Guided Lightweight Software Test Qualification for
IP Integration using Virtual Prototypes

Daniel GrofBe!+? Hoang M. Le!

Muhammad Hassan® Rolf Drechsler!»2

"nstitute of Computer Science, University of Bremen, 28359 Bremen, Germany
2Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
{grosse,hle,hassan,drechsle } @informatik.uni-bremen.de

Abstract—Software-Driven Verification (SDV) has the promise
to significantly reduce the overall time and effort for the task
of IP integration and verification. With the help of SystemC
Virtual Prototypes (VPs), SW tests to verify the (new) integrated
IP blocks and the HW/SW integration can be developed in an
early design stage and reused in the subsequent steps. However,
the crucial question regarding the quality of these tests has not
been considered so far. For this purpose, we propose in this paper
a novel quality-driven methodology based on mutation analysis.
By elevating the main concepts of mutation-based qualification to
the context of SDV, our methodology is capable to detect serious
quality issues in the SW tests. At its heart is a novel consistency
analysis, that measures the coverage of the IP in HW/SW co-
simulation in a lightweight fashion and relates this coverage to
the SW test results to provide clear feedback on how to further
improve the quality of tests. We provide two case studies on
real-world VPs and SW tests to demonstrate the applicability
and efficacy of our methodology.

I. INTRODUCTION

The emergence of Virtual Prototypes (VPs) at the abstrac-
tion of Electronic System Level (ESL) has modernized the
design and verification of System-on-Chips (SoCs) in many
ways. In industrial practice, the C++-based system modeling
language SystemC [1], [2] together with Transaction Level
Modeling (TLM) techniques are being heavily used to create
VPs. The much earlier availability as well as the significantly
faster simulation speed in comparison to RTL are among the
main benefits of SystemC-based VPs. These enable hardware/-
software co-design and verification very early in the design
flow, and in particular, the approach of Software-Driven Veri-
fication (SDV) proposed in [3]. Essentially, software tests are
developed for functional verification of the (new) integrated
IP blocks and the HW/SW integration. The tests are typically
written in C and run on a processor core of the VP. The
key benefit of SDV is that the tests can be reused along all
following design phases, i.e. in RTL simulation, emulation,
FPGA prototyping, and even the silicon. This is very valuable
as IP integration is becoming more and more a bottleneck for
today’s high-performance SoCs that typically include multiple
processor cores and hundreds of IP blocks.

To reap the most benefit from SDV, the quality of the
software tests is crucial, as low-quality software tests could
miss serious integration issues. However, to the best of our

This work was supported in part by the German Federal Ministry of
Education and Research (BMBF) within the project EffektiV under contract
no. 01IS13022E, German Research Foundation (DFG) within the Reinhart
Koselleck project DR 287/23-1, and University of Bremen’s graduate school
SyDe, funded by the German Excellence Initiative.

knowledge, the qualification of software tests with the partic-
ular focus on IP integration has not been considered so far.

In this paper we propose a novel guided approach to
evaluate and improve software tests developed for integration
verification of an IP block. Our approach is based on mutation
analysis. In the software testing community, mutation analysis
as proposed in [4], [S] has been considered for decades as a
fault-based technique (see also Section II for more details).
Essentially, it is checked whether the tests are capable of
detecting (killing) the deviating behavior of a syntactically
correct but modified program (a mutant). The ideas have
also been transferred to hardware verification and are referred
there as functional testbench qualification [6], [7] (see also
Section II). In this context, the three main tasks of qualification
are distinguished: 1) activate, i.e. stimuli have to be provided
to activate the mutation; 2) propagate, i.e. the effect of the
mutation has to propagate to an observable point; and 3)
detect, i.e. the testbench must detect functional mismatches
between the original design and the mutated one. However,
these qualification tasks give very little information about the
nature of mismatches in the compared designs.

Our paper makes a two-fold contribution to enable qual-
ification of software tests for verification of IP integration.
First, we define the main tasks activation, propagation and
detection in the context of SystemC VP-based IP integration.
Building on that, our main contribution goes one step further
to provide a complete methodology to guide the verification
engineer in improving the software test quality. If the mutation
in the IP block is not killed by the software tests, the engineer
wants to know the reason and improve the tests. For this
problem we propose a novel consistency analysis that relates
the mutation results with the coverage results of the original
(not mutated) IP block verification and provides a guided
solution: If they are inconsistent the methodology gives clear
hints when and for which mutants to add more tests and
when to use a more powerful coverage model. Following the
proposed methodology, a big jump in quality of the SW test
suite can be achieved in consecutive iterations while using
different variants of well-known code coverage models which
can be very easily measured.

II. RELATED WORK

Mutation analysis and mutation testing has been intensively
investigated for software testing [8], [9]. Also for the hardware
domain approaches have been proposed which apply mutation
analysis to the standard HDLs, see e.g. [10], [11]. The focus
of [10] is on qualification of the stimuli and then improving the

validation data. The approach of [11] generates high coverage
input vectors for RTL designs by measuring branch coverage
controlled via mutated guards during symbolic simulation.

Mutation analysis has also been considered for system
level design, in particular for SystemC TLM. Dedicated
fault models used for mutation analysis have been proposed
in [12], [13]. Automatic fault localization employing mutations
has been presented in [14]. The work in [15] addressed the
concurrency-oriented verification of SystemC designs based on
mutation analysis. In [16] some mutation operators targeting
concurrency constructs and synchronization in SystemC are
proposed. In [17] mutation operators for IP-XACT electronic
component descriptions have been introduced.

In [18] functional qualification for SystemC TLM models
has been introduced to measure the quality of functional
verification. However, it does not target a SDV setting. Several
methods have been developed for automatically generating
simulation data, for a comprehensive overview also addressing
software see [19]. The approach presented in [20] considers
the problem of automatic simulation data generation targeting
HDL mutation faults. It defines a cost function for directing
search heuristics on the test input space. For doing this the
authors employ a CDFG structure which allows to see the
fault propagation progress.

Closest to our approach is [21]. This paper proposed a new
metric for functional testbench qualification which targets the
functional qualification aspects of propagation and detection.
For this task the paper also relates coverage results with
reactions from checkers. However, all these works qualify (and
improve) TLM testbenches which significantly differs from
software-driven verification for IP integration on a VP.

III. SW TEST QUALIFICATION METHODOLOGY

In this section we present the proposed methodology which
qualifies software tests developed for verification of IP integra-
tion in VPs with the help of our guidance mechanism. At first,
the setting when verifying IP integration is described. Next,
the core of the proposed methodology is introduced, i.e. the
consistency analysis of coverage measurement and software
test result wrt. a mutation. Then, the overall methodology
is presented. Finally, easy-to-grasp examples are provided to
demonstrate the different steps of the methodology.

A. Setting of IP Integration Verification

In a software-driven verification environment with the task
of verifying the integration of new IP, the test creator typically
writes a sequence of tests which form the test suite. These
tests interact step-by-step with the IP block and they are self-
checking, i.e. the results of interactions with the IP are checked
within each test e.g. by using C assertions. Ideally, the test
suite should examine the IP thoroughly, otherwise integration
issues could be missed.

As a prerequisite for our methodology, we assume that the
tests already achieve a high statement coverage of the IP block.
We believe this assumption is fair due to the following reasons.
In practice very often statement coverage of the IP block is
measured to ensure that each statement has been exercised,

at least by one test. High statement coverage is a positive
indicator of the quality of the tests.

It can be achieved quickly by taking the IP block without
any mutation and writing a test suite sufficient to trigger higher
number of statements and branches. By not focusing on any
particular area rather going throughout the IP features briefly
can prove helpful in maintaining high testing productivity. The
strategy is not to have 100% coverage initially, but to have
maximum coverage with minimum efforts. If the coverage is
low initially, more tests should be added by the test suite
creator, either manually or by employing an automated test
generator (which is out of scope of this paper).

However, statement coverage (and also stronger code cov-
erage metrics) have severe limitations regarding whether the
desired behavior has really been checked. Furthermore, there
is typically a point of diminishing returns, i.e. after a high
coverage, for example 90%, is achieved, it is very difficult
to increase it further. When that happens, the effort should
be shifted to a more sophisticated (but still lightweight) qual-
ification methodology. We propose such a methodology for
software test qualification. But before we present the overall
methodology, we introduce the core of our methodology —
consistency analysis — in the following section.

B. Consistency Analysis

Let us just for a moment assume a single mutation is
considered only. Then, the consistency analysis includes the
following 4 main steps:

1) Generate coverage report for original IP running current
test suite

2) Mutate IP using a fault model

3) Generate coverage report for mutated IP

4) Analyze consistency of coverage results and software
test result

In the subsequent sections, we detail the major aspects of
each step. Furthermore, we describe the relation to the main
qualification tasks (activate, propagate, detect).

1) Fault Model: Mutation of IP Block: When mutating the
new integrated TLM IP block, mutations are only performed
in its SystemC/C++ code that has been marked as covered
in the code coverage report, i.e. mutations will never be
done in dead code (such mutations cannot be activated, hence
their simulation is a waste of time). Essentially, this gives us
the activation of the mutation since we know based on the
coverage that the mutated statement is reachable by at least
one test. At this point, the importance of the prerequisite for
high code coverage can be emphasized. Because otherwise,
mutations could only be applied to a small portion of code
limiting its effectiveness significantly.

Since we are “looking” from the software test perspective,
mutations that affect the functional behavior of the IP block
are the most interesting. Mutations that affects the TLM
commutation, for example, modifying register addresses or
holding off responses, are for the most part detected by simple
checks that are present in SW tests (e.g. write some value to a
register, then check if a read from the register returns the same
value). Furthermore, restricting mutation operators to a small

TABLE I
CONSISTENCY ANALYSIS RESULTS FOR A MUTATION

Cat. Coverage Result of SW Consistent | Interpretation
’ ‘ (propagate) test (detect) ‘
Cl Fluctuate Fail yes Adequate test
C2 Fluctuate Pass no Weak detection by SW test
C3 Stable Fail no Propagation path missing
C4 Stable Pass yes Propagation/detection problem

TABLE 11
SUMMARY OF SYSTEMC-SPECIFIC MUTATION OPERATORS
[Operator [Original | Mutant |
Modify wait (200) wait (200/2)
Remove wait (200) -

Replace wait (200) wait ()

trywait () wait ()

Exchange wait (200) notify ()
wait (eventl) | wait (event2)

number of really relevant classes reduces the overall mutation
effort.

Therefore, as a fault model we target common modeling
mistakes in the functionality of a SystemC TLM IP. These
include both the sequential and concurrent aspects. For se-
quential modeling faults, we adopt the comprehensive set
of mutation operators as proposed in [22], where 77 C/C++
mutation operators are explained. The mutation operators are
categorized in four domains: statement mutations, operator
mutations, variable mutations and constant mutations. They are
primarily based on the competent programmer hypoth-
esis, i.e. faults are syntactically small and only few keystrokes
away from original program. Since the IP has already passed
the initial SW test suite with a high statement coverage, this
hypothesis is also plausible in our setting. Furthermore, our
set of mutation operators is extended by SystemC-specific
mutation operators as proposed in [16]. These operators target
TLM communication and synchronization with a particular
focus on concurrency constructs. They are summarized in
Table II (for the details we refer to reader to [16]).

2) Coverage of Mutated IP: Measuring code coverage of
the mutated IP is straight-forward. Note that code coverage al-
lows to observe the propagation. This is similar to but simpler
than CFG/DFG-based propagation detection, which requires
more complex source code analyses. In a perfect setting of
course, a propagation monitor would be used which checks at
the boundary that the mutation leads to a difference. However,
the definition of boundary is not obvious. Also, for such a
propagation monitor, detailed knowledge of the IP would be
required, e.g. to specify corresponding SystemVerilog Asser-
tions (SVA) properties. Furthermore, the “natural” boundaries
for the monitor might be only observable at the IP level but not
from the perspective of SDV, hence additional effort might be
required to lift these to the software level. Before such effort
becomes necessary, we propose to consider code coverage as
a lightweight alternative for observing propagation.

3) Consistency Analysis: Comparison of Coverage Result
and Software Test Result: In this section, first the principles
of the consistency analysis are introduced. Then, it is shown
how to measure the quality of the software tests in form of a
consistency score.

Different results are possible for an injected mutation when
analyzing the consistency of the coverage result and the
software test result. The possible results are summarized in
Table I. Column Category assigns a number to each of the
four possible categories. The second column Coverage lists
whether the coverage of the original IP block when running the
test suite (Step 1 of overall consistency analysis as described
in Section III-B) in comparison with the coverage results
(Step 3) changes or not. In case of a difference this is labeled
as fluctuate, if it remains unchanged it is labeled as stable.
Column SW Test Results shows whether the execution of the
software test suite resulted in fail or pass. The next column
Consistent defines whether the comparison outcome of the
coverage result and the software result is consistent or not. In
the last column Interpretation - a short intuitive explanation
is given. A more detailed explanation is provided in the
following:

C1: If the coverage fluctuates and the SW test fails, their
behavior is consistent since the propagation has been
recognized by code coverage and due to the mutation at
least one test fails as expected. As a consequence, for
the current mutation the tests are adequate.

C2: If the coverage fluctuates and the SW test passes, the
situation is inconsistent. The propagation is recognized
(manifesting in change of coverage) but the software
tests unexpectedly pass. Hence, the detection is weak,
meaning that a test should be added to improve the test
suite.

C3: If the coverage is stable and the SW test fails, again
the situation is inconsistent. The reason for inconsis-
tency is that code coverage could not recognize the
propagation path. This inconsistency is not considered
harmful because the mutant still gets killed. Hence, a C3
mutant does not require an action on its own. Instead,
C4 category is consulted.

C4: If the coverage is stable and the SW test passes,
the situation is consistent. However, the software tests
should not pass when performing a mutation. Different
reasons are possible for this scenario, so we have to
deal with both the propagation and detection problem.
We know that the propagation is problematic, specially
if C3 mutants are also present. A potential solution is the
use of a stronger coverage metric, for instance branch
coverage.

The quality of SW test suite after consistency analysis can
be measured with the help of a consistency score in a similar
manner to the established mutation score or mutation adequacy
[23], [24] as follows:

1
cS #C

T HC1 + #C2 +#C3 + #C4

In Equation 1, Cz is the total number of mutants in
category Cz (with = € {1,2,3,4}). Please note that in the
numerator only C1 is used and not the sum of C1 and C3.
The reason is, that only category Cl is consistent and has
positive interpretation, i.e. the test suite is adequate.

Based on the introduced consistency analysis for a mutation
we present our methodology in the next section.

(D

5
Consistency o
.= - Results g
g3 §
v
= 9 ﬁ
-
§g ©
8 c
32
£ .2
g2
o °
£ : SW Test
[2 Test Execution
P 1
-]
=) ‘g A
% ,;_ ‘3 Consistency
[[i
'a < 3 Analysis onIy c3
S>S%i 3 D
° 5]
<
A 4

DB Analysis

C2 exists

Fig. 1. SW Qualification Methodology

C. Overall SW Qualification Methodology

In Fig. 1 the overall methodology is depicted. It starts at
the top of the figure with the mutation database containing all
possible mutations for the current IP block. The overall goal of
the proposed methodology is to finally bring all mutants into
the category C1. Generally, several iterations might be needed
to achieve this goal. In the first iteration, for each mutant
from the database, the current SW tests are executed and the
consistency analysis presented in Section III-B is performed.
Depending on the returned category, different actions need to
be taken to update the database. In case of C1, the test suite is
adequate for the mutant, so this mutant is removed. Otherwise,
the consistency result for the mutant is saved.

After the first iteration (i.e. no mutant left), the updated
database is analyzed. If it is empty, that means every mutant
has been in category C1 and has therefore been removed, we
are done. If at least one mutant of category C2 can be found,
new SW tests must be added to kill the mutant, then a new
iteration is started. The last possible outcome of the analysis
is that the database contains only mutants of category C3 and
C4. If only C3 mutants are alive, the verification engineer can
ignore them and consider them as killed (recall the SW test
already failed for category C3). But if both categories C3 and
C4 are present, then the coverage model should be revised
to increase the resolution for propagation. After this a new
iteration is started.

D. Comparison to Classical Mutation Based Qualification

In comparison to classical mutation based qualification
technique, our methodology guides the verification engineer
in the correct direction. By limiting the effort of writing new
tests to mutants of category C2 only, our methodology ensures
that a test is not being written for an equivalent mutant (trying
to do so would lead to waste of time and resources). In

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18

19
20
21

void maxIP::find_max () { else
uint32_t a, b, d,

(1) o

c, max; max =

d;

while else

wait (e_signal); 22 if ((b > c) && (b > d))

a = r[SRC_A] ; 23 max = b;

b = r[SRC_B] ; 24 else if ((b > c) && (b < d))
c = r[SRC_C] ; 25 max = d;

d = r[SRC_D] ; 26 else if ((b < c) && (b > d))
if (a > b 27 max = c;

)
if ((a > c) && (a > d)) 28 else

max = aj; 29 if (c > d)
else if ((a > c) && (a < d)) 30 max = c;
max = d; 31 else
else if ((a < c) && (a > d)) 32 max = d;

33 r [MAX_VALUE]
34 } // end while
35 } // end find _max ()

max = max;
else

if (c
max

Fig. 2. Code excerpt of IP block maxIP SC_THREAD find_max

contrast, the classical technique only gives information on the
mutants killed and mutants alive. No information is provided
on the nature of mutants. The guidance resulting from the
categorization of each mutant through consistency analysis can
save a lot of effort and time.

In the next sections we demonstrate the core of our method-
ology — consistency analysis — for a simple example, and also
two case studies for real world examples. They also show how
the guidance is provided to make the process easier.

IV. CONSISTENCY DEMONSTRATION EXAMPLE

We use a compact example to demonstrate the ingredients
of the methodology.

A. IP Block Basic Information

A code excerpt of a complete SystemC TLM model of
the IP block maxIP is shown in Fig. 2. The main func-
tionality of this IP is implemented in the SC_THREAD
Jfind_max. It receives four inputs from its registers (r/SRC_A],
r[SRC_B], r[SRC_C], r[SRC_D]), finds the maximum value
among them, and writes this value back into the register
r[MAX_VALUE].

B. SW Tests

Listing 1 shows the SW tests for maxIP. As can be seen,
in each test, four integer values are written into the memory
addresses of the registers of maxIP (see e.g. Line 11 — Line 14)
and then the computed maximum value is read back and
compared to the expected value. If the maximum value is
correct, the test generates a success message (e.g. Line 15 with
argument 1 since it is the first test), otherwise a fail message
is generated (e.g. Line 16 again with argument 1 indicating
the test number).

C. Coverage of SW Tests

The coverage results for the SW tests of Listing 1
are depicted in Fig. 3 and can be interpreted using Ta-
ble III. Essentially, each line of Fig. 3 consists of three
parts: Branch Coverage Line Coverage src
expression. Lets start with line coverage: As can be seen
on the left side of Table III, red color is used to show that the
expression has not been hit during execution, and otherwise

struct maxIP {

int /% 0x00
/* 0x04
/* 0x08
/* 0x0C

/*

*/
*/
*/
*/
0x10

volatile unsigned SRC_A;
SRC_B;
SRC_C;
SRC_D;

MAX_VALUE;

volatile int
volatile
volatile
volatile

i

void SW_Test (int addr) {
struct maxIP xipBlock =
/* Test 1 %/
ipBlock->SRC_A =
ipBlock->SRC_B = 1;
ipBlock->SRC_C = 8;
ipBlock->SRC_D = 4;
if (ipBlock->MAX_VALUE == 8)
else fail(l);
/* Test 2 %/
ipBlock->SRC_A =
ipBlock->SRC_B =
ipBlock->SRC_C = 3;
ipBlock->SRC_D = 6;
if (ipBlock->MAX_VALUE == 6)
else fail(2);

unsigned
unsigned int
unsigned int

unsigned int */

(struct maxIP) addr;

5;

success (1) ;

5i
1;

success (2);

Listing 1. Consistency example: SW Test

TABLE IIT
CONSISTENCY EXAMPLE: COVERAGE LEGEND

Branch Coverage
Line Coverage
Color | Line Symbol | Description
Blue Hit + Taken
. - Not Taken
Red Not hit # Not executed

the color is blue. Moreover, the number of executions is shown
as second part in each line of Fig. 3.

For branch coverage, only the source code lines with
conditions are relevant. Each condition of a branch in Fig. 3
has a corresponding [T F] pair (meaning [True Falsel])
shown on the left of each code line. Note that T and F
are replaced with the symbols shown in Table III in column
symbol. As can be seen for instance in Line 186 of Fig. 3 it has
only one pair, and Line 187 has two pairs, respectively. When
the SW tests evaluate a condition with true, the T is replaced
by a + with blue color, and the F becomes — in color red
(so not hit). Similarly, if another SW test evaluates the same
condition with a false, the F becomes a + in blue (cf. Line
187 of Fig. 3 after execution of Test 1 (5 > 8 gave false) and
Test 2 (b > 3 gave true). This means that the expression has
been tested by SW tests for both true and false cases. If the
condition is not evaluated in any execution, it is marked with
(see e.g. c>d of Line 194 of Fig. 3).

D. Demonstration of Consistency Analysis

When Test 1 is executed, the original IP finds the maximum
value as 8, so this single test passes. In the following we show
concrete examples for category C2 and C4.

a) C2 Example: Lets now assume, we mutate the IP in ;
Line 191 in Fig. 4 by negating the complete if-condition. Then, ;
running Test 1 this if-condition now results in false instead 4
of true as before and the execution jumps to the next if- 2
statement (Line 194) to find the correct answer. Hence, the
mutation causes the change of coverage visible at the statement ’
in Line 194 in Fig. 4. Since the maximum of the inputs 5,1,8,4

180 Branch
LT FI[TFI:
182 :

186 B I 2
187 [+ + 11 - JH 2
.

Line
riSRC Al ;
rlSRC_BI ;
risRc Cl ;
riSRC DI ;

a
b
c
d

if (a>b)
3 if ((a>c) & (a=>d))
18 S e mx-a
189 [+ + 10+ [Hl: 3 else if ((a > c) & (a < d)) //MC4 - replace && with ||
190 : 1: max = dj
100 [+ 0+ B 1: else if (({a < c) & (a > d))) //MC2 - negate expression
192 : i - max = c;

else

r[MAX_VALUE] = max;

Fig. 3. SC_THREAD find_max w orig. coverage results for Test 1 and Test 2

180
181

Line
rISRC A] ;
rlSRC B] ;
rlsRC] ;
rlSRC D] ;

NN

a=
b=
c=
d =

[:
[+ +11 +1: 23

186 2 if (a > b)

187 if (fa>c) && (a>d))

188 :

189 [+ + 10+ B0 2 else if ((a > c) & (a < d))

190 : 1: max = d;

101 [+ O < 1 1 else if (!((a < c) & (a > d))) //MC2 - negate expression
192 e max=c

193 : : else

194 [+ B] if (c > d)

195 1: max = C

r[MAX_VALUE] = max;

Fig. 4. Consistency ex.: coverage results for C2 example

is still 8 and will be also found by the current mutated IP, the
test passes. Hence, we have fluctuating coverage, but passing
SW tests, so this example falls in category C2. To solve the
problem, the methodology guides the engineer to add a new
test to the test suite (Listing 1), e.g. Test 3 as depicted in
Listing 2. With this new test suite the error is detected as the
mutant calculates the wrong maximum value of 4 for the inputs
2,1,4,5. Therefore, the test fails (Line 7 in Listing 2) and so the
considered mutation finally falls in category C1. Evaluating the
same IP using classical mutation based qualification technique,
an alive mutant will have to be chosen out of many. Hence,
our method has reduced the search space.

b) C4 Example: For this example we mutate the original
maxIP block in Line 189 of Fig. 5 by replacing && with
| | operator. Test 2 with inputs 5,1,3,6 from Listing 1 results
in a correct maximum value of 6, with stable line coverage.
Hence, this example falls in category C4. Due to the presence

/% Test 3 #/ 1| /+ Test 4 +/
ipBlock->SRC_A = 2; 2| ipBlock->SRC_A = 5;
ipBlock->SRC_B = 1; 3| ipBlock->SRC_B = 1;
ipBlock->SRC_C = 4; 4| ipBlock->SRC_C = 8;
ipBlock->SRC_D = 5; 5| ipBlock->SRC_D = 7;

if (ipBlock->MAX_VALUE == 5) 6| if (ipBlock->MAX_VALUE == 8)

success (3); success (4) ;
else fail(3); 7| else fail(4);

Listing 3. Consistency ex.: SW Test
to kill mutant MC4

Listing 2. Consistency ex.: SW Test
to kill mutant MC2

BT FI[T F1

180 Branch t line
182 :

186 [+ B
187 [+ + 1[I+ 1:

8 :
189 [+ + 1[0+ 1:
90 :
191 [+ BT+ D
92 :

if (a > b)
if {{a >c) && (a > d))

else if ((a > c) || (a <d)) //MC4 - replace &% with ||
a |

nax = d;
else if (((a < c) & (a > d)))
max = ¢;

[EYSYEEN] [N EVI TR

: : else

211 : 2:

r[MAX_VALUE] = max;
Fig. 5. Consistency ex.: coverage results for C4 example

of C3 mutants (which are not shown here), we know the
propagation is problematic. Changing the coverage metric
to branch coverage helps solving the problem. The branch
coverage in Line 189 in Fig. 5 ([+ +][- +]) is now different
from branch coverage in Line 189 in Fig. 3 ([+ +][+ -]). The
C4 mutant therefore now becomes C2. So we have to add
another test to the test suite (Listing 1), e.g. Test 4 as depicted
in Listing 3. With this new test suite the error is detected as
the mutant calculates the wrong maximum value of 4 for the
inputs 5,1,8,7. Therefore, the test fails (Line 7 in Listing 3)
and so the considered mutation finally falls in category C1.

In the next section the experimental results for our method-
ology for a real-world VP are given.

V. EXPERIMENTAL RESULTS

This section presents the evaluation of our SW test qual-
ification methodology in a software-driven verification envi-
ronment. We consider the LEON3-based VP SoCRocket [25]
which has been modeled in SystemC TLM. We look at two IP
integration scenarios, i.e. the integration of an Interrupt Con-
troller for Multiple Processors (IRQMP), and the integration
of a General Purpose Timer (GPTimer). In the following, we
first describe how we automatically generate the mutants and
the coverage models used in the case studies. Then, for each
IP block, the basics are described before the demonstration of
the methodology as well as qualification results are presented.

A. Mutant Generation

The mutants were generated by an in-house tool called
Typhon. It is a standalone command line tool which generates
the mutants from the input SystemC/C++ source files. The
underlying infrastructure for Typhon is the LibTooling library
of Clang. Clang generates the AST (Abstract Syntax Tree)
for the input source files, and Typhon takes advantage of that
AST to compile new mutants by traversing different required
entities. The type of mutants generated can be chosen by the
input arguments to the tool. Typhon supports all mutation
operators described in Section III-B1.

B. Coverage Models

In addition to Statement Coverage (SC) and Branch Cov-
erage (BC), we also use their strengthened variants termed

as Differential Statement Coverage (DSC), and Differential
Branch Coverage (DBC), respectively, in the following. They
signify the disturbance created by the mutant in terms of
how many times the statement or branch was covered. The
disturbance refers to the increase or decrease in coverage
counters of statements and branches. It is calculated by taking
the difference of coverage counters of original model and
mutant reported by the coverage tool LCOV. DSC and DBC
are very useful for the elimination of mutants from categories
C3 and C4 as these mutants often show stable statement and
branch coverage.

C. IROMP

1) Basics: The first considered IP — IRQMP — processes
incoming interrupts from different devices and processors
based on priority. It supports 32 interrupt lines numbered from
0 to 31, where line O is reserved. Lines 1 to 15 are used
for regular interrupts whereas the remaining lines 16 to 31
for extended interrupts. The IRQMP model has a register file,
I/O wires and APB slave interface. The register file contains
32-bit processor-specific and configuration registers. When an
interrupt is signaled, the corresponding bit is set in the register.
This functionality is implemented using the SystemC thread
launch_irg and callback functions, which are specified for
register access (read/write).

The IRQMP interacts with connected processors by sending
an interrupt request (irg_req) or receiving an acknowledg-
ment (irg_ack). When an interrupt request is signaled for a
processor, the IRQMP combines the mask register and
the pending register with the force register to
find the highest priority interrupt. The IRQMP also reads the
broadcast register before forwarding the request to
the processors. If the corresponding bit is set in broadcast
register, the interrupt is broadcasted to all processors,
i.e. written to the force register of all connected pro-
cessors. In this scenario, the IRQMP expects acknowledges
from all processors. On the arrival of an interrupt request, if
the corresponding bit is not set in broadcast register,
it is simply set in the pending register. In this scenario,
IRQMP expects an acknowledge from any processor.

2) SW Test Qualification: The initial test suite shipped with
the IRQMP IP consists of 60 tests. This test suite has 63%
statement coverage of the IP. We add 45 tests to achieve high
statement coverage (92%) as required by the methodology.
The tool Typhon generates in total 244 mutants.

The results of applying our qualification methodology are
shown in Table IV where we report the first 13 iterations.
The first row gives the index of the iteration. The second
row states the operation done during those iterations, e.g.,
new tests are added to improve the test suite, or the coverage
metric is changed. The third row shows the metric used in
the consistency analysis. The last row of Table IV shows the
consistency score of the SW test suite calculated by using
Equation 1 for each iteration.

a) Handling C2 mutants: The first iteration shows a low
consistency score of 0.352. Due to the 14 mutants in category
C2, it is clear that more tests need to be added to the suite. In
the following, we describe one concrete mutant from category

TABLE IV
IRQMP SW TEST QUALIFICATION RESULTS

Tteration T [2 [3 [4 [5] 6 [7 8 [9 [1 11 2 [3
Operation | Addition of tests Change of metric
Metric SC BC | DSC | DBC
Category CI 86 39 91 92 93 oF 95 97 93 100 113 126 127
Category C2 14 11 9 8 7 6 5 3 2 0 3 98 99
Category C3 27 27 27 27 27 27 27 27 27 27 14 1 0
Category C4 117 117 117 117 117 17 117 117 17 117 74 19 18
Tests 105 [106 | 107 | 108 | 109 | 110 | 1III 112 [113 | 114 | 114 | 114 | 114
C"';i‘(f;g“cy 0.352 | 0365 | 0373 | 0377 | 0.381 | 0385 | 0.389 | 0398 | 0.402 | 0.410 | 0.463 | 0.516 | 0.520
SC: Statement coverage BC: Branch coverage
DSC: Differential SC DBC: Differential BC

1 void Irgmp::incoming_irqg(const std::pair<uint32_t, bool> &irqg, const

® NN R W

©

11
12

13
14
15
16

17
18
19
20
2

22
23
24
25
26
27
28

sc_time &time) {
bool t
if (!irg.second) {
// Return if the value turned to false.

= true;

Interrupts will not be unset
// this way. So we cann simply ignore a false value.
return;
}
for (int32_t line = 0 ; line<32;
if ((1 << line) & irqg.first) {

line++) {

// Performance counter increase
= m_irqg counter[line] + 1;
<< "

m_irqg_counter[line]

v::debug << name () << line << "
<< v::endl;

(!r [BROADCAST] .bit_get (line)) {

)
r[IR_PENDING] .bit_set (line, t);

nterrupt line " triggered"

if

}
if (r[BROADCAST].bit_get (line)
11

// set force registers for broadcasted interrupts

&& (line < 16)) { // Mutation:

replace && with

for (int32_t cpu = 0; cpu < g_ncpu; cpu++) {
r [PROC_IR_FORCE (cpu)] .bit_set (line, t);
forcereg[cpu] (t << line);
}
}
}
}

// Pending and force regs are set now.

// To call an explicit launch_irq signal is set here
e_signal.notify (2 x clock_cycle);
}

Listing 4. C2 IRQMP Mutation Example

C2 to demonstrate its fix. An excerpt of the IRQMP model
is shown in Listing 4. It shows the implementation of incom-
ing_irg which handles the incoming interrupts from different
devices. When such an interrupt arrives, the implementation
checks the corresponding bit in broadcast register and
handles the interrupt accordingly as described in the previous
section.

When the mutation is performed (see comment in
Line 16), the routine registers the interrupt in the pending
register (Line 14) as well as in force register
(Line 19). Thus, at least acknowledge from at least one of the
connected processors is expected. The SW tests, however, only
check whether the interrupt was generated and handled. This is
clearly a weakness of the existing tests. After the addition of a
test, that checks for broadcast register and pending
register, leads to the SW test failure for this mutant. The
mutant can thus according to our methodology be moved from
C2 to C1. Moreover, the added test kills two more C2 mutants,
resulting in 11 mutants in category C2 as can be seen in
Iteration 2 of Table IV. Similarly, more C2 mutants are killed
and moved to C1 by adding more tests from Iteration 3 to

Iteration 10, where all C2 mutants are eliminated.

The importance of our methodology can be seen by looking
at Table IV. Classical analysis has a search space of 131
mutants (#C2 + #C4), whereas, our methodology has a limited
search space of only 14 mutants. Hence, the guidance can save
a lot of time by focusing the efforts in the right direction.

b) Handling C3 and C4 mutants: Now following the
proposed methodology to eliminate the rest of mutants, we
need to see both categories C3 and C4. Presence of only
C3 mutants requires no action, but presence of C4 mutants
in conjunction indicate a problematic propagation. Hence,
it is time to strengthen the coverage metrics used by the
consistency analysis to eliminate C4 mutants in particular.
We first strengthen the coverage metric to BC and apply
consistency analysis. The results are shown in Table IV as
Iteration 11. As can be seen, the strengthening of coverage
metric improves propagation, and thus, 43 mutants from C4
are moved into category C2, and additionally, 13 C3 mutations
into category C1. In the next iterations, we deviated a bit from
the methodology to demonstrate the effect of strengthening the
coverage further. We changed the metric to DSC and then to
DBC. The number of mutations in C4 and C3 category went
down significantly as expected. The newly identified 99 C2
mutants now require more tests to be added.

Clearly, following the proposed methodology, weaknesses
in the test suite can be identified and the test creator gets
useful feedback on what to do next to improve the test suite.
The improvement is quantified by the consistency score, as a
significant jump from 0.352 to 0.520 after 13 iterations can
be observed.

D. GPTimer

1) Basics: The second considered IP — GPTimer — im-
plements down-counting timer(s) and generates an interrupt
if zero is reached. The IP consists of 7 configurable timers
which use ticks from the prescaler unit. The prescaler unit
uses system clock as reference clock to decrement its value.
The timer can also be configured to be used as a watchdog
to prevent any malfunction. All the timers consist of a value
register and a reload value register. When zero is reached or
reset signal is initiated, the value register is loaded with the
value in reload value register, otherwise it is decremented by
one in each cycle. The timers are not limited to only 232 value,
but can also be executed for a longer duration by chaining
them together. This way, the timers decrement when a zero is
reached in the previous timer.

TABLE V
GPTIMER SW TEST QUALIFICATION RESULTS
Teration | 1 | 2 | 3 | 4 | 5 | 6 7] 8 [9 10
Operation Addition of tests Change of metric

Metric SC BC [DSC | DBC | PC
Category C1 89 91 92 93 94 95 131 139 140 182
Category C2 6 4 3 2 1 0 0 0 2 70
Category C3 112 112 112 112 112 112 76 68 67 25
Category C4 101 101 101 101 101 101 101 101 99 31

Tests 14 15 16 17 18 19 19 19 19 19
C"'ésc's‘ree“q 0289 | 0295 | 0299 | 0302 | 0.305 | 0.308 | 0.425 | 0.451 | 0.455 | 0.590

SC: Statement coverage BC: Branch coverage PC: Path coverage

DSC: Differential SC DBC: Differential BC

2) SW Test Qualification: The test suite shipped with the IP
and is used as basis for our SW test qualification methodology
consists of 14 tests initially.

For this IP, we report the results of the first 10 iterations
as shown in Table V. The terminologies used in Table V
are the same as used in Table IV. The first iteration shows
the distribution of mutants after SC analysis. Out of 308
mutants, 89 fall in category Cl1 initially and do not require any
additional processing, whereas 219 mutants require additional
work. Again, as expected, from iteration 2 to 6, the number
of C2 mutants decrease as new tests are added to the suite.
The total number of tests increase from 14 to 19. In Iteration
6, all mutants in C2 have been killed.

Therefore, following the methodology, we strengthen the
coverage metric from SC to BC to try to eliminate category
C4 and C3 mutants. The propagation is not observed for C4
mutants, but it can be observed for C3 mutants, as this moves
36 mutants from category C3 to Cl. Changing the metric
to DBC successfully detected two C2 mutants at the end
of Iteration 9, where the consistency score has significantly
increased from 0.289 to 0.455. There are still a big number
of mutants in category C4 and C3 (99 and 67, respectively).
We decided to change the metric to path coverage to eliminate
the mutants. As can be seen, the numbers reduced significantly
from 99 to 31 (for C4) and from 67 to 25 (for C3), respectively.

In summary, the test creator can use our proposed method-
ology to strengthen the SW test suite as he can now identify
the weaknesses clearly. The strength of SW test suite is shown
in last row of Table V as consistency score. It can be observed
that the consistency score increased from 0.289 to 0.590 after
10 iterations.

VI. LIMITATIONS OF METHODOLOGY

Since our SW test qualification methodology is based on
mutation analysis, it inherits the same limitations. Mutation
analysis is computationally expensive as the program has to
be executed several times. Various approaches are available
to reduce this cost like selective mutation [26], weak muta-
tion [27], and separate compilation [28] to name a few. Our
methodology is also dependent on this factor as new tests are
added and coverage metrics are changed during the iterations
to kill the mutants.

It can be partially solved by configuring the program to be
instrumented with all the known coverage metrics, and later
only doing the comparison to generate results.

VII. CONCLUSION

In this paper we proposed a methodology for SW test
qualification of IP integration in a software-driven verification
flow. Our methodology is based on mutation analysis an
we have shown how to define the main tasks of functional
qualification (activate, propagate, detect) in the context of
SW test based IP verification. Furthermore, our qualification
methodology also relates the coverage results and the SW test
results wrt. the original and mutated IP block. This allows to
improve the tests since the user gets information whether for
instance a new test is required or the coverage model should
be strengthened. We have demonstrated the applicability in a
real world VP showing the integration of two IP blocks.

REFERENCES

[1] IEEE Standard SystemC LRM, IEEE Std. 1666, 2011.

[2] D. GroBe and R. Drechsler, Quality-Driven SystemC Design. Springer, 2010.

[3] R. Leupers, F. Schirrmeister, G. Martin, T. Kogel, R. Plyaskin, A. Herkersdorf,
and M. Vaupel, “Virtual platforms: Breaking new grounds,” in DATE, 2012, pp.
685-690.

[4] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data selection:
Help for the practicing programmer,” IEEE Computer, vol. 11, no. 4, pp. 34-41,
1978.

[5] R. G. Hamlet, “Testing programs with the aid of a compiler,” 7SE, no. 4, pp.
279-290, 1977.

[6] M. Hampton and S. Petithomme, “Leveraging a commercial mutation analysis tool

for research,” in MUTATION, 2007, pp. 203-209.

Synopsys, “Certitude,” 2015, https://www.synopsys.com/Tools/Verification/

Functional Verification/Pages/certitude-ds.aspx.

H. Do and G. Rothermel, “On the use of mutation faults in empirical assessments

of test case prioritization techniques,” TSE, vol. 32, no. 9, pp. 733-752, Sep. 2006.

Y. Jia and M. Harman, “An analysis and survey of the development of mutation

testing,” TSE, vol. 37, no. 5, pp. 649-678, 2011.

[10] Y. Serrestou, V. Beroulle, and C. Robach, “Functional verification of RTL designs
driven by mutation testing metrics,” in DSD, 2007, pp. 222-227.

[11] L. Liu and S. Vasudevan, “Efficient validation input generation in RTL by
hybridized source code analysis,” in DATE, 2011, pp. 1596-1601.

[12] N. Bombieri, F. Fummi, and G. Pravadelli, “A mutation model for the SystemC
TLM 2.0 communication interfaces,” in DATE, 2008, pp. 396-401.

, “On the mutation analysis of SystemC TLM-2.0 standard,” in MTV Work-
shop, 2009, pp. 32-37.

[14] H. M. Le, D. GroBle, and R. Drechsler, “Automatic TLM fault localization for
SystemC,” TCAD, vol. 31, no. 8, pp. 1249-1262, Aug. 2012.

[15] A. Sen, “Concurrency-oriented verification and coverage of system-level designs,”
TODAES, vol. 16, no. 4, p. 37, 2011.

[16] ——, “Mutation operators for concurrent SystemC designs,” in MTV Workshop,
2009, pp. 27-31.

[17] T. Xie, W. Miiller, and F. Letombe, “IP-XACT based system level mutation
testing,” in HLDVT, 2011, pp. 65-71.

[18] N. Bombieri, F. Fummi, G. Pravadelli, M. Hampton, and F. Letombe, “Functional
qualification of TLM verification,” in DATE, 2009, pp. 190-195.

[19] R. A. Silva, S. d. R. S. de Souza, and P. S. L. de Souza, “A systematic review on
search based mutation testing,” Information and Software Technology, 2016.

[20] T. Xie, W. Miiller, and F. Letombe, “HDL-mutation based simulation data
generation by propagation guided search,” in DSD, 2011, pp. 608-615.

[21] H.Kai, P. Zhu, R. Yan, and X. Yan, “Functional testbench qualification by mutation
analysis.” VLSI Design, vol. 2015, pp. 256 474:1-256 474:9, 2015.

[22] H. Agrawal, R. A. DeMillo, B. Hathaway, W. Hsu, W. Hsu, E. W. Krauser, R. J.
Martin, A. P. Mathur, and E. Spafford, “Design of mutant operators for the C
programming language,” Purdue University, Tech. Rep., 1989.

[23] T. A. Budd, R. J. Lipton, R. DeMillo, and F. Sayward, “The design of a prototype
mutation system for program testing,” in AFIPS, 1978, pp. 623-627.

[24] B. J. Grun, D. Schuler, and A. Zeller, “The impact of equivalent mutants,” in
ICSTW, 2009, pp. 192-199.

[25] T. Schuster, R. Meyer, R. Buchty, L. Fossati, and M. Berekovic, “Socrocket - A
virtual platform for the European Space Agency’s SoC development,” in ReCoSoC,
2014, pp. 1-7, available at http://github.com/socrocket.

[26] E. S. Mresa and L. Bottaci, “Efficiency of mutation operators and selective
mutation strategies: An empirical study,” STVR, vol. 9, no. 4, pp. 205-232, 1999.

[27] M. Woodward and K. Halewood, “From weak to strong, dead or alive? an analysis
of some mutation testing issues,” in Software Testing, Verification, and Analysis,
1988, pp. 152-158.

[28] C. Byoungju and A. P. Mathur, “High-performance mutation testing,” Journal of
Systems and Software, vol. 20, no. 2, pp. 135-152, 1993.

[7

[8

9

[13]

