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Abstract—Unified Modeling Language (UML) activity diagrams are
widely used in modeling the dynamic aspects of system designs. However,
due to frequent interactions between systems and external uncertain
environment, the current version of UML activity diagrams cannot be
used to accurately capture and quantify the overall timing behaviors
of complex systems. To address this issue, this paper extends the UML
activity diagrams to enable the stochastic modeling of user inputs and
action executions, which strongly affect the overall timing behaviors of
systems. Based on the statistical model checker UPPAAL-SMC, this paper
proposes an automated framework that can perform quantitative reason-
ing under various functional and non-functional queries. Experimental
results demonstrate the effectiveness of our proposed approach.

1. INTRODUCTION

Due to the increasing interactions with external uncertain physical
environment, the design complexity of cyber-physical systems (CPS)
[1] is skyrocketing. How to model system behaviors within uncertain
environment and how to guarantee the critical functional, real-time
and performance requirements of specifications are becoming major
challenges in CPS design. As a kind of behavior specification based
on the Petri-net like semantics, UML activity diagrams are widely
used in describing the concurrent behaviors of systems [2]. To guar-
antee the correctness and performance of activity diagrams, various
model checking-based approaches [3]-[5] are proposed. However,
most of them focuses on safety problems which can only answer
“yes” or “no” based on given properties. Few of them can model and
reason on the stochastic behaviors of activity diagrams under user
input and action execution variations. For example, for an activity
diagram, designers would like to ask the question “What is the
probability that a specified scenario can be triggered within time
x?7”. However, due to the nondeterministic execution and accumulated
time variations, it is hard to figure out the answer and explain how to
improve the performance under time variation. Clearly, the bottleneck
lies in the lack of stochastic semantics supported by activity diagrams
as well as effective ways to support the quantitative analysis.

To address the above problems, this paper makes two major
contributions: i) we extend the syntax and semantics of UML activity
diagrams to support the stochastic modeling of user inputs as well
as the execution time of actions; and ii) we propose an automated
framework that supports the quantitative timing analysis of activity
diagrams based on Statistical Model Checking (SMC) [6]. Relying
on monitoring random simulation runs of activity diagrams and the
analysis using statistical methods (i.e., sequential hypothesis testing
or Monte Carlo simulation), SMC can be used to estimate the
satisfaction probability of user-specified performance queries. Unlike
exhaustive model checking, SMC requires far less checking time
and memory. Therefore, it is very scalable in validation of a wide

This work was partially supported by National Natural Science Foundation
of China (Nos. 91418203 and 61202103), Innovation Program of Shanghai
Municipal Education Commission 14ZZ047, German Academic Exchange
Service (DAAD) in the PPP 57138060, and German Research Foundation
(DFG) within the Reinhart Koselleck project DR 287/23-1. Mingsong Chen
is the corresponding author.

spectrum of quantitative performance properties. Due to the flexible
syntax and semantics provided by the SMC checker UPPAAL-SMC
[7], we use it as the engine of our framework.

The rest of this paper is organized as follows. After the introduction
of related works in Section II, Section III introduces the notations of
priced timed automata and SMC. Section IV gives the details of our
approach. Section V presents two case studies to demonstrate the
efficacy of our approach. Finally, Section VI concludes the paper.

II. RELATED WORK

Model checking techniques have been widely investigated to ana-
lyze activity diagrams. For example, Li et al. [4] analyzed the timing
behaviors of activity diagrams by using linear programming together
with integer time verification techniques. Eshuis [8] presented a
NUSMV-based approach that allows the consistency checking be-
tween activity diagrams and corresponding class diagrams. Hilken et
al. [9] proposed a novel verification methodology that can ensure the
consistency between activity diagrams and their contracts. In [10],
Das et al. proposed an activity diagram-based method that can verify
real-time MPSoC applications. Although existing model checking-
based approaches can be used to enhance the reliability of systems,
most of them focus on the analysis of safety properties. Few of them
support the quantitative analysis of activity diagrams.

As a promising approach, statistical model checking [6], [7] has
been applied to evaluate variation-aware designs. For example, Du et
al. [13] utilized the UPPAAL-SMC tool to evaluate project schedules
with time uncertainty. Chen et al. [12] presented a method that can
evaluate the task allocation and scheduling strategies with time and
power variation information. However, the above approaches only
consider the scheduling of tasks organized in the DAG form without
loops, which is much more simpler than activity diagrams. To the
best of our knowledge, our proposed approach is the first attempt
that uses SMC for the analysis of activity diagrams considering both
input and execution time variations.

III. BACKGROUND OF NPTA AND SMC

Our approach adopts the Network of Priced Timed Automata
(NPTA) [7] to model the stochastic behaviors of activity diagrams.
PTAs are a variant of timed automata whose clocks can evolve with
different rates in different locations. An NPTA consists of a set of
correlated PTAs that communicate with each other using broadcast
channels and shared variables. For example, Figure 1 shows an NTPA
denoted by (A|B) with two PTAs A (id=ida) and B (id=idb), where
each PTA has four locations and two clocks (e.g., C, and cl for A).
In different locations, the values of primed clocks indicate the rates
of different continuous variables. For example, C,’l == 2 in location
A indicates that the rate of C, is 2 in A;. By default, unprimed
clocks have a rate of 1. To enable the message-based synchronization
between PTAs, we use a channel array msg[id], where id indicates
the PTA identifier of the message target. While using broadcasting-
based synchronization, we adopt the non-deterministic selections to



filter useless messages. For example in PTA B, the selections e:msg_t
and guard condition e==idb are used to monitor incoming messages
and filter messages which are not sent to B.

Although UPPAAL-SMC only supports the uniform and exponen-
tial distributions explicitly, by proper usage of the built-in function
random(), we can produce values that follow a large set of commonly
used distributions. For example, based on the Box-Muller method,
we can generate the normally distributed random values using the
random() function. To model the stochastic behaviors of user input
as well as the execution time of each action, we adopt the pattern as
shown in Figure 1, where T_Dist() and V_Dist() are used to generate
time delays and variable values following some specific distributions.
Since location A sets an upper bound for clock cl (i.e., cI <= tI)
and its outgoing transitions set a guard condition ¢/ >= t/, PTA
A can stay in location A; with a delay of 7/ which is randomly
generated by T _Dist(ida). Meanwhile, due to the random value of
vl generated by V_Dist(), the stochastic behaviors of (A|B) will be
strongly affected by these two factors. It is important to note that
we did not extend the semantics of NPTA here. Based on the above
pattern, arbitrarily complex input and time variation aware stochastic
behaviors can be modeled.

a0 170 A1 c1:§?g‘bw
. t1=T_Dist(ida),
PTA A v1=V_Dist(va) . Ca'==0
Ca==0 c1<=t1, c1>=t1&&V
— S |
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PTA B: ® fB%e:‘db msg[\db]?rB_z\cZ>:t2 B3
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Fig. I. An NPTA, (A|B)

During the checking of NPTA models, SMC simulates random runs
which are bounded by either time, cost or a number of discrete steps.
Upon a decision of an NPTA during the simulation, the transition with
the shortest delay will be triggered and all the continuous variables
will be updated. Note that commit and urgent locations (i.e., locations
marked with the symbol C or U) within a PTA have delay of 0 and
the outgoing transitions of commit locations have higher priority. All
the derived runs are monitored by specified properties in the form of
cost-constraint temporal logic formulas [7]. Our approach adopts the
properties in the form of Pr{time <= bound](<> expr), where bound
is a constant value which denotes the time limit, and the expression
<> expr asserts that eventually the state predicate expr will happen.
By replacing the time limit and expr with specified value and desired
functional scenarios, we can conduct different kinds of performance
queries for the timing analysis of activity diagrams as described in
Section IV-C. Finally, the checker will report the interval estimate
for the success ratio of the given property.

IV. OUR APPROACH

Figure 2 shows the overview of our framework and the workflow
of our approach. Initially, activity diagrams coupled with our ex-
tended variation information (e.g., action execution time variation,
input value variation) are parsed by our developed tool to generate
the corresponding NPTA models. In our approach, NPTA models
are divided into two parts: i) front-end models which describe
the common behaviors of nodes (action nodes and control nodes)
in activity diagrams; and ii) back-end models which specify the
different features (i.e., flow relation, variation information, operation
definitions) of activity diagrams. To allow for the quantitative analysis
of activity diagrams via performance queries, we translate design
requirements into properties in the form of cost-constrained temporal
logic [6]. When both the NPTA models and performance query-
based properties are ready, our framework employs the checker

UPPAAL-SMC to conduct the quantitative analysis of stochastic
system behaviors. In the following subsection, we will explain the
major components of our framework in detail.

J_A Property Generation =

E Design Requirements i
i (Time, Coverage Criteria) T ]
Lo Pr(t <= T)(<>(Act3.done && Actd.done))

Back-End Models

NPTA Model Generation

UPPAAL-SMC

Quantitative Analysis

An overview of our framework

i Variation Information E
(Inputs, Time, etc.)

Front-End Models

Fig. 2.

A. Semantics Extension for Activity Diagrams

Our approach uses UML 2.x as our specification, where activity
diagrams adopt the Petri-net like semantics [2]. Figure 3 shows an
example of an activity diagram. The diagram describes a scenario
of withdrawing money from an ATM. Initially, users are required
to input their access code. They only have two chances. If both
access code inputs fail, the withdraw process will be terminated. Next,
ATM will ask users to input the amount of the money he/she wants
to withdraw. Meanwhile, the printer will be warmed. Based on the
deposit, the ATM decides whether to dispense the cash. Finally, the
receipt of the transaction will be printed.

e
start ' User Inputs: 3
NGO 15 § " ! input_amout ~ N(500,50) |
! input_code ~ {"ab","abc", ...}
a Verify accesscode | _____________________
N(5.0,1.8)
[codel=input_code] | Handle incorrect |y,
‘ 2 access code
[code==input_code] | t3
[code==input_code]
c Ask for amount | <
4
N(5.0,3.8)

syn_1 t6

t5
[code!=input_code’

£ Prepare to
print receipt

N(7, 2.5)

18 [available<input_amount]

[available>=input [amount]

Fig. 3.

The UML activity diagram of an ATM

The illustrative example in Figure 3 consists of majority of basic
constructs of activity diagrams. Based on the semantics of Petri-
net, actions denoted by round cornered boxes represent the execution
of operations on input tokens, and newly generated tokens will be
delivered to corresponding outgoing edges. For example, action a
denotes the operation verify access code, which can be abstracted
as a procedure that deals with the checking of input access code.
In activity diagrams, there are two kinds of flows: i) control flow
which indicates the execution sequence of actions, and ii) object flow
which denotes the relation of data token transmission. To simplify
the description of activity diagrams, we combine both control and
data tokens together. Therefore, we do not distinguish control flow



edges and object flow edges in our framework. A flow of an activity
diagram starts from the initial node (e.g., the node start) where tokens
are constructed and initiated, and the flow ends at a final node (e.g.,
the node end) where all tokens are destroyed. Decision/merge nodes
use the same diamond-shaped symbol. While decision nodes choose
one of the outgoing flows with satisfying guard predicates, merge
nodes select and deliver one of incoming flows to a next activity
node. To describe concurrent behaviors, fork nodes (e.g., syn_I) and
join nodes e.g., (syn_2) are used with multiple arrows leaving or
entering synchronization bars, respectively. When a token reaches
a fork node, it will be duplicated and forwarded to all consequent
outgoing actions. Join nodes synchronize multiple flows by merging
multiple tokens into one token. The join node can be activated only
when the tokens of all incoming edges are available.

To enable stochastic behavior modeling of concurrent systems, we
extend the syntax and semantics of activity diagrams. The current
version of our approach supports the stochastic modeling of user
inputs and timing of actions in activity diagrams. It allows different
kinds of distributions for both user inputs and action execution time
modeling. As shown in Figure 3, the user input input_amount follows
a normal distribution, while input_code follows a uniform distribution
on an enumerated type. For each action, we can assign it with a
time distribution to indicate the statistics of operation execution time.
For example, the execution time of action a follows the normal
distribution N(3.0,1.5), which indicates that its mean execution time
is 3.0 seconds and the standard deviation is 1.5 seconds.

Since activity diagram itself is a semi-formal specification which
cannot be directly used for model checking, we use an extended
Petri-net as an intermediate formal model to capture the stochastic
behaviors of activity diagrams as well as guide the translation to
UPPAAL-SMC inputs. Definition 1 gives the formal definition of
the structural information of our stochastic activity diagrams. In the
formalization, we use the completion transition and flow edge to
model the concurrent behaviors of systems. If a completion transition
has multiple incoming flow edges, it will do the join operation. If a
completion transition has multiple outgoing flow edges, then it will
do the fork operation.

Definition 1. A stochastic activity diagram is a tuple AD=(A, My,
T F C V, VAL, Vipuur, Myq;, M, E, aj, ap) where

o A={ay,as,...,an} is a set of action nodes. Myer : A — DIST; is
a mapping that specifies the distributions of the execution time
of actions.

o T ={11,t2,...,tn} is a set of completion transitions.

o FC{AXT}U{T x A} is the set of flow edges.

o C={c1,c2,...,cn} is a finite set of guard conditions. Cond :
F — C is a mapping that assigns each flow edge f; € F with a
guard condition c;.

o Let V=AV|,Va,..., Vi } be the set of all variables used by AD,
VAL be the set of all possible variable assignments, and Vi p,; C
V be the input variables whose values rely on user inputs. M.,q;
Vinpur — DIST, is a mapping that specifies the value distributions
of input variables.

o M:Ax2VXVAL s oVXVAL i 4 mapping that describes the value
changes of variables within an action.

e aj €A is the initial node, and ar € A is the final node. There is
only one completion transition t € T s.t. (aj,t) € F, and for any
' eT, ({',ar) ¢ F and (ap,t') ¢ F.

To analyze the dynamic behaviors of an activity diagram, we use
the concurrent states to indicate the simultaneously executing actions
and their execution time.

Definition 2. Let AD be a stochastic activity diagram. The current

state (CS) of AD is a pair (v,0), where vC A and 6 :v %RS’ is a
clock function that indicates how long the action a € v has started.
The initial state of AD is (aj,0) where 8g(ar) =0, and any state
(aF,9') is a final state of AD.

Definition 3. Let t € T be a transition and (v,0) be a state of an
activity diagram.

e °t denotes the preset of t, then °t = {a| (a,t) € F}.

e t* denotes the postset of t, then t* = {a | (t,a) € F}.

o enabled(V) denotes the set of completion transitions that are
associated with the outgoing flow edges of Vv, then enabled (V)
={t|* C v}

o firable(v) denotes the set of transitions that can be fired from
CS, i.e, firable(v)={ t | t € enabled(v) \ °t are all completed
A I ne€A. Cond((t,n)) is satisfied \ (v—"t)N* =0}.

During the concurrent execution of actions, when an action fin-
ishes, it needs to determine the next state. Note that at this time,
although it is required that action executions should follow the
specified time distributions, when none of the completion transitions
can be fired, the change of v in the current state will be delayed. For
example, upon the completion of node f in Figure 3, the join node
syn_2 may not be executed immediately, since the join node needs
to wait for the completion of all the incoming nodes.

Definition 4. Let AD be a stochastic activity diagram and (v,0) be
the current state. If upon the completion of the action oL € V there
exists a transition T € T such that (0,T) € F and T € firable(v), T
will be fired immediately and the value of 8(Q) should strictly follow
the distribution of Mg (Q). Otherwise, 0. needs to wait until T is
firable. Let & be the delay since the last fire of some transition. The
new state (V',0')=fire((v,0),7,d) can be derived by:

) vV =(v-"t)Ur*, and )

L]
2)V0c€v’,9’(ot):{ aEV—(v—11)

o(a) +98 otherwise

The behavior of stochastic activity diagrams can be represented by
a sequence of states and fired transitions together with delays.

Definition 5. A run p of a stochastic activity diagram AD is a
sequence of states, transitions and delays, i.e.,

(70,90) (1,81) (Tu-1,01-1)

p = (Vo,80) —— (v1,61) (Vn,0n)
where Vo = {ar}, 6p(a;) = 0, v, = {ar}, O,(ar) € R} and
(Vit1,0i11)=fire((vi,0:),7:,8;). In the run, §; denote the time in-
terval between the ith and (i+ 1)th completed actions.

B. NPTA Model Generation

We extend the semantics of activity diagrams to incorporate both
the distribution information and the action implementation details.
Since the original activity diagrams do not support these features,
in our approach all such information is saved as a UML note for
activity diagrams. Based on the formal definitions in Section IV-A,
activity diagrams can be parsed and automatically translated into
an executable NPTA model for the purpose of quantitative analysis.
Similar to the work proposed in [12], our approach decouples the
syntax and semantics of activity diagrams using the front-end model
and back-end configuration. Note that all the activity diagrams share
the same front-end model but different back-end configurations which
specify the parameters as well as data structures to support the
stochastic execution of activity diagrams.

1) Back-end Model: During the translation, we abstract an activity
digram as a directed graph with action nodes and control nodes (i.e.,
decision and merge nodes) connected by flow edges. To simplify the
modeling, in the directed graph we do not model the synchronization




bars explicitly. Instead, we put the constraint that a node can be
executed only when all its precedent nodes are complete. Such syn-
chronization constraint is implemented based on the communication
between nodes. When one node is complete, it will notify all its
successive nodes. When an action node collects all the notifications
from its predecessor nodes, it can start to execute.

Unlike front-end model which has a graphical representation, the
back-end configuration is textual. It defines global constants and
variables (distribution information and user inputs), structure informa-
tion (node precedence and message channels) and functions (action
functions and branch functions). By using our developed parsing tool,
such information can be automatically extracted from the extended
activity diagrams and transformed into back-end configurations.

Assume that there are N nodes (i.e., action nodes and control
nodes) in an activity diagram. To identify each node, the back-
end configuration assigns each node with an ID. To describe the
execution time distributions of these nodes, a two-dimensional array
distribution[N][m] is used. Assume that the ID of current node is nid
and the execution time follows the normal distribution. The expected
execution time of current node is saved in distribution[nid][0], and
its standard deviation is saved in distribution[nid][1]. Since control
nodes only handle the control flow, we assume that they have a delay
of 0. To allow the modeling of action loops in a run, we use an array
visit[N] to record the visit number of each node.

In the extracted directed graph, the directed edges indicate the
token flow. In other words, they reflect the notification message flow.
For example, if there is a flow edge from node id, to node idy, it
means that, after the execution of node id,, node id, will immediately
send a notification to node idy. Since UPPAAL-SMC only supports
the broadcast for the communication, to create a private channel to
support the point-to-point communication, we create an urgent chan-
nel array msg[N x N]. We encode the communication from node id,
to node id, using the formula encode_msg(idy, idy) = idy X N + idy,
where msglencode_msg(idy, idy)] indicates the private unidirectional
channel from node id; to node idy. To model all the flow edges
in the back-end configuration, we do not construct a matrix of size
N x N. Similar to the adjacent list, we use a two-dimensional array
msg_graph[NJ[MAX_OUT] to save all the flow edge information,
where MAX_OUT indicates the maximum number of output flow
edges of all the nodes. Note that msg_graph[i][j] indicates the j;
message channel that starts from node i rather than the message chan-
nel from node i to node j If msg_graph[i][j]==-1, it means that there
are at most j flow edges that start from node i. Otherwise, it means
that there is a message sent from node i to node msg_graphli][j]%N.
Since different nodes have different number of precedent nodes and
successive nodes, we use the receive_count[N] and send_count[N]
to save such information respectively. Before execution, the current
node should collect receive_count[nid] notifications. Once the current
node is complete, it will notify send_count[nid] successive nodes
using the information saved in between msg_graph[nid][0] and

msg_graph[nid][send_count[nid]-1].
]

; [exp] X

Fig. 4. A snippet of an activity diagram

In the translation, all variables of activity diagrams are made
global. Actions can be considered as functions that deal with these
variables, and control nodes can be considered as branch functions
that determine the flow of messages (i.e., tokens). For input variables,
the back-end configurations defines its value distribution, and their

random values are generated in the initial action (i.e., ay). Since
UPPAAL-SMC supports almost the same programming constructs
as in C programming language, the translation of an action function
to its counterpart in UPPAAL-SMC needs few modifications. For
each action with an ID nid, in the back-end configuration, we will
create one action function counterpart named act_func_$nid$(). For
example in Figure 4, the action A has a corresponding UPPAAL-SMC
action function act_func_i(). To facilitate the usage of UPPAAL-SMC
functions in the front-end model, we define the function do_func(ID)
in the back-end configuration which can call any action function
with its ID. If nid refers to a control node, do_func(nid) will return
immediately without doing anything. For each control node (i.e.,
decision or merge node), we create a branch function br_func_$nid$()
in the back-end configuration. For example in Figure 4, the decision
node m has a branch function br_func_m(). Since the node can
only choose one output, we can get the information such that
send_count[m]=1, receive_count[m]=1, msg_graph[m][0]=m X n+
k, msg_graph[m][1]=m x n+ j and msg_graph[{m][x]=-1 for x > 1.
The major purpose of branch function is to determine which flow
edge will be chosen. Listing 1 gives an overview of the definition of
the branch function of decision node m in Figure 4. It also presents
a unified branch function select_func() which can call any branch
functions based on the ID of branch nodes.

message_t br_func_m(id_t nid) {

if (exp) return msg_graph[nid] [0];
if (!exp) return msg_graph[nid][1];
else return -1;

}

message_t br_func_n(id_t nid);

message_t select_func(id_t nid) {
if (nid==m) return br_func_m(nid);
if (nid==n) return br_func_n (nid);
return -1;

}

Listing 1. An overview of branch functions in back-end configuration

2) Front-end Model: Without considering the internal operation
and timing information, the behaviors of action and control nodes
can be modeled uniformly. After all precedent nodes have finished,
the current node can start. When a node is complete, it will notify all
its successive nodes immediately. Assume that the current action or
control node has an ID nid. Figure 5 shows the front-end model for
a single action or control node. The model shows that each node has
five major states: i) The init state is a commit state that initializes the
count information of the precedent and successive nodes. ii) After ini-
tialization, the receiving state tries to collect all the notifications (i.e.,
tokens) from all its precedent nodes via the channels in msg/[]. iii)
Upon receiving all the notifications from precedent nodes, the running
state executes the current action implemented in function do_func
with a time delay duration which is randomly generated following
the given distribution. iv) Once the current node is complete, the
sending state will judge the guard expressions on the outgoing edges
of current action or control node using the function select_func and
notify the successive nodes accordingly. v) The done state increases
the counter visit/nid] to indicate the finish of the current node. It is
important to note that the node can be reactivated when receiving
a notification by other nodes. Therefore, our framework allows the
quantitative analysis of loops in the design.

C. Property Generation and Quantitative Analysis

Although UPPAAL-SMC is based on simulation, the statistical
model checking borrows the idea of traditional model checking
approaches. When NPTA models are constructed, the designers
should provide properties for the purpose of analysis. Since our
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predecessor_count = receive_count[nid]
successor_count = send_count[nid]

& % NODE_NUM == nid
msgle]?

predecessor_count = receive_count[nid] - 1,
successor_count = send_count[nid]
predecessor_count == 0
duration = running_time(nid).
ck=0

Running

clk <= duration

e % NODE_NUM == nid
msg[e]?
predecessor_count --

clk >= duration

send_index = 0,
do_func(nid)
predecessor_\ successor_count > 0

send_msg = select_func(nid, send_index)

successor_count == 0

O

Done

visit[nid] ++

msg[send_msg]!
successor_count --,
send_index ++

Receiving Sending

Fig. 5. Front-end model for activity diagrams

approach focuses on the quantitative analysis of activity diagrams,
the designers would like to query “what is the probability that a
functional scenario can happen or complete within a time limit?”
Assume that the function scenario can be described using the formula
v, UPPAAL-SMC supports the probability estimation for properties
in the form of Pr[<= bound](y), where the bound specifies the time
limit. For example, Pr[<= T](<> act.done) tries to figure out the
probability that the action act can complete within time 7'.

Our approach focuses on the time analysis of the stochastic
behavior of activity diagrams. Note that our framework can be
easily extended to deal with other kinds of performance analysis.
Assuming that p = Pr[<= bound](<> ), based on the parameters
€ (probability uncertainty) and o (probability of false negatives) pro-
vided by designers, UPPAAL-SMC [7] computes the number of runs
needed in order to produce an approximation interval [p —€, p + €]
with a confidence 1 — o. When the simulation-based check finishes,
the distribution of the probability of successful simulations will be
reported to enable the quantitative analysis.

Coverage oriented analysis are widely used in the analysis of
activity diagrams. Inspired by the coverage metrics (i.e., action
coverage, interaction coverage, and key path coverage) presented
in [5], our framework can automatically extract such functional
coverage information from activity diagrams and translate it into
performance queries (i.e., properties) accordingly. By default, our
framework supports the following three kinds of performance queries,
which can fulfill most common purposes.

o Action queries are in the form of Pri<= T](<>
act;.status && visit[i] >= k), which evaluates the possibility
that within time limit 7 the action act; can be visited with the
state status (e.g., done, running, receiving) at least k times.

« Interaction queries are in the form of Pr[<= T](<>
act;.status && act;.status), which evaluates the possibility of
concurrent actions with specified statuses within time limit 7.

e Run queries are in the form of Pri<= T](<>
acty,.done && acty, .done && && acty, |.done &&
visitivo] >=ko && ... && visit[v,_1] >= k,_1) where acty,
is the action (with an ID of v;) that has the outgoing flow edge
7;. The queries try to figure out the probability that the run can
be finished within time limit 7'.

While there is no specific constraint on loop times, the visit value
is set to 1 by default for the above queries. It is important to note
these three kinds of queries are by no means the golden ones for
the quantitative analysis. Other kind of queries are allowed in our
framework for specific purposes.

V. CASE STUDY

Based on our proposed framework, we developed a tool chain
that integrates the UML edit tool Enterprise Architect, UPPAAL-
SMC model checker and our NPTA model generator (implemented
using the JAVA programming language). Based on the given user
requirement, the generator can parse extended activity diagrams and
translate them into NPTA models and properties automatically.

To evaluate our approach, this section presents two case studies:
an Automatic Train Operation (ATO) subsystem of the railway
signaling system Communication-Based Train Control (CBTC) [11],
and an Online Stock Exchange System (OSES) [5]. Although the
original activity diagrams of both designs do not have the stochastic
information, we include them based on the suggested data from
our industrial parter. In the experiments, all the properties are
generated automatically based on the coverage information specified
by designers. Due to page limit, for the analysis results of each
kind of queries, we only show the typical cases. The experimental
results were obtained from UPPAAL-SMC V4.1.18 on a desktop with
3.30GHz AMD CPU and 4GB RAM.

A. Experiment 1 — Onboard Subsystem of CBTC

CBTC is a railway signaling system that makes use of the
telecommunications between trains and track equipments for traffic
management and infrastructure control. The ATO subsystem is an op-
erational safety enhancement system which is used to help automate
operations of trains. Since trains run within uncertain environments,
the ATO subsystem suffers from the delay of communication and the
execution time variations of software and hardware components.

TABLE 1
EXECUTION TIME DISTRIBUTIONS OF ATO ACTIONS

[ID ] Action Function [ Time Distribution |
nl receive wireless communication signals N(3.0, 0.2)
n2 calculate static speed curve N(2.4, 0.4)
n3 select strict static speed curve N(4.0, 0.9)
n4 calculate dynamic speed curve N(1.5, 0.1)
nd calculate train position N(2.8, 0.8)
n6 generate train position report N(1.8, 0.5)
n7 send signals N(2.6, 1.0)
n8 compare with actual train position N(3.6, 0.6)
n9 generate train control information N(2.2, 0.2)
nl0 control the train N(2.0, 0.1)

We collect the activity diagram based design from [11], where the
diagram has 10 action nodes (without counting the initial and final
actions), 2 fork nodes and 2 join nodes. Since the response time of
operations (actions) is considered as the most important issue in the
system-level design, in this example we focus on the quantitative
analysis of the execution time. We do not investigate the stochastic
user inputs in this example. Table I presents the time distributions
for each action. In this example, we assume each action execution
time follows the normal distribution. The first column presents the ID
of actions, and the second column present the function conducted in
the action. The last column presents the execution time distribution
of actions. For example, the execution time of action n1 follows the
distribution N(3.0,0.2), where the expected execution time is 3.0
milliseconds and the standard deviation is 0.2 millisecond.

By applying the action queries, we can figure out the probability
of an action within a time limit. For this experiment, we set both €
and a to 0.02 for UPPAAL-SMC. Figure 6(a) presents two action
query instances (i.e., Pr[<= 25](<> n7.done) and Pr[<=25](<>
nl10.done)), which evaluate whether the action n7 and n10 can
complete within 25 milliseconds. By running 890 runs, the first
property obtains a probability interval [0.91,0.95] with a confidence
98%. By running 808 runs, the second property gets a probability
interval [0.92,0.96] with a confidence 98%. Both quantitative analysis
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cost around 5 minutes to get the evaluation results. From this figure,
we can find that action n7 has a shorter response time than action
n10. Interesting, we can find that in both cases when increasing the
time limit after a threshold (e.g., 22 milliseconds for action n10),
due to the accumulated time variations of actions, the change of the
completion probability is quite small.

The ATO subsystem has quite a lot of concurrent executing
components. To check the correlation between them, we adopt the
interaction queries for the quantitative analysis. Figure 6(b) presents
three typical interaction scenarios using the properties:

1) Scenariol: Pr[<= 5](n2.running && n6.running) which
checks the overlapped execution between actions n2 and n6
within 5 milliseconds.

2) Scenario2: Pr[<= 8|(n7.running && nd.receving) which
checks the probability that action n7 happens before action n4
within 8 milliseconds.

3) Scenario3: Pr[<= 5|(n5.done && nl.running) which checks
the probability that action n5 completes before the completion
of nl within 5 milliseconds.

The evaluation time of all these three queries is less than 5 minutes.
From the figures reported by UPPAAL-SMC, we can not only figure
out the probability of each interaction scenario, but also analyze the
change of the probability along the execution time.

B. Experiment 2 — Online Stock Exchange System

The activity diagram of the OSES design [5] is to model the stock
transaction processing scenarios including accepting, checking, and
executing the customers’ orders (market orders and limit orders).
It consists of 27 activities, 29 transitions and 18 key paths. In
this example, we consider the distributions of both user inputs and
action execution time. We assume that 50% of the orders are buy
orders and 50% of the orders are sale orders. We also assume that
20% of the orders employ market price and 80% of the orders use
the limit price. For a specific stock, the market price, limit price,
order amount and available amount are all randomly generated using
normal distributions. We also assume that the execution time of
actions follows the normal distribution. Due to page limit, we do
not present the distribution details.

In the OSES design, the quantitative timing analysis of action com-
pletion is a very important issue, since it can not only guarantee the
proper user experience, but also can be used to detect the performance
bottleneck of the system deployment. For this experiment, we set both
€ and o to 0.05 for UPPAAL-SMC. Figure 6(c) shows the action
queries results using four properties (in the form of Pr[<= 15](<>
act.done)) to check whether the actions trade_success, trade_failure,
trade_noMatch and trade_partexe can complete within 15 time units.
Each query in this example costs around 2-hour SMC simulation time.
From this figure we can find that the probability of the response of
transaction failures within 15 time units is extremely low (no data
generated). Among all simulation runs, the probability of activating
the noMatch events is lower than 10%, and the noMatch action can
abort the transaction much earlier (less than 6 time units) than the
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time limit. Under the stochastic input and execution time settings, the
chance of partial execution is a little bit higher than the successful
execution (35% versus 30%).

Since 80% of the orders are limit orders, our experiment focuses
on the quantitative analysis of the limit trades. For the limit sale/buy
orders in OSES design, there are two possibilities of the outcome:
the order is fully traded or partially traded. To check the scenarios
of four combinations, we conducted the quantitative analysis using
the run queries. In these queries, we do not specify the activation
number of actions. In other words, any executions with repeatable
actions will be counted in the run analysis. Figure 6(d) shows the
quantitative analysis results of the four combinations within a time
limit of 20 time units. We can find that among all the transactions
the case lbuy+partial can achieve the highest ratio. Interestingly, we
can find that at time 20 the case Isale+whole has a higher chance
to be completed than the case Isale+partial. However, if we set the
time limit to be smaller than 18, we will obtain an opposite answer.

VI. CONCLUSIONS

Due to the increasing interaction between systems and surrounded
environment, how to capture and analyze uncertain timing behaviors
of systems is becoming a major bottleneck. To address this problem,
this paper extended UML activity diagrams with the capability of
stochastic modeling of timing behaviors. Furthermore, it proposed
a framework based on UPPAAL-SMC that can conduct automated
quantitative analysis of activity diagrams with a large spectrum of
property-based performance queries. The experimental results of two
industrial case studies demonstrate the efficacy of our approach.
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