
Envisioning Self-Verification of Electronic Systems

Rolf Drechsler1,2 Martin Fränzle3 Robert Wille1,2
1 Department of Mathematics and Computer Science, University of Bremen, Germany

2 Cyber-Physical Systems, DFKI GmbH, Bremen, Germany
3 Carl von Ossietzky Universität Oldenburg, OFFIS GmbH, Oldenburg, Germany

{drechsle,rwille}@informatik.uni-bremen.de martin.fraenzle@offis.de

Abstract—The verification of embedded systems remains to
be a challenging task. The ever-increasing complexity as well as
time-to-market constraints frequently force designers to termi-
nate the verification process before 100% functional correctness
can be ensured. This allows bugs to escape into the final product.
All research activities aiming for addressing this problem rely on
iterative improvements of existing solutions which remain unable
to comprehensively cover the issue. In this paper, a fundamental
change in how to approach the verification problem is envisioned.
We propose the concept of self-verification – a methodology which
enables the system itself to eventually complete all the verification
tasks that could not be mastered before production. Besides
the envisioned methodology, we sketch directions towards its
realization and discuss possible application scenarios. By this, we
provide a complementary new idea that may have the potential
to overcome today’s verification crisis.

I. INTRODUCTION & MOTIVATION

Over the last decades, rapid progress in the development
of computing machines has led to ever-more widespread de-
ployment. The resulting embedded systems have dramatically
changed our life. They are installed in our phones, tablets,
coffee machines, tooth brushes, washing machines, and many
more. Moreover, we also put our lives into the hands of
embedded systems when they are e.g. controlling medical or
transportation devices as in implants or airplanes, respectively.
As users of these systems, we are usually assuming an error-
free behavior. But severe consequences are to be expected if
the underlying computing devices expose errors. In particular
for safety-critical systems, a simple error can cause deaths
in the worst case. Consequently, assuring the correctness of
embedded systems is of utmost importance.

For this purpose, verification methods are applied before
production and deployment. With their help, designers can
check (i) whether the system is free of errors, (ii) whether
it meets its specified requirements, or (iii) whether it shows
some unintended behavior. The following verification methods
are applied today:

• Simulative verification, in which based on a model of the
system the inputs are explicitly assigned and propagated
through the system. Afterwards, the outputs are compared
to the expected values.

• Emulative verification, which realizes simulation directly
in a prototypical implementation of the desired chip and
thereby exploits the computational power of hardware.

• Formal verification, which considers the problem mathe-
matically and proves that a chip is correct. Modulo cor-
rectness and completeness of the model, this guarantees
100% functional correctness.

The left part of Fig. 1 illustrates the utilization of these
methods in the design and application of today’s systems:
Simulation and formal verification can be applied as soon
as first models of the system are available, while emulation
can be applied as soon as first (prototypical) implementations
of the system are available. These methods significantly ad-
vanced the state-of-the-art and how verification is conducted
in today’s design flows. For example, emulation allows for
an acceleration of several orders of magnitude compared to
simple simulation. Formal verification enabled the verification
of a system with full coverage, i.e. it provides a full proof of
correctness rather than a validation which may miss important
corner-cases.

However, all these methods still do not adequately address
the verification problem. An exhaustive application of all
possible input patterns is practically intractable and, thus,
sufficient coverage cannot be obtained by simulation or emu-
lation. Formal verification suffers from the poor scalability,
i.e. it can only be applied to comparatively small circuits
and systems. The main reason for these enormous difficulties
with verification is the ever increasing complexity according
to Moore’s Law: The number of transistors in a circuit and,
hence, the complexity of those devices, doubles every 18
months.



Fi
rs

t
m

od
el

s
of

th
e

sy
st

em
av

ai
la

bl
e

Fi
rs

t
(p

ro
to

ty
pi

ca
l)

im
pl

em
en

ta
tio

ns
av

ai
la

bl
e

Time

Production
phase

(end
of

design
process

and,therefore,
term

ination
of

all
verification

efforts)

Design phase

Simulation

Emulation

Formal Verification

Application phase

Self-Verification

Controlling
(analyze current status

and decide on next verification task)

Monitoring
(keep track of
applied funct.)

Verifying
(solve explicit

verification tasks)

Benefits
? More ressources
? More time
? More information

1000x
faster

complete
coverage

Fig. 1. Verification flow today (left) and with the self-verification methodology (right).

This development has significantly affected how circuits
and systems are designed today: While a few years back, the
actual implementation process was the core activity in any
design flow, verification dominates the entire design process
today. Moreover, time-to-market constraints force vendors to
terminate the design process and, therefore, also the verifica-
tion process as soon as possible. Consequently, serious bugs
frequently escape into the final product– complete verification
of correctness (as e.g. envisioned in [1]) is hardly been
conducted in practice an verification activities basically focus
on important, safety-critical components only.

Current research activities try to address this problem. But
almost all corresponding developments rely on incremental
improvements of solutions which remain unable to compre-
hensively cover the issue. For example, designers try to lift
the respective design and verification tasks to higher levels of
abstraction or apply verification methods which are based on
a combination of complementary reasoning techniques. The
former development can be seen by the increasing consid-
eration of more abstract system descriptions, e.g. provided
by modeling languages such as UML or system description
languages such as SystemC, which, eventually, leads to the
design at the so-called Formal Specification Level (FSL, [2])
or the Electronic System Level (ESL, [3]). A representative
of combined reasoning techniques can be found e.g. in the
domain of so-called solvers for SAT Modulo Theory [4],
recently also incorporating efficient techniques from abstract
interpretation [5]. But again, these developments will hardly be
able to keep pace with the exponential explosion. Eventually,
existing and new methods for verification suffer from their
limited computational power, while, at the same time, facing
an ever-increasing complexity.

In this work, we envision a fundamentally different ap-
proach to deal with the verification problem: self-verification.
The general idea is to realize a system which is capable of
completing all the verification tasks that could not be tackled
before. To this end, we provide a concept of an according
scheme and sketch possible ideas towards its realization in
Section II and Section III, respectively. Afterwards, possible
application scenarios are discussed in Section IV, before the
assumed benefits of the envisioned methodology are discussed
in Section V. By this, we provide a complementary new idea
that may have the potential to overcome today’s verification
crisis.

II. ENVISIONED METHODOLOGY

At a first glance, it might seem natural that verification is
only applied in the design phase (as shown on the left-hand
side of Fig. 1). However, when a complete verification of a
system prior to production and deployment is not possible
anyway – due to the reasons discussed in the previous section
– solutions should be explored how the verification process can
be continued and eventually be completed while the system is
in operation.

To this end, entirely new design and verification meth-
ods are required. Obviously, the main focus is still on the
realization of the intended functionality of the system – in
the following called the realization of the target system. But
due to the high effort caused by verification, this aspect has
to be considered from the very first moment. Beyond that,
new solutions are required to equip the respective systems
with additional hardware and software that enables them to
perform verification at run-time and to ensure their complete



correctness after the deployment.1 Due to limited resources
available in the system, tools supporting formal verification
have to be developed accordingly and have to be lightweight
versions of existing tools with the goal of providing maximum
performance at very low cost. While the principle concept
of self-verification may be realized in different fashions and
scenarios (which will be discussed in somewhat more detail
in the next section), in general the system must be enabled to
perform the following three core tasks:

1) Monitoring, i.e. the observation of the control and data
flow which allows the system to keep track of the
performed computations in terms of particular patterns
or used scenarios. This allows for the recognition of
what functionality is usually triggered and what outputs
are generated by it.

2) Verifying, i.e. checking the correctness of parts of a
system, the validity of properties, the complete coverage
of a verification results, etc.

3) Controlling, i.e. deciding which verification task should
be considered next based on an analysis scheme that
takes previously obtained information into account, such
as properties still left to be verified, frequently occurring
patters, application scenarios of the system, etc.

By fulfilling these objectives, self-verification establishes
a complementary approach that may be capable of tackling
today’s verification problems. The biggest obstacle however
remains how such a methodology could be implemented. The
next section sketches possible realizations.

III. POSSIBLE REALIZATION

In order to realize the envisioned methodology, the em-
bedded system under consideration (which realizes the orig-
inally intended target functionality) has to be equipped with
additional core components which realize the self-verification
tasks monitoring, verifying, and controlling. Depending on the
respective tasks, they may be realized either in hardware or
software. Fig. 2 gives an overview on that partitioning.

More precisely, the basic building block is given by a CPU
which should provide special instructions that are used in the
software routines (e.g. for triggering a verification process).
On top of that, the components realizing monitoring, verifying,
and controlling are added. The verifer additionally may take
advantage of existing verification software such as reasoning
engines which may be provided by so-called verification
packages. The resulting sub-system is called the core system.

1It should be emphasized that the concepts in the following differ signifi-
cantly from the aspects of self-testing. There, failures in the production process
are addressed, while self-verification opens up a way for proving functional
correctness.

Monitor Controller VerifierMonitor
CPU

Verification packages

Hardware Software

Fig. 2. HW/SW partitioning of core components

In this section, we discuss the main requirements for the
core system as well as its components which are important
in order to realize self-verification. It may be noted that all
core components including the CPU (together forming the
core system for self-verification) need to be fully verified,
so that verification results obtained by them are not spoiled.
Furthermore, the core components are supposed to be designed
in a flexible manner in order to allow for a manifold integration
into different kinds of application scenarios (to be considered
in Section IV).

A. Verification Packages

Verification mainly relies on the availability of powerful
reasoning engines. Examples include core verification tech-
niques such as Binary Decision Diagrams (BDDs), solvers
for Satisfiability checking (SAT) and Satisfiability modullo
theory (SMT), and data structures such as And-Inverter
Graphs (AIGs). However, for the purpose of self-verification,
they have to be provided in terms of lightweight verification
packages so that possibly limited resources of the system to
be designed are respected.2

For this purpose, the software packages should be kept small
and the CPU should be optimized with respect to their execu-
tion. This could be accomplished e.g. by special instructions
derived and implemented into the underlying CPU. In order
to guarantee correctness, of course also the software packages
need to be verified using software model checkers. Conse-
quently, new lightweight implementations need to be provided
that are powerful enough to solve nontrivial verification tasks
but not too complex themselves in order to become completely
verified. Initial feasibility studies in this direction have already
been conducted in [7].

B. Monitor, Controller & Verifier

Next, hardware and/or software realizations of the core
tasks are required. The monitor mainly compares data and,
hence, needs optimized circuits for comparison, a fast data
path, and direct access to memory. While this calls for a pure
hardware realization, scenarios might exists where somewhat
more flexibility (and, hence, additional software components)
is required.

2The BDD11 package from Donald E. Knuth (see [6]) may provide such
a lightweight verification solution as it is reduced to simple operations for
BDD manipulation only and does not support additional functionality such as
variable reordering or complement edges.



The controller needs to perform efficient pattern matching,
which best can be realized in hardware. Recent results for reg-
ular expression matching [8] can be utilized for this purpose.

Finally, the verifier should be implemented based on the
(lightweight) reasoning engines discussed above. This core
component is, hence, based on software.

C. Resulting Core System

Combining the components discussed above eventually
leads to a core system which is just as large such that
conventional verification methods can be applied in order to
guarantee 100% functional correctness. Then, full verification
of the core system can be applied before deployment, while
mission-specific functionality will partially be verified in the
field. The resulting system is supposed to be a full-fledged
embedded system which can contain both, hardware and
software components. It relies on a small 32-bit processor with
a simple operating system. But in contrast to established sys-
tems, the additional functionality for monitoring, controlling,
and verifying has been incorporated.

Furthermore, special machine instructions are part of the
instruction set of the architecture to accelerate verification soft-
ware that is executed on it. As a starting point, a fully verified
core system may be based on an OpenRISC architecture from
OpenCores.3 This inherits the advantage of already providing a
gcc4 toolchain, so that the focus can be put on the verification
of the hardware.

IV. POSSIBLE APPLICATION SCENARIOS

Having the core system, self-verification can be realized
in the respective target systems in various fashions. In this
section, different scenarios are sketched which illustrate the
prospects of this methodology.

A. Handling Unverified Behavior

The main idea of self-verification is to deploy systems even
if they have not been fully verified – the remaining verification
tasks are supposed to be handled while the system is in its
application phase.5 This obviously bears the risk that errors
remain undetected after production. In order to avoid unwanted
or even critical behavior of the insufficiently verified system,
the core system can be utilized.

3www.opencores.org
4GNU compiler collection, gcc.gnu.org
5In fact, systems are frequently deployed today even if they have not been

fully verified. But in contrast to the proposed methodology, this happens
without the prospect of completing the verification after deployment.

Cunv

holds?

Properties left
to be verified

Exception

1 Monitoring 2 Controlling 3 Verifying

yes

no

Observes input
patterns

Generates new
assumption

Verifies
properties

Target system

Core system for self-verification

Fig. 3. Handling unverified behavior and performing self-verification

The scenario shown in Fig. 3 sketches a possible solution.
The applied architecture allows the explicit consideration of a
component Cunv of the target system that is not fully verified
at the time of deployment. By monitoring the behavior of
the target system, the self-verification system can recognize
whenever properties left to be verified (and, hence, affect-
ing Cunv) are triggered. More precisely, such a property is
e.g. triggered if an input pattern is applied to the target system
so that the antecedent of this property evaluates to true. If the
pattern violates the property, an exception handling can be
invoked (e.g. preventing the execution of erroneous behavior
and instead entering a safe mode). Already this provides a
significant improvement compared to today’s systems, where
– although verification with 100% functional correctness could
not be performed in most of the cases – an explicit exception
handling in cases of errors is often not realized.

B. Verification Using Stricter Environment Assumptions

A main reason why unverified components can not be
verified prior to deployment is the fact that they are usually
of considerable size and, therefore, are particularly affected
by the curse of verification complexity. Using several entities
of the product (additionally enriched with lightweight formal
verification techniques), a significantly larger computational
power is available. But even more importantly, due to more
concise information on the environment, as provided by the
actual user or obtained by monitoring, the actual behavior of
the target system can be taken into account: As discussed
above, input patterns are constantly monitored. By collecting
a lot of them, one will be able to see some common structures,
e.g. constant inputs or correlations among them. This common
structure can then be used to generate stronger assumptions
which in turn ease the verification process.



core

... LDA SUB BZ MUL SLU SUBU AND MUL SLU ADD MUL SLU ...

MUL a b c

SLU a a 5
= MULSL5 a b c

obtain
specification

add. hardware

1 Monitoring

2 Controlling

3 Verifying

Fig. 4. Self-optimizing architecture

Again this can be illustrated by means of Fig. 3. The blue
boxes denote the respective core tasks to be conducted for
this purpose which can readily be utilized to implement such a
scenario. More precisely, the monitor keeps track of clustering
input patterns (step 1) while the controller detects correlations
and common structures (step 2). Eventually, the information
is used for a stronger assumption to verify a property that has
not been verified yet (step 3). If this check is successful, the
antecedent can be updated which, in turn, leads to less input
pattern to be checked for possible errors. By addressing all
verification tasks step by step, a full coverage will eventually
be possible within acceptable run-time.

C. Exploiting Parallelism for Verification

As embedded systems tend to ship in large volumes and
thus a large number of produced items usually is available, the
concept of self-verification as proposed in this work enables
to exploit significantly more resources to perform verification.

To this end, the scenario which has been described in
Section IV-B for one chip, only has to be extended to multiple
chips which share their information. For this purpose, all
monitored input patterns are collected at a central place,
e.g. some dedicated server. Part of the verification can also take
place on this server and even better environmental assumptions
can be generated, since the union of all instances is considered.
Afterwards, strengthened assumptions or verification results
are sent back to all instances.

An alternative approach does not require a central server.
Instead, a distributed verification algorithm is developed and

concurrently executed on many instances of the item. Recent
progress in message passing may provide a basis for the
development of such a verification scheme. This particularly
allows a good handling of distributing and managing the
computation units.

D. Verification of Changes in the System

This scenario addresses the verification gap in a different
manner and especially makes use of having more time when
verification is applied after production. This enables e.g. ver-
ification of self-configurable systems in which changes in the
configuration can immediately be verified. Another use case
may be the deployment of a simpler, but fully verified system
which is optimized during application. The self-verification
functionality guarantees the correctness of these optimizations.

A possible case is illustrated in Fig. 4: Here, the moni-
tor observes that MULT-commands are frequently followed
by SLU-commands (step 1). Once the controller detects such
a pattern, the determination of a more efficient implemen-
tation (e.g. through reconfiguration) may be triggered by
the controller (step 2). This eventually leads to the support
of MULSL5-commands and, hence, a faster implementation.
In order to use this new implementation, its correctness is
verified (step 3). Following this procedure, simpler realizations
of the desired system (for which complete verification was
possible) can be deployed, while efficiency is considered
during application.



V. DISCUSSION & CONCLUSIONS

The proposed methodology, its possible realization, and
discussed application scenarios may result in an extended
architecture of embedded systems as shown in the right-
hand side of Fig. 1. Beyond the intended target functionality,
the resulting system is equipped with methods that allow to
perform verification whenever the target application idles.

By this, self-verification explicitly addresses the main rea-
sons of the verification gap, i.e. the limited computational
power which, following existing developments, will never keep
up with the exponential growth in complexity as well as
restrictive time-to-market constraints forcing completion of the
verification process well before 100% functional correctness is
achieved. Self-verification furthermore provides more situation
awareness and thus the prospect of enhanced verification.

Following this paradigm, new prospects emerge that may
provide the breakthrough for closing this gap. In fact, verifi-
cation engineers gain:

1) More resources
Considering it in a naïve way, self-verification can be
seen as the continuation of the emulation process where
correctness is checked on the actual device. But by com-
bining the verification effort from several instances of
the system (out of which usually thousands of them are
produced), the efficiency can be increased dramatically.
Furthermore, hybrid approaches are applicable, since
pure simulation may be complemented by (lightweight)
formal proof engines that are available on-board. As a
result, the limited computational power – a main reason
for the verification gap – is addressed.

2) More time
Since verification is carried out after production, one
is not bound to time-to-market constraints anymore.
Of course, safety-critical requirements have still to be
covered prior to production, as it is the case today. But
instead of simply terminating the verification process
after that, verification can continue, using idle times
of the system in operation, until completeness of the
verification task has been achieved.

3) More information
Since a produced circuit or system may be applied
in various application domains, barely any knowledge
about the environment, application scenarios, frequently
used functionality, etc. is known prior to production.
Performing verification directly in the system when
it is already in operation allows to monitor and ex-
ploit such information. Especially for formal verifica-
tion, adequately modeling the environment and knowing

the problem specific invariants significantly simplifies
the verification task. This enables a more application-
specific consideration and, therefore, does not only im-
prove the effectiveness of the verification but also the
quality of the results.

These prospects eventually allow engineers to get a full
guarantee that their designs are free from errors – even if
this might happen only after deployment. Moreover, also in
the worst case, i.e. when the system indeed may comprise an
error, the proposed self-verification scheme is beneficial. Once
engineers get aware of such a situation, they can accordingly
apply countermeasures, e.g. the provision of firmware updates,
a restriction of application scenarios, a reconfiguration, etc.,
which fix or at least circumvent erroneous behavior but still
keep the majority of the original functionality intact. If all that
does not help, even a call-back might be an option. This is
a significant improvement over today’s alternatives where, in
the worst case, errors are not detected at all or show as hardly
reproducible transients, rendering achieving 100% correctness
economically infeasible.

ACKNOWLEDGEMENTS

This work was supported by the German Research Foun-
dation (DFG) under contract no. DR 287/23-1. The authors
like to thank Mathias Soeken for many inspiring discussions
during the preparation of this work.

REFERENCES

[1] R. Drechsler, M. Diepenbeck, D. Große, U. Kühne, H. M. Le, J. Seiter,
M. Soeken, and R. Wille, “Completeness-driven development,” in Int’l
Conf. on Graph Transformations, 2012, pp. 38–50.

[2] R. Drechsler, M. Soeken, and R. Wille, “Formal Specification Level:
Towards verification-driven design based on natural language processing,”
in Forum on Specfication and Design Languages, 2012, pp. 53–58.

[3] G. Martin, B. Bailey, and A. Piziali, ESL Design and Verification:
A Prescription for Electronic System Level Methodology. Morgan
Kaufmann Publishers Inc., 2007.

[4] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. Rossum,
S. Schulz, and R. Sebastiani, “The MathSAT 3 System,” in Int. Conf.
on Automated Deduction, 2005.

[5] M. Fränzle, C. Herde, S. Ratschan, T. Schubert, and T. Teige, “Efficient
solving of large non-linear arithmetic constraint systems with complex
boolean structure,” Journal on Satisfiability, Boolean Modeling and
Computation, vol. 1, pp. 209–236, 2007.

[6] D. E. Knuth, The Art of Computer Programming. Upper Saddle River,
New Jersey: Addison-Wesley, 2011, vol. 4A.

[7] R. Drechsler, H. M. Le, and M. Soeken, “Self-verification as the key
technology for next generation electronic systems,” in Symposium on
Integrated Circuits and System Design, 2014.

[8] Y. Wakaba, S. Wakabayashi, S. Nagayama, and M. Inagi, “An area
efficient regular expression matching engine using partial reconfiguration
for quick pattern updating,” IPSJ T. on System LSI Design Methodology,
vol. 7, pp. 110–118, 2014.


