
On the Application of Formal Fault Localization to
Automated RTL-to-TLM Fault Correspondence
Analysis for Fast and Accurate VP-based Error

Effect Simulation - A Case Study?

Vladimir Herdt1 Hoang M. Le1 Daniel Große1,2 Rolf Drechsler1,2
1Institute of Computer Science, University of Bremen, 28359 Bremen, Germany

2Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
{vherdt,hle,grosse,drechsle}@informatik.uni-bremen.de

Abstract—Electronic systems integrate an increasingly large
number of components on a single chip. This leads to increased
risk of faults, e.g. due to radiation, aging etc. Such a fault
can lead to an observable error and failure of the system.
Therefore, an error effect simulation is important to ensure the
robustness and safety of these systems. Error effect simulation
with Virtual Prototypes (VPs) is much faster than with RTL
designs due to less modeling details at TLM. However, for the
same reason, the simulation results with VP might be significantly
less accurate compared to RTL. To improve the quality of a TLM
error effect simulation, a fault correspondence analysis between
both abstraction levels is required. This paper presents a case
study on applying fault localization methods based on symbolic
simulation to identify corresponding TLM errors for transient
bit flips at RTL. First results for the interrupt controller of
the SoCRocket VP, which is being used by the European Space
Agency, demonstrate the applicability of our approach.

I. INTRODUCTION

Ensuring the functional safety of electronic systems be-
comes one of the most important issues nowadays, as these
systems are being more and more deeply integrated into
our lives. Even if a system can be proved to perform its
intended functionality correctly, failures are still possible due
to hardware (HW) faults caused e.g. by radiation or aging.
The risk of such faults is rapidly increasing with the raising
complexity of design and technology scaling. To evaluate and
facilitate the development of safety measures, fault injection
is a widely accepted approach, which is also recommended in
different functional safety norms such as IEC 61508 and ISO
26262.

Traditional HW fault injection approaches operate on low
levels of abstraction such as gate level or Register Transfer
Level (RTL). While physical faults can be quite accurately
modeled at these abstraction levels, the slow simulation speed
becomes a major bottleneck for modern systems. This used
to be a problem for software (SW) development and system
verification as well, until the emergence of SystemC Virtual

? This work was supported in part by the German Federal Ministry of
Education and Research (BMBF) within the project EffektiV under contract
no. 01IS13022E and by the German Research Foundation (DFG) within the
Reinhart Koselleck project DR 287/23-1 and by the University of Bremen’s
graduate school SyDe, funded by the German Excellence Initiative.

Prototypes (VPs). VPs are basically full functional SW mod-
els of HW abstracting away micro-architectural details. This
higher level of abstraction, often termed as Transaction-Level
Modeling (TLM) [1], allows significantly faster simulation
compared to RTL. Therefore, safety evaluation using VP-based
fault injection, envisioned as error effect simulation in [2], is
a very promising direction.

Fault injection techniques for SystemC have attracted a
large number of work, see e.g. [3], [4], [5], [6]. They form a
technical basis for error effect simulation, but do not focus on
the core problem: the higher level of abstraction of TLM poses
a big challenge in error modeling. Please note that we use the
term “fault” for RTL and “error” for TLM due to the fact that
TLM is just a modeling abstraction. A high-level error model,
if not carefully designed, would yield significantly different
simulation results compared to a low-level fault model [7], [8].
This would make the safety evaluation results using VPs to
become misleading. Unfortunately, deriving an accurate high-
level error model is very difficult [7], [8].

In this paper, we examine the idea of a novel cross-level
fault correspondence analysis to aid the design of such error
model. The prerequisite of our analysis is the availability of
an RTL model and its corresponding TLM model. Then, for
a given RTL fault model, our analysis automatically identifies
for an RTL fault a set of candidates for error injection in
the TLM model. These candidates are potentially equivalent
to the RTL fault, in the sense that the error-injected TLM
model would produce the same failure as the fault-injected
RTL model.

The core idea of this RTL-to-TLM fault correspondence
analysis is inspired by the concept of formal fault localization
(see [9] for C and [10] for SystemC TLM). These approaches
automatically identify candidates for modifications in the
model under verification, which would make a given set of
failing testcases to become passing testcases. Such a candidate
potentially points to the location of the bug that causes a
failure. Our analysis is dual to this: Given successful TLM
simulations1, we search for locations to inject an error to

1A successful TLM simulation produces the same output as RTL simulation
under the same inputs.

produce the same failure observed in faulty RTL simulations.
Hence, we can apply the same set of techniques: instru-
menting the TLM model to include non-deterministic errors
and leveraging existing TLM model checkers to compute the
candidates.

The paper also presents first results of a case study on the
Interrupt Controller for Multiple Processors (IRQMP) of the
SoCRocket VP, which is being used by the European Space
Agency [11], to demonstrate the feasibility of the analysis. In
particular, we implement the cross-level analysis on top of the
recent symbolic simulation approach for SystemC [12], [13]
and apply our analysis to find TLM error injection candidates
for transient bit flips at RTL. To the best of our knowledge, it
is the first time such results on fault correspondence between
TLM and RTL are reported.

II. RELATED WORK

As mentioned earlier, a large number of fault injection
techniques for SystemC TLM models exists. These approaches
assume some TLM error models without qualitative or quan-
titative assessment of their correspondence to RTL faults.
[14] includes a comprehensive list of TLM errors that might
result from RTL bit flips. The paper also provides a set of
guidelines on how to (manually) derive corresponding TLM
errors, whereas our analysis is automated.

Another line of work is mutation analysis for SystemC TLM
models [15], [16], [17]. At the heart of any mutation analysis
is also an error model. However, the purpose of such model
is to mimic common design errors, but not HW faults caused
by external impact.

The most close work to ours is the one in [18], which
proposes an automatic RTL-to-TLM transformation to speed
up RTL fault simulation. The transformation produces an
equivalent TLM model from each fault-injected RTL model.
The obtained results can be mapped back to RTL. However,
this approach relies on a particular RTL-to-TLM transforma-
tion. Such transformation might not provide the best possible
speed-up compared to hand-crafted TLM models. In contrast
to our analysis, this approach is not applicable when the
corresponding TLM model already exists.

III. PRELIMINARIES

In this section we first briefly describe the interrupt con-
troller IRQMP of the SoCRocket VP used later in the case
study. The second half of this section briefly describes the
(extended) intermediate verification language to enable the
formal representation of TLM models as well as leveraging
advanced symbolic execution techniques.

A. Interrupt Controller for Multiple Processors (IRQMP)
The IRQMP is an interrupt controller from the SoCRocket

VP supporting up to 16 processors [11]. It consists of a register
file, several input and output wires and an APB Slave bus
interface for register access. The register file contains shared
and processor-specific registers. Every register has a bit width
of 32. Each bit naturally represents an interrupt line.

The IRQMP supports incoming interrupts (using the irq in
wire or force register) numbered from 1 to 31 (interrupt line

0 is reserved/unused). Lines 15:1 are regular interrupts and
lines 31:16 are extended interrupts. In regular operation mode,
IRQMP ignores all incoming extended interrupts. The irq req
and irq ack wires are connected with every processor and al-
low to send interrupt requests and receive acknowledgements.

The functionality of the IRQMP is to process incoming
interrupts by applying masking and prioritization of inter-
rupts for every processor. Prioritization of multiple available
interrupts is resolved using the level register. A high (low)
bit in the level register defines a high (low) priority for
the corresponding interrupt line. On the same priority level,
interrupt with larger line number is higher prioritized. See the
specification [19] of the IRQMP for more details.

B. Extended Intermediate Verification Language (XIVL)

The XIVL has been proposed in [13] as an extension to
the SystemC Intermediate Verification Language (IVL) [12]
to act as high-level intermediate representation with formal
verification support for SystemC TLM. In essence, the XIVL
provides a small core of instructions to capture the cooperative
multi-threaded simulation semantics of SystemC and supports
all arithmetic and logic operators of C++. For verification pur-
poses it provides symbolic expressions as well as the assume
and assert functions with their usual semantics. Control flow
is modeled using high level control flow structures. A small
set of object oriented programming features - including virtual
functions, inheritance and dynamic dispatch - is supported for
modeling TLM designs more naturally.

Symbolic simulation for SystemC as proposed in [12],
[20], [21], [22] essentially combines symbolic execution with
complete exploration of all process schedules. Partial Order
Reduction techniques are employed to improve scalability by
pruning redundant schedules [23], [24].

A formal verification approach based on symbolic simu-
lation has been presented in [13] and demonstrated for the
IRQMP TLM model. In this paper, we instrument the available
TLM model to include non-deterministic errors and leverage
the existing TLM model checker based on symbolic simulation
for fault localization.

IV. RTL-TO-TLM FAULT CORRESPONDENCE ANALYSIS

Our proposed RTL-to-TLM fault correspondence analysis
allows to find errors in a TLM model that correspond to faults
in the RTL model. We assume that the RTL and TLM model
are functionally equivalent, i.e. they produce the same outputs
when given the same inputs. Furthermore, we assume that a
set of (representative) inputs, e.g. in the form of testcases,
is available for the RTL or TLM (since both use the same
inputs) model. These inputs should preferably cover a large
set of functionality of the design. Similarly, we assume that a
set of fault injection locations is available for the RTL model.
Otherwise, the fault injection locations can be obtained by
tracing the execution of the RTL model, e.g. using an observer
class, based on the available testcases. Please note that a fault
injection location consists of three pieces of information: 1)
a source line, 2) an injection time, i.e. a number that denotes
which execution of this source line should be fault injected

Formal
Fault Localization

Analysis

RTL Model

RTL Model

+ error injected

symbolic simulation

Input

TLM Model

Corresponding
TLM Error Injection

Candidates

Output

Output

E

Apply if
Output E = Output

Fig. 1. Fault correspondence analysis overview

and 3) the bit position which shall be flipped. The reason
for information (2) is that we consider transient faults in this
paper.

A. Correspondence Analysis Overview and Algorithm
Fig. 1 shows an overview of our analysis approach. A

corresponding algorithm is shown in Fig. 2. It computes a
set of corresponding error candidates on TLM level for every
injected fault on RTL. The algorithm considers every fault
injection location L on the RTL model. First we construct
the faulty RTL model with respect to L (Line 4). In our
implementation, we attach an fault injection class as observer
to our RTL model that can inject an error at runtime. Then
we simulate the correct and faulty RTL model with the same
input. There are two possible cases: (i) Both RTL models
produce the same output. In this case the injected fault had no
observable effect and simulation is repeated with a different
input (Line 5). (ii) Otherwise, both RTL models produce a
different output. Then we apply a formal fault localization
analysis based on symbolic simulation on the TLM model
(Line 9) to produce a set of possible corresponding error
locations C on the TLM model. Essentially, all these reported
error locations C produce the same failure, i.e. same output,
as the faulty RTL model for the given input. The set C
is integrated into the result set for L by computing a set
intersection (Line 13) - or simple assignment in case C is the
first result (Line 11). If the result set is empty, our analysis
concludes that no corresponding TLM error can be found for
the current RTL fault and we consider the next RTL fault. The
reason is that a corresponding TLM error must produce the
same output as the faulty RTL model for all inputs. Otherwise,
the result set is not empty, we continue with the next input.

B. Example
a) Method Overview: As an example, consider a bit flip

fault in the RTL model of the IRQMP (interrupt controller,
see preliminaries Section III-A) when initially configuring the
mask register using a bus transfer operation as fault injection
location L. Furthermore, consider three test scenarios with
different inputs:

1) Send interrupt using the irq in (incoming interrupt) wire
2) Send interrupt using the force register

1 result← ∅ /* Mapping from RTL fault injection
location to set of corresponding TLM error
injection candidates */

2 for L ∈ RTL-fault-injection-locations do
/* Start with empty result set for L */

3 result[L]← ∅
4 RTL-ModelE ← RTL-Model with L injected
5 for input ∈ testcases do

/* Check if RTL fault L has observable
effect */

6 output ← simulate(RTL-Model, input)
7 outputE ← simulate(RTL-ModelE , input)
8 if output 6= outputE then
9 candidates ← fault-localization-analysis(

TLM-Model, input, outputE)

10 if result[L] = ∅ then
/* First set of candidates */

11 result[L] ← candidates
12 else

/* Combine with existing set */
13 result[L] ← result[L] ∩ candidates

14 if result[L] = ∅ then
/* No corresponding TLM error for L

found, check next RTL fault */
15 break

Fig. 2. Fault correspondance analysis

TABLE I
CORRESPONDING TLM ERROR INJECTION CANDIDATES

(CORRESPONDING ERROR HIGHLIGHTED)

TLM Error Injection Location Inputs
1 2 3

Bus Transfer
Mask Register Configuration X X X
Force Register Configuration X

Wire Transfer
Incoming Interrupt Wire X

Computation
Prioritization Logic 1 X X
Prioritization Logic 2 X X

3) Send the same interrupt twice using the irq in wire
All of these inputs result in different outputs for the RTL
model with and without injection of the fault L. In particular
no interrupt is generated by the interrupt controller for the
masked interrupt line. On the TLM model, our analysis
identifies different candidates for corresponding errors. In
particular, it identifies different transient bit flip errors during
computations as well as wire/bus transfer that lead to the same
observable behavior.

The results are summarized in Table I. For the first and
second input we obtain multiple possible error locations in
the TLM model. By sending the same interrupt twice (third
input) to the interrupt controller, the effects of a transient com-
putation error and non-related transfer error are eliminated. By
computing the intersection of all possible error locations for
these inputs, the corresponding TLM error is obtained - bus
transfer error during configuration of the mask register.

1 -- combinatorial VHDL process, which essentially contains the whole logic of the IRQMP - sensitive on the reset
signal, update of internal signals as well as incoming bus and interrupt signals

2 comb : process(...)
3 -- send out current internal signal values and compute new values which will overwrite the current values in the

next clock cycle
4 variable v : reg_type; -- registers to store regular interrupt lines for local computation
5 variable v2 : ereg_type; -- registers to store extended interrupt lines for local computation
6 begin
7 -- ... prioritize interrupts, register read ...
8
9 -- register write

10 if ((apbi.psel(pindex) and apbi.penable and apbi.pwrite) = ’1’ and
11 (irqmap = 0 or apbi.paddr(9) = ’0’)) then -- essentially, check that bus is enabled and used in write mode
12 case apbi.paddr(7 downto 6) is -- decode target register
13 -- ...
14 when "01" => -- write to processor specific mask register
15 for i in 0 to ncpu-1 loop -- iterate over all processors
16 if i = conv_integer(apbi.paddr(5 downto 2)) then -- decode and check target processor
17 v.imask(i) := apbi.pwdata(15 downto 1); -- write to mask of processor i, RTL fault injected here
18 if eirq /= 0 then -- check if extended interrupts are also handled
19 v2.imask(i) := apbi.pwdata(31 downto 16); -- in this case also update the extended interrupt lines of

the mask register
20 end if;
21 end if;
22 end loop;
23 -- ...
24 end case;
25 end if;
26
27 -- ... register new interrupts, interrupt acknowledge, reset ...
28 end process;

Fig. 3. Example IRQMP code excerpt in VHDL showing register configuration, to illustrate fault injection on RTL (line with fault injection highlighted)

1 // generic (using templates) and re-usable TLM
register class, the inherited class provides the
basic interface and some default implementation

2 template<typename DATA_TYPE>
3 class sr_register : public sc_register_b<DATA_TYPE> {
4 //...
5 public:
6 void bus_write(DATA_TYPE i) {
7 // callbacks notify observers about register

access directly without context switches
8 raise_callback(SR_PRE_WRITE);
9 // corresponding TLM error location - update the

internal register value, the write mask
allows selective updates

10 this->write(i & m_write_mask);
11 // the IRQMP will trigger interrupt re-computation

after the mask register is updated
12 raise_callback(SR_POST_WRITE);
13 }
14 //...
15 }
16
17 // a register bank groups multiple registers -

similarly, this is a generic implementation
18 template<typename ADDR_TYPE, typename DATA_TYPE>

19 class sr_register_bank : public
sc_register_bank<ADDR_TYPE, DATA_TYPE> {

20 typedef typename std::map<ADDR_TYPE,
sr_register<DATA_TYPE> *> register_map_t;

21 register_map_t m_register; // use a mapping (address
to register) to store registers

22 //...
23 public:
24 // bus read/write transactions matching a register

address are automatically redirected to this
class

25 bool bus_write(ADDR_TYPE offset, DATA_TYPE val) {
26 sr_register<DATA_TYPE> *reg =

get_sr_register(offset); // retrieve register
for the given (bus) address

27 if(reg) {
28 reg->bus_write(val); // update register value
29 }
30 return true;
31 }
32 //...
33 }
34
35 // register bank used as member variable in the IRQMP
36 sr_register_bank<unsigned int, unsigned int> r;

Fig. 4. TLM code for register configuration, showing a corresponding TLM error (line highlighted) for Fig. 3

b) Fault Correspondence: To further illustrate this fault
injection example, Fig. 3 and Fig. 4 show relevant code of
the IRQMP for configuring the mask register at RTL and
TLM, respectively. The source line where the fault has been
injected at RTL and the corresponding error location at TLM
are highlighted. The RTL code is available in VHDL, and the
TLM code in SystemC.

The RTL code stores internal signals for registers separated
for regular (lines 15:1, reg type) and extended interrupts (lines
31:16, ereg type). The processing logic of the IRQMP is
available in the combinatorial process comb, shown in Fig. 3.
Essentially, it contains the whole logic of the RTL model and
is triggered whenever some input or internal signal changes.

It is responsible for interrupt prioritization, processing of
register read/write requests and interrupt acknowledgements,
and writing output signals. Internal signal values are updated
in a separate process at every clock cycle. In particular Fig. 3
shows processing code for a bus write request to the CPU
specific mask register for normal (Line 17) and extended
interrupts (Line 19). The target register and processor are
encoded in the bus address signal, they are decoded in Line 12
and Line 16, respectively. In this example a fault is injected
in Line 17 during mask register configuration.

The TLM implementation, shown in Fig. 4, of the IRQMP
keeps a register bank (Line 36), which essentially contains
a mapping of an address value to a register (Line 21). A

bus write transaction will call the bus write function of the
register bank (Line 25-31). The function will retrieve the target
register directly based on the write address in Line 26 and
dispatch the write access to the register class in Line 28. The
register will finally update its internal value in Line 10, which
is the corresponding TLM error. Before and after the update,
callback functions are used to notify the IRQMP and update its
internal state directly without any context switches. In this case
the main processing thread of the IRQMP will be notified to re-
compute outgoing interrupts. Please note that the register bank
implementation is not specific to the IRQMP but a generic and
re-usable implementation. Furthermore, the TLM model can
update the whole register, while the RTL model only updates
bits 15:1 when extended interrupts are ignored. This is not
a problem, since the prioritization logic of the TLM model
simply ignores the extended interrupt lines in this case and
therefore produces the same failure (when the corresponding
error is injected) as the faulty RTL model.

V. FORMAL FAULT LOCALIZATION ANALYSIS

This section describes our formal fault localization analysis,
to obtain candidates for corresponding TLM errors, in more
detail. We reduce this problem to a verification problem of
assertion violations by encoding error injection selection non-
deterministically and adding appropriate constrains to prune
invalid solutions. Then we employ symbolic simulation for an
efficient exhaustive exploration to find all possible solutions.
In general different formal verification techniques besides
symbolic simulation could also be used to find solutions.

Fig. 5 shows an overview of our approach. The analysis
requires the TLM model as well as the input and output of the
faulty RTL model (marked grey in Fig. 5). We assume that the
TLM model is available in the XIVL format to apply formal
analysis techniques. The TLM model contains annotations for
a fine grained selection of instruction where error injection
can take place (see 1 in Fig. 5).

First a testbench is generated by using the input and output
to construct an input driver and result monitor, respectively
(see 3 in Fig. 5). The testbench is also available in the XIVL
format and contains the simulation entrypoint - the main
function - which is responsible to setup all components. The
result monitor contains the assertions which constrain valid
solution.

Then the TLM model and testbench are automatically
combined to a complete TLM model. During this process, the
TLM model will be instrumented with symbolic error injection
logic to non-deterministically select an error injection location
for a transient one bit error (see 3 in Fig. 5). The annotations
on the TLM model are used to guide the instrumentation.

Finally, the complete TLM model is passed to our symbolic
simulation engine for a formal analysis. Based on the symbolic
error injection logic instrumented into the TLM model, the
symbolic simulation will find and report all concrete error
injection locations that will cause the TLM model to produce
the same failure, i.e. same output, as the faulty RTL model
for the given input.

In the following we will discuss 1) annotations, 2) symbolic
error injection logic, and 3) testbench encoding in more detail.

TLM Model
(XIVL format)

Automatic
Translation

Complete
TLM Model

(XIVL format)

with symbolic error
injection logic

Symbolic
Simulation

Testbench
(XIVL format)

Main Function

with annotations

Input Driver

Result Monitor

RTL Model

+ error injected

Output E

Input

Corresponding
TLM Error Injection

Candidates

assert: observed TLM output
is not equal to output E

search for all
assertion violations

1

2

3

Fig. 5. Formal fault localization analysis overview

A. Annotations

We use annotations in the TLM model for a fine grained
control of error injection. Assignment instructions are anno-
tated to denote, that error injection can take place. During
instrumentation, every annotated assignment will be modified
to either stay unchanged or toggle a bit flip in the result - based
on a non-deterministic choice during analysis (at runtime).
For convenience, we also support function annotations. These
will be propagated to all assignments in the function. Using
annotations is a flexible approach to control error injection
more precisely. These annotations can happen manually, or
using a static analysis that modifies the code automatically,
e.g. based on a specification provided by the user. This ensure
that meaningful locations for error injection are reported -
otherwise the initial state, or the output values would be
modified. Furthermore, injection can be selectively activated
and deactivated at runtime, based on a boolean global variable.
This allows to run the same code blocks, e.g. functions, with
and without error injection. We use it to deactivate error
injection during initialization of the TLM model. The reason
is that the same code is also used during testbench specific
configuration, where error injection should be allowed.

We use a re-usable modeling layer for registers and wires
based on [13], which are used by many TLM peripheral
models including the IRQMP. Error injection in bus and
wire transfer operations, as well as many computations can
be handled by injecting errors in the modeling layer itself.
An example for the register class is shown in Fig. 6. The
injectable annotation on the set bit function is propagated to
both assignments.

B. Symbolic Error Injection Logic

We integrate a set of global variables and functions, shown
in Fig. 7, into the complete TLM model for symbolic error
injection. In particular the functions inject bitvector error
and inject bool error are used from within the TLM model.
Consider again the example in Fig. 6. For example, the
assignment @injectable this->value = value; in the write

1 // XIVL implementation of the TLM register class
2 struct Register {
3 // write mask allows selective updates on bus access
4 uint32_t value;
5 uint32_t write_mask;
6
7 bool get_bit(Register *this, uint32_t index) {
8 return this->value & (1 << index);
9 }

10
11 @injectable
12 void set_bit(Register *this, uint32_t index, bool

value) {
13 // injectable annotation is automatically

propagated to both assignments
14 if (value) {
15 // set bit
16 this->value |= 1 << index;
17 } else {
18 // clear bit
19 this->value &= ∼(1 << index);
20 }
21 }
22
23 uint32_t read(Register *this) {
24 return this->value;
25 }
26
27 void write(Register *this, uint32_t value) {
28 // errors can be injected at assignments marked

with @injectable
29 @injectable this->value = value;
30 }
31
32 void bus_write(Register *this, uint32_t value) {
33 // ... PRE/POST write callback handling omitted in

this example ...
34 @injectable this->value = value & write_mask;
35 }
36 }

Fig. 6. Excerpt of an annotated TLM register class in XIVL

function in Line 29 is transformed to this->value = in-
ject bitvector error(value, 32); when annotations are resolved
during instrumentation.

The inject bitvector error function (defined in Fig. 7) ex-
pects two arguments, an integer and its bitwidth. The bitwidth
argument denotes the range of bits from which one is selected
non-deterministically for flipping. The bitwidth argument is
automatically generated based on static type informations
during the instrumentation process, which rewrites the an-
notations. By using a 64 bit integer type as argument and
return value, we also automatically support all integer types
with smaller bitwidth. For this case study, 32 bit values are
sufficient. The inject bool error function in principle works
analogously.

For convenience we use short names in Fig. 7 for the global
variables, in the TLM model they have a unique name prefix
to avoid name clashes with existing code. The boolean active
variable allows to selectively toggle error injection and thus
control it more precisely. It is accessed by means of the
activate/deactivate injection functions defined in Line 8 and
Line 4, respectively.

The condition variable is initialized with a symbolic integer
value in Line 15 and together with the id variable allows non-
deterministic selection of an injection location. This works
as follows: Consider an invocation of inject bitvector error
and assume that active is true. If no error has been injected

1 // dynamically toggle error injection
2 bool active = false;
3
4 void deactivate_injection() {
5 active = false;
6 }
7
8 void activate_injection() {
9 active = true;

10 }
11
12 // variables store injection choices for inspection

and ensure that only single error is injected
13 int id = 0;
14 int location = -1;
15 int condition = ?(int);
16 int bit = -1;
17
18 int64_t flip_single_bitvector_bit(int64_t val, uint8_t

bitwidth) {
19 // non-deterministically choose a single bit in

bitwidth to flip
20 uint8_t x = ?(uint8_t);
21 assume (x >= 0 && x < bitwidth);
22 // perform the actual bit flip
23 val = val ˆ (1 << x);
24 // store choice for later inspection
25 bit = x;
26 // result is symbolic due to non-deterministic choice
27 return val;
28 }
29
30 int64_t inject_bitvector_error(int64_t val, uint8_t

bitwidth) {
31 // unique id ensures only a single error is injected
32 id += 1;
33 if ((condition == id) && active) {
34 // record the injection choice for later inspection
35 @track "one bit error injection";
36 location = id;
37
38 // perform a non-deterministic bit flip
39 val = flip_single_bitvector_bit(val, bitwidth);
40 }
41 return val;
42 }
43
44 bool inject_bool_error(bool val) {
45 // essentially similar to injecting a bitvector error
46 id += 1;
47 if ((condition == id) && active) {
48 @track "boolean error injection";
49 location = id;
50
51 val = !val;
52 }
53 return val;
54 }

Fig. 7. Encoding details for transient one bit error injection

yet, then both branch directions in Line 33 are feasible, i.e.
condition = id can evaluate to true and false. Therefore,
symbolic execution will split into two independent paths ST

and SF , respectively and explore both branch directions. This
will update the path conditions of ST and SF with condition
= id and condition 6= id, respectively. Please note, that id is a
concrete integer value in this case, e.g. the number 4. Since id
is incremented on every call of inject bitvector error, the true
branch of the if statement in Line 33 becomes infeasible for
the ST path and all its descendants. Therefore, at most a single
error is injected on every execution path. The location variable
stores a copy of the injection id for debugging purposes.

The @track instruction is specifically recognized by our
symbolic simulation engine and records a snapshot of all

instruction pointers of the callstack of the currently executed
thread, i.e. essentially the currently executed instruction in the
active thread and all of its called functions. This allows to
pinpoint the error injection location for later inspection.

The function flip single bitvector bit is used in Line 39
as a helper function to inject a single bit error into an
integer variable. It creates and constrains a symbolic integer
value to non-deterministically select a single bit in the range
defined by the bitwidth argument (Line 20-21). The global
bit variable records the non-deterministic choice in Line 25
for later inspection (eventually the SMT solver will provide
concrete values for non-deterministic choices). Based on the
non-deterministic choice, the function performs the bit flip in
Line 23 and returns the result. Please note, that the result itself
becomes a symbolic expression.

C. Testbench

This section provides more details on the testbench focusing
on assertion generation to guide the formal analysis. For il-
lustration purpose, we discuss a (simplified) concrete example
testbench for the IRQMP. Essentially, the input specifies in-
coming interrupts for the IRQMP and the output is a prioritized
list of interrupt requests generated by the IRQMP.

When sending the interrupt mask 0b110 as input and inject-
ing a fault in the RTL model that results in wrong prioritiza-
tion, the output [2, 3] is observed instead of the expected output
[3, 2] - since higher interrupt lines have higher priority. Based
on the input and faulty output the testbench is constructed. The
monitoring logic records the observed interrupts in an array
irq. Furthermore, it keeps track of the number of received
interrupts in the num irqs variable. Finally, the monitor asserts
that ((irq[0] 6= 2) || (irq[1] 6= 3) || (num irqs 6= 2)) holds at
the end of simulation. Essentially, it asserts that the observed
output for the TLM model is not equal to the output of the
faulty RTL model. Thus, the symbolic simulation engine will
search for all possible error inject locations, that violate the
assertion, i.e. produce the same failure at TLM as the faulty
RTL model.

As an optimization, to prune irrelevant search paths which
cannot produce the output of the faulty RTL model, we place
assume instructions in the monitor. For this example, we would
assume that the first received interrupt is 2 and the second is
3. Furthermore, we would assume that num irqs < 2. Then
a simple assert (false); can be placed at the end of simula-
tion. Using stepwise assumptions during symbolic simulation,
instead of a single assert in the end, can significantly reduce
the considered search space, by pruning irrelevant search paths
early.

VI. CASE STUDY

We have evaluated our proposed fault correspondence anal-
ysis on the IRQMP model from the SoCRocket VP [11] as a
case study. Our formal fault localization analysis is based on
symbolic simulation approach of [12], [13]. In the following
we report first experimental results for our proposed approach.

A. Experiments
All experiments were performed on an Intel 2.6 GHz

machine with 16GB RAM running Linux. We employ Z3
v4.4.1 as our SMT solver.

For the experiments we use a set of representative test
scenarios to cover different functionality of the IRQMP. Every
scenario is using different inputs. Incoming interrupts are sent
from the testbench to the IRQMP via register access (using
a bus-transfer operation) or by writing to the irq in wire.
Furthermore, different priority levels are tested and resending
of interrupt requests. Please note, all tests only use a single
CPU and do not consider extended interrupts. The reason is
that the RTL and TLM model are not functionally equivalent
when using these features.

We use a set of representative fault injection locations for
the RTL model. For every of these fault locations, a fault is
injected in the RTL model for every test scenario. Table II
shows a summary of our experimental results for injecting
a bit flip during register configuration, interrupt prioritization
computation as well as interrupt sending and acknowledgment.
In particular, the following faults are injected:

1) a bit is flipped in the mask register, therefore the cor-
responding interrupt line is not processed or additional
interrupt line activated;

2) a bit is flipped in the force register, therefore an addi-
tional interrupt needs to be processed or is omitted;

3) an incoming interrupt line is flipped, which has similar
effect as the previous fault, but covers different func-
tionality of the IRQMP;

4) a bit is flipped when resetting the incoming interrupt
lines to zero;

5) the activation signal of the active interrupt acknowledg-
ment wire is flipped, therefore an acknowledgment is
missed;

6) a bit is flipped when sending the acknowledgment, this
results in a wrong interrupt being acknowledged.

7) a bit is flipped when computing the interrupt prioriti-
zation, therefore a wrong interrupt is send or the order
of two incoming interrupts is changed (e.g. flipping the
second bit in 0b11 results in 0b01, thus interrupt line 1 is
send first, even though line 2 has higher priority - since
line 2 is still in the pending register, it will eventually
be sent out too);

8) similar to the previous one, but at different location,
where interrupts are interpreted as number instead of
lines, e.g. 0b11 is interpreted as number 3 instead of
interrupt lines 1 and 2;

Essentially, Table II combines the analysis results for all test
scenarios for every fault injection location and reports the
average values over all analysis runs. The first column shows
a description of the RTL fault. The second column shows the
type of the fault: BT=Bus Transfer, WT=Wire Transfer and
Comp=Computation. The third and fourth column show the
average runtime (in seconds), which is further divided in total
analysis and SMT time. The SMT time shows how much of
the analysis time is spent with solver queries. The number of
solver queries is reported in the column SMT Queries. The

TABLE II
COMBINED RESULTS OF EXPERIMENTS (RUNTIMES IN SECONDS)

RTL Fault Location Type
Average Runtime Sym. Error SMT TLM Errors
TOTAL SMT Injections Queries Max Min Result

1) Mask Register Configuration BT 285.86 184.18 162 30992 6 1 1
2) Force Register Configuration BT 317.88 210.14 196 34690 7 4 4
3) Incoming Interrupt Wire WT 317.80 207.18 166 35057 6 2 2
4) Incoming Interrupt Wire Reset WT 690.74 454.03 311 74595 0 0 0
5) Missing Acknowledgement WT 395.10 262.00 211 42839 7 6 6
6) Wrong Acknowledgement WT 363.81 241.43 211 41502 1 1 1
7) Prioritization Logic 1 Comp 209.41 154.01 127 21856 12 4 4
8) Prioritization Logic 2 Comp 373.88 242.48 201 40538 9 0 0

column Sym. Error Injections shows how many errors have
been injected during analysis of the TLM model. Please note
that every error injection represents a non-deterministic bit
flip. Finally, the column TLM Errors shows the maximum,
minimum and result of error injection locations detected on
the TLM model. The result denotes the number of TLM errors
when computing the intersection of TLM errors for every test
scenario. In other words the result column denotes the number
of candidates for corresponding TLM errors found by our
analysis.

For the RTL faults 4 and 8, no corresponding TLM errors
are found (result column contains 0). The reason is that the
TLM model is designed on a higher level of abstraction. For
performance reasons callbacks are used that directly modify
the internal model state without any delta cycles and context
switches. Therefore, in case of RTL fault 4, a reset of the
incoming interrupt lines is not necessary (and not available in
the TLM model - setting the interrupt lines to a specific value
is only applied once and not permanently until change). In
the other case (RTL fault 8) it is due to a signal line where
an error effect is delayed and propagated across a delta cycle.
For both cases, it is possible that the RTL fault corresponds to
multiple simultaneous TLM errors. For their localization, the
symbolic error injection logic must be extended to support
multiple errors. This extension is left for future work.

VII. CONCLUSION

In this paper we proposed an RTL-to-TLM fault correspon-
dence analysis to improve the quality of error effect simulation
using VPs. We employ formal methods to identify TLM error
injection candidates for transient bit flips at RTL. First exper-
iments on the IRQMP from the SoCRocket VP demonstrated
the applicability and effectiveness of our approach in finding
a small set of candidates for corresponding TLM errors.

REFERENCES

[1] IEEE, IEEE Standard SystemC Language Reference Manual, IEEE Std.
1666, 2011.

[2] J. H. Oetjens, N. Bannow, M. Becker, O. Bringmann, A. Burger,
M. Chaari, S. Chakraborty, R. Drechsler, W. Ecker, K. Grüttner,
T. Kruse, C. Kuznik, H. M. Le, A. Mauderer, W. Müller, D. Müller-
Gritschneder, F. Poppen, H. Post, S. Reiter, W. Rosenstiel, S. Roth,
U. Schlichtmann, A. von Schwerin, B. A. Tabacaru, and A. Viehl,
“Safety evaluation of automotive electronics using virtual prototypes:
State of the art and research challenges,” in DAC, 2014, pp. 1–6.

[3] R. A. Shafik, P. Rosinger, and B. M. Al-Hashimi, “SystemC-based
minimum intrusive fault injection technique with improved fault rep-
resentation,” in IOLTS, 2008, pp. 99–104.

[4] D. Lee and J. Na, “A novel simulation fault injection method for
dependability analysis,” IEEE Design Test of Computers, vol. 26, no. 6,
pp. 50–61, Nov 2009.

[5] J. Perez, M. Azkarate-askasua, and A. Perez, “Codesign and simulated
fault injection of safety-critical embedded systems using SystemC,” in
EDCC, 2010, pp. 221–229.

[6] A. Miele, “A fault-injection methodology for the system-level depend-
ability analysis of multiprocessor embedded systems,” Microprocess.
Microsyst., vol. 38, no. 6, pp. 567–580, Aug. 2014.

[7] M. L. Li, P. Ramachandran, U. R. Karpuzcu, S. K. S. Hari, and S. V.
Adve, “Accurate microarchitecture-level fault modeling for studying
hardware faults,” in HPCA, 2009, pp. 105–116.

[8] H. Cho, S. Mirkhani, C. Y. Cher, J. A. Abraham, and S. Mitra,
“Quantitative evaluation of soft error injection techniques for robust
system design,” in DAC, 2013, pp. 1–10.

[9] A. Griesmayer, S. Staber, and R. Bloem, “Automated fault localization
for C programs,” Electr. Notes Theor. Comput. Sci., vol. 174, no. 4, pp.
95–111, 2007.

[10] H. M. Le, D. Große, and R. Drechsler, “Automatic TLM fault localiza-
tion for SystemC,” TCAD, vol. 31, no. 8, pp. 1249–1262, Aug. 2012.

[11] T. Schuster, R. Meyer, R. Buchty, L. Fossati, and M. Berekovic,
“SoCRocket - A virtual platform for the European Space Agency’s SoC
development,” in ReCoSoC, 2014, pp. 1–7.

[12] H. M. Le, D. Große, V. Herdt, and R. Drechsler, “Verifying SystemC
using an intermediate verification language and symbolic simulation,”
in DAC, 2013, pp. 116:1–116:6.

[13] H. M. Le, V. Herdt, D. Große, and R. Drechsler, “Towards formal
verification of real-world SystemC TLM peripheral models - a case
study,” in DATE, 2016, pp. 1160–1163.

[14] G. Beltrame, C. Bolchini, and A. Miele, “Multi-level fault modeling for
transaction-level specifications,” in GLSVLSI, 2009, pp. 87–92.

[15] N. Bombieri, F. Fummi, and G. Pravadelli, “A mutation model for the
SystemC TLM 2.0 communication interfaces,” in DATE, 2008, pp. 396–
401.

[16] A. Sen and M. S. Abadir, “Coverage metrics for verification of con-
current systemc designs using mutation testing,” in HLDVT, 2010, pp.
75–81.

[17] P. Lisherness and K.-T. (Tim) Cheng, “SCEMIT: A SystemC error and
mutation injection tool,” in DAC, 2010, pp. 228 –233.

[18] N. Bombieri, F. Fummi, and V. Guarnieri, “FAST: An RTL fault
simulation framework based on RTL-to-TLM abstraction,” Journal of
Electronic Testing, vol. 28, no. 4, pp. 495–510, 2012.

[19] “GRLIB IP library,” http://www.gaisler.com/index.php/products/ipcores/
soclibrary.

[20] C.-N. Chou, Y.-S. Ho, C. Hsieh, and C.-Y. Huang, “Symbolic model
checking on SystemC designs,” in DAC, 2012, pp. 327–333.

[21] C.-N. Chou, C.-K. Chu, and C.-Y. R. Huang, “Conquering the scheduling
alternative explosion problem of SystemC symbolic simulation,” in
ICCAD, 2013, pp. 685–690.

[22] V. Herdt, H. M. Le, D. Große, and R. Drechsler, “Compiled symbolic
simulation for SystemC,” in ICCAD, 2016.

[23] P. Godefroid, Partial-Order Methods for the Verification of Concurrent
Systems: An Approach to the State-Explosion Problem. Springer, 1996.

[24] C. Flanagan and P. Godefroid, “Dynamic Partial-Order Reduction for
model checking software,” in POPL, 2005, pp. 110–121.

