and m from implicit dependencies established
by the invariants. In the remaining columns, the hypothe-
ses are separated by their classification (variable, unaffected,
and ambiguous). Whenever the algorithm provided a defi-
nite classification (i.e., variable or unaffected), we manually
evaluated whether this classification was in accordance with
our interpretation of the models (denoted by X) or not, i.e.
whether the classification was false-positive or false-negative
(denoted by fp and fn, respectively). Note that, whenever
the proposed algorithm missed an implicit dependency, we
interpreted this as a false-negative classification (although no
hypothesis was actually extracted). In such cases, the number
of missed dependencies is shown in parentheses.

C. Discussion

In order to assess the quality of the proposed approach, we
addressed the following questions:

1) Does the algorithm extract wrong definite classifications
and, if so, how often and why?

2) Does the algorithm extract all implicit dependencies and,
if not, which are missed?

3) How many properties cannot be classified as variable or
unaffected and, hence, have to be manually inspected
by the modeler? What are the specific reasons for
the ambiguous classification and which lessons can be
learned?

In the following we will discuss the results in more detail
with respect to these questions.

ad 1) First of all, it can be observed that no false-
positive classifications are derived, i.e. no property is clas-
sified variable though it is actually intended to be unaf-
fected. Consequently, definite variable classifications obtained
by the algorithm seem to be safe and reliable. The same
is true for definite unaffected classifications, since we do
not observe false-negative classifications, i.e. possibly relevant
properties which are not recognized as such, from actually
extracted hypotheses. However, most properties are implicitly
classified unaffected due to the restriction to the contractual
scope of the operation; properties that are explicitly clas-
sified unaffected within actually extracted hypotheses only
occur in rare cases: Besides the case discussed in Exam-
ple 8, MessagingApp::deleteReadMessages(), only

Table II
RESULTS OF THE EVALUATION

Operation #Hypotheses #Variable #Unaffected #Ambiguous
X fp X fn

Smartphone (running example), 5 Classes, 10 Attributes, 6 Associations, 9 Operations, 3 Invariants
Phone::topup() 1 1

Speaker::setVolume() 1 1
CallingApp::placeCall() 1+1 2

CallingApp::talk() 2 1 1
CallingApp::closeCall() 1+1 2

MusicApp::playNextSong() 5 2 3
MessagingApp::sendMessage() 2 1 1

MessagingApp::deleteReadMessages() 3+1 1 1 2
MessagingApp::emptyTrash() 2 2

TollCollect [19], 2 Classes, 4 Attributes, 2 Associations, 8 Operations, 3 Invariants
Truck::init() 2+1 2 1

Truck::enter() 2 2
Truck::move() 3 3

Truck::pay() 1 1
Truck::bye() 2 1 1
Point::init() 1+1 1 1

Point::northConnect() 1 1
Point::southConnect() 1 1

Scheduler [20], 2 Classes, 1 Attribute, 3 Associations, 4 Operations, 1 Invariant
Scheduler::Init() 3 3

Scheduler::New() 3 1 2
Scheduler::Ready() 3 3
Scheduler::Swap() 4 3 1

Library [21], 3 Classes, 7 Attributes, 2 Associations, 7 Operations, 10 Invariants
User::init() 2+1 2 1

User::borrow() 1 1 (1)
User::return() 2 2

Copy::init() 3+1 3 1
Copy::borrow() 1 1 (1)
Copy::return() 2 2

Book::init() 3+1 3 1
Civil Status [22], 1 Class, 4 Attributes, 1 Association, 4 Operations, 5 Invariants

Person::birth() 4+1 4 (2) 1
Person::marry() 6 1 5

Person::divorce() 6 1 5
Person::death() 8 1 7

TrafficLight [23], 1 Class, 3 Attributes, 0 Associations, 2 Operations, 1 Invariant
TrafficLight::init() 3 3

TrafficLight::switch() 2+1 2 1
Airport_CML [24], 2 Classes, 2 Attributes, 0 Associations, 4 Operations, 1 Invariant

Airport::Init() 2 2
Airport::GivePermission() 1+1 1 1
Airport::RecordLanding() 1+1 1 1
Airport::RecordTakeOff() 2 2

in one more case, namely Scheduler::new(), a prop-
erty mentioned in the postconditions is automatically classified
unaffected. In the latter model, frame conditions are explicitly
modeled via terms like property=property@pre in the
postconditions. This pattern is recognized and leads to this
definite classification.

ad 2): In three cases, the algorithm misses implicit
dependencies. This behaviour can be explained by the re-
strictive strategy that is applied during the invariant scan and
which discards possible dependencies if the properties are
spread over different branches of a disjunction. Using a more
liberal strategy could avoid this, but will likely produce more
unnecessary ambiguities and make the determination of scope-
terms infeasible. However, the actually missed dependencies
are not severe and do not concern properties that are in fact
relevant. In all cases, still all relevant properties are identified
and corresponding hypotheses are extracted.

ad 3): In general, the number of ambiguous classifica-
tions is rather small, except for the Civil Status and Smart-
phone example.

• In the Civil Status example, there is a large amount of
case distinctions (males marry females and vice versa)
which are expressed by constructs such as
gender = #female implies . . .
gender = #male implies . . .
As the algorithm treats these implications like usual dis-
junctions, many ambiguities could have been avoided by
using if .. then .. else .. endif constructs.

• For the Smartphone, the large number of ambiguities can
be explained with the fact that this model was explic-
itly constructed to demonstrate ambiguities and contains
many navigation chains that are treated as ambiguous by
the algorithm.

• The ambiguities in the TollCollect and Library models
result from invariants that express uniqueness constraints.
They constrain a certain property as a key property,

i.e., with pairwise different values for different objects.
One ambiguity in Truck::bye() results from a design
pattern that recognizes return values of an operation.

• In the Scheduler model, frame conditions have been
defined explicitly. However, one case has been missed and
is only covered implicitly in the Scheduler::Swap()
operation: it is not determinately defined which process
from the ready queue is indeed activated, if the queue
is not empty. As this leads to different classifications in
the then- and else-part, an ambiguous hypothesis is
finally extracted.

• In the TrafficLight example, one signal is not defined
explicitly in the postconditions, but its correct value
is enforced by an invariant. The algorithm finds this
dependency, but as the invariant is constructed as a large
disjunction of conjunctions (sum of products), it does not
provide a definite classification here.

• Finally, in the Airport_CML model an invariant estab-
lishes a subset-dependency between two sets of aircrafts
which results in an ambiguous hypothesis in two cases.
In one of these, knowledge from the preconditions can
be used to clarify the ambiguity.

Overall, these results clearly confirm the potential of the
proposed algorithm and the underlying methodology. In almost
all cases, very powerful hypotheses can be extracted out of
which only a tiny fraction are false-positives/false-negatives.
Considering that, thus far, modelers are supposed to generate
all frame conditions manually, the proposed methodology boils
down these efforts to a brief consideration of hypotheses out of
which just a few ambiguous properties remain to be inspected
in detail.

V. CONCLUSIONS

In this work, we considered the frame problem for behav-
ioral UML/OCL models. Thus far, only workarounds for the
definition of corresponding frame conditions exist: they are
either to be performed entirely manually – a time-consuming
task – or they are implicitly derived from the postconditions
using simple heuristics like “and nothing else changes” which
often does not lead to satisfactory results. To this end, we
proposed an automatic approach that considers the whole
contractual scope of the operations, i.e., postconditions, invari-
ants, and preconditions, and extracts hypotheses addressing the
question which properties are to be considered for the frame
conditions.

An evaluation confirmed that the methodology provides
very good results. In fact, it safely filters out rather defi-
nite cases and pinpoints the modeler to a small subset of
properties which require a more detailed inspection. Many
of these can be decided on after a brief consideration. For
the remaining properties, the modeler can also be aided by
automated methods, e.g., consistency checkers. These can be
employed to generate execution scenarios with this particular
property being variable or unaffected. These validations may
even pinpoint the modeler to possible inconsistencies in the
design. For the first time, this provides a systematic approach
on how to deal with the frame problem in behavioral models.

ACKNOWLEDGMENT

This work was partially funded by the German Research
Foundation (DFG) under grants GO 454/19-1 and WI 3401/5-1
as well as within the Reinhart Koselleck project DR 287/23-1.

REFERENCES

[1] P. Niemann, F. Hilken, M. Gogolla, and R. Wille, “Assisted generation
of frame conditions for formal models,” in DATE, 2015, pp. 309–312.

[2] B. Meyer, “Applying design by contract,” IEEE Computer, vol. 25,
no. 10, pp. 40–51, 1992.

[3] A. Borgida, J. Mylopoulos, and R. Reiter, “On the frame problem in
procedure specifications,” IEEE Trans. Software Eng., vol. 21, no. 10,
pp. 785–798, 1995.

[4] Z. W. Pylyshyn, “The Robot’s Dilemma: The Frame Problem in Artifi-
cial Intelligence,” Artif. Intell., vol. 36, no. 1, pp. 131–137, 1988.

[5] D. C. Dennett, “Cognitive Wheels: The Frame Problem of AI,” Lan-
guage and Thought, vol. 3, 2005.

[6] P. Kosiuczenko, “Specification of invariability in OCL - specifying
invariable system parts and views,” Software and System Modeling,
vol. 12, no. 2, pp. 415–434, 2013.

[7] A. D. Brucker, M. P. Krieger, and B. Wolff, “Extending OCL with null-
references,” in MoDELS, 2009, pp. 261–275.

[8] B. Meyer, “Eiffel: A language and environment for software engineer-
ing,” Journal of Systems and Software, vol. 8, no. 3, pp. 199–246, 1988.

[9] J. M. Spivey and J. Abrial, The Z Notation: A Reference Manual, 2nd
Edition. Prentice Hall Hemel Hempstead, 1992.

[10] G. T. Leavens, A. L. Baker, and C. Ruby, “JML: A notation for
detailed design,” in Behavioral Specifications of Businesses and Systems.
Springer, 1999, pp. 175–188.

[11] C. B. Jones, Systematic Software Development using VDM, ser. Prentice
Hall International Series in Computer Science. Prentice Hall, 1986.

[12] J. Woodcock, A. Cavalcanti, J. S. Fitzgerald, P. G. Larsen, A. Miyazawa,
and S. Perry, “Features of CML: A formal modelling language for
Systems of Systems,” in 7th International Conference on System of
Systems Engineering. IEEE, 2012, pp. 445–450.

[13] T. Baar, “OCL and Graph-Transformations - A Symbiotic Alliance to
Alleviate the Frame Problem,” in Satellite Events at the MoDELS 2005
Conference, ser. LNCS, J. Bruel, Ed., vol. 3844. Springer, 2005, pp.
20–31.

[14] M. Gogolla, L. Hamann, F. Hilken, M. Kuhlmann, and R. B. France,
“From application models to filmstrip models: An approach to automatic
validation of model dynamics,” in Modellierung, 2014, pp. 273–288.

[15] M. A. G. de Dios, C. Dania, D. A. Basin, and M. Clavel, “Model-driven
development of a secure ehealth application,” in Engineering Secure
Future Internet Services and Systems - Current Research, ser. LNCS.
Springer, 2014, vol. 8431, pp. 97–118.

[16] M. Soeken, R. Wille, and R. Drechsler, “Verifying dynamic aspects of
UML models,” in DATE. IEEE, 2011, pp. 1077–1082.

[17] Object Management Group (OMG), “Object Con-
straint Language Version 2.4,” 2014. [Online]. Available:
http://www.omg.org/spec/OCL/2.4/PDF

[18] J. Cabot, “From declarative to imperative UML/OCL operation speci-
fications,” in Conceptual Modeling, ser. LNCS, vol. 4801. Springer,
2007, pp. 198–213.

[19] M. Gogolla, L. Hamann, F. Hilken, M. Sedlmeier, and Q. D. Nguyen,
“Behavior Modeling with Interaction Diagrams in a UML and OCL
Tool,” in Proceedings of the 2014 Workshop on Behaviour Modelling-
Foundations and Applications, ser. BM-FA ’14. ACM, 2014, pp. 4:1–
4:12.

[20] P. A. P. Salas and B. K. Aichernig, “Automatic Test Case Generation
for OCL: a Mutation Approach,” UNU-IIST Report, no. 321, 2005.

[21] M. Gogolla, “Teaching Touchy Transformations,” in MODELS Educa-
tors’ Symposium (EDUSYMP’2008), M. Smialek, Ed., 2008, pp. 13–25.

[22] M. Gogolla, F. Büttner, and M. Richters, “USE: A UML-based specifica-
tion environment for validating UML and OCL,” Sci. Comput. Program.,
vol. 69, no. 1-3, pp. 27–34, 2007.

[23] “USE Examples Repository.” [Online]. Available:
http://sourceforge.net/projects/useocl/

[24] Q. Charatan and A. Kans, Formal Software Development: From
VDM to Java. Palgrave Macmillan, 2004. [Online]. Available:
http://symphonytool.org/examples/Airport/index.html

[25] P. Niemann, F. Hilken, M. Gogolla, and R. Wille,
“Extracting Frame Conditions from Operation Con-
tracts: Additional Material,” University of Bremen, Tech.
Rep., 2015. [Online]. Available: http://www.informatik.uni-
bremen.de/agra/doc/misc/NHGW2015addon.pdf

