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Abstract—Hardware design is increasingly shifted towards
higher abstraction levels to cope with the complexity of modern
systems. For this purpose, the concept of Hardware/Software
Co-Design has been established. Systems are implemented in
high-level languages such as C++ or SystemC, providing an
executable prototype without requiring designers to decide in
an early stage on whether features should be implemented in
hardware or software. For these, just like for pure hardware or
software systems, design understanding remains crucial.

Hardware/Software Co-Visualization (HSCV) is a concept that
has recently been proposed to assist developers in communicating
features of their design. Especially for visualizations, designers
need to be able to quickly generate the underlying data and the
resulting visual representation. This paper illustrates the current
state of HSCV and proposes a methodology to harmonize the
visualization data being generated from Electronic System Level
designs written in SystemC.

I. INTRODUCTION

Both, hardware and software design, are complex tasks.
Designers need to handle a vast amount of information when
designing either of them and the increasing amount of transis-
tors per area leads to the requirement of both, more complex
hardware (utilizing the increasing numbers of transistors per
area) and software (utilizing the available computation power).

This complexity needs to be communicated. One way to do
this is to visualize the according structures. In fact, visualiza-
tion is an established methodology, with visual representations
for both, hardware and software, being available.

However, visualization alone is not sufficient to handle
larger designs. Instead, to handle the increasing complexity,
higher abstraction description languages (such as SystemC)
have been developed. This design paradigm, the development
of systems on the Electronic System Level (ESL), includes the
notion of Hardware/Software Co-Design. This approach en-
compasses the idea of designing systems that consist of both,
hardware and software, without specifying further what part
should be implemented in which domain. Instead, the design’s
features are described in a high-level programming language
(such as C++) and merely describe the desired behaviour that
should be refined into either hardware or software later on.

This way of describing systems not only enables designers
to quickly prototype designs, it also represents a mixture
of several existing means of description. Enabling designers
to still use visualization as a tool to communicate proper-
ties while at the same time reflecting the dynamic, multi-
dimensional properties of the design is a new field of research
introduced in [9] called Hardware/Software Co-Visualization
(HSCV).

This paper first illustrates the current state of hardware
and software visualization means, then gives an overview of
the issues when developing HSCV techniques and about the
current state of HSCV and finally proposes another paradigm
for the realization of HSCV technologies for ESL designs that
are implemented using SystemC.

II. HARDWARE/SOFTWARE CO-DESIGN

Hardware design using dedicated hardware design lan-
guages is a complex and tedious task, especially when con-
sidering the size modern designs may have.

Modern high-level software programming languages on the
other hand allow developers to quickly write software by
providing a higher level of abstraction over the underlying
architecture.

In order to still be able to quickly prototype a design to e.g.
locate errors earlier in the design process or provide customers
with a running simulation of a design, this concept of higher
abstraction design is transferred to the hardware domain. The
most prominent example of this high-level design approach is
SystemC [19]. This C++ library comes with several constructs
that enable a designer to describe hardware features in C++.
It features classes for e.g. modules and signals and comes
with a simulation kernel. The major idea is to build a virtual
system using classes that inherit the provided module class
and is interconnected using the given ports and signals. The
logic within the modules is implemented in arbitrary C++
code. It may either consist of a synthesizeable subset, allowing
the system to be translated into hardware, or any other C++
code, allowing the designer to quickly implement any desired
functionality, e.g. using any libraries that are needed to quickly
sketch out the functionality.

The resulting system consists of parts that represent hard-
ware (such as the given modules and signals) and parts that
may represent either hardware or software (such as the logic
within the modules that is written in C++ and may be later
translated to hardware or software that is running on the
given module). The system hence combines all kinds of design
paradigms.

III. HARDWARE AND SOFTWARE VISUALIZATION

As HSCV is closely related to both, hardware and software
visualization, this chapter gives a short overview over existing
techniques for these.

2See http://www.concept.de/



Fig. 1. Gate level (top) and register transfer level (bottom) visualizations
generated using the commercial tools by Concept Engineering2

Fig. 2. Software visualization: The CodeCity visualization [26] illustrates the
class structure (left), Extravis [7] uses e.g. a circular bundle view (right)

a) Hardware: Classic hardware visualization is an estab-
lished tool to facilitate design understanding in the hardware
domain.

As hardware is by definition a static structure, available
visualizations behave accordingly. Figure 1 shows established
hardware visualization views for gate level and register transfer
level designs, illustrating logical blocks and the according
connections.

The structure is usually represented in a graph: nodes and
transitions are a natural data structure for the given elements,
allowing the according algorithms to be used for further
processing [8]. The issue in this case usually therefore is not
the representation as such but the complexity: As hardware
designs consist of up to several billion parts, displaying them
is not a straightforward task.

The system behaviour is usually displayed in a different
tool: waveform viewers show changing signal assignments
over time, allowing designers to inspect how parts of their
design interact. This means that current hardware visualization
tools are essentially split into different tools for different
tasks, thus requiring the designer to switch back and forth
if information from both are needed.

b) Software: While software is at first rather similar to
hardware as it consists of structural elements (such as classes)
and their connections (such as relations between them) and
behaviour (execution of functions etc.), there are conceptual
differences between them upon closer inspection. The major
difference being that structural features may be dynamic when
e.g. an object is created in memory for a limited time. This
way, the separation between behavioural and structural fea-
tures is weakened, requiring either more dynamical structure
descriptions or more structural behaviour descriptions.

Additionally, the structural information is more diverse in

software: while hardware descriptions usually rely on signals
to connect the different parts, the connections in software
are more diverse: relations such as inheritance, composition
etc. should not simply be represented in a single “is related”
information.

The diverse information present in software has resulted in
an equally diverse set of visualizations. Figure 2 illustrates two
different approaches to visualize the source code of a given
program, with lots of other approaches being available as well.

IV. HARDWARE / SOFTWARE CO-VISUALIZATION

When a programming approach that encompasses both,
hardware and software concepts, is applied, any visualization
approach must do the same. In order to do that, the available
language features are analysed in Section IV-A, existing ap-
proaches are outlined in Section IV-B and the suggested course
of action is described in Section IV-C.

A. ESL Features: Taking Stock

Hardware/Software Co-Design merges the concepts of both,
hardware and software, into a single, abstract description. Any
visualization therefore needs to consider the features of both,
hardware and software, and come up with a single, consistent
visualization approach to communicate the design features.

The source code can be interpreted as a static, structural
feature which does not change for the duration of a simulation.

The (simulated) hardware is more interesting in this case:
while objects that represent hardware are created dynamically
by arbitrary C++ statements, starting the simulation means
that from that point onwards, the resulting architecture may
no longer be altered. This means that the given hardware
consists of rather static elements that first behave like arbitrary
objects but are fixed after a certain moment during execution
has passed.

The mixture of hardware/non-hardware types complicates
this further. A SystemC module (which represents some kind
of hardware part) may reference or contain arbitrary C++
objects. These may be either structural features (i.e. supposed
to be part of the given hardware) or not (e.g. they merely
required to quickly implement the module’s behaviour).

The same is true for communication: SystemC connections
such as signals are usually used for inter-module communica-
tion, but as modules are ordinary C++ objects, they may as
well simply call another object’s methods.

There are several other in-between constructs. E.g. variables
that are shared between simulated hardware elements (such
as global or static variables) have no real representation in
hardware but can still be modelled as such. Generally, the
differentiation between hardware elements and behavioural
descriptions is often purely semantic and cannot be derived
from the description itself.

The same is true for software: There may be “plain” C++
code that provides some kind of functionality that is not
directly connected to the simulated hardware design, e.g. a
system monitor that traces what is happening or a logger that
writes certain events to the hard drive. The ESL source code
that describes the system itself (e.g. methods that interpret



Fig. 3. Visualization of the SystemC RISC CPU example

Fig. 4. Visualization of a SystemC arbiter design

the inputs of a module and calculate the output values) are
similar, as they are merely methods that are being called during
simulation. While this is still C++, it is semantically different;
this is part of the simulated hardware system, the former is
not. A third kind of software is the software that is running
on the simulated system: a CPU that is built in SystemC will
not run if it is not provided with software.

Generally, SystemC merges several different concepts from
software and hardware development. While this allows for a
more rapid development, it also means that finding consistent
visual representations of the system’s parts is not a trivial issue.

Even software and hardware visualization are not “solved”
yet: if even these parts of the challenge have no satisfying
beats-all solutions yet, it is even less the case for a design
paradigm that combines both these approaches.

B. Existing Approaches

The closest tool to ESL visualization is SysML, which is
a UML dialect to illustrate system designs. It re-uses some
UML diagrams (such as the sequence diagram), modifies
others (such as the block definition diagram, which is based
on the UML class diagram) and adds new ones (such as the
requirement diagram).

However, SysML, just like UML, is primarily a tool to plan
a design. The reverse way, generating visualizations from an
existing design, is an issue that, so far, has not been covered.
One issue that impedes the generation of visualizations is the
difficulty of analysing SystemC designs and extract their data

in the first place: with SystemC being a C++ library, any
analysis tool for SystemC has to support C++ in its entirety.

C++, however, is notoriously difficult to properly analyse
when no further restrictions are applied. There is a wide
variety of dialects for different compilers, each coming with
its own libraries and additions. Additionally, as the system
structure is defined by the modules that are created during
the elaboration phase before the simulation starts, retrieving
the system layout ultimately requires the extraction of the
program state during the execution of the program. As C++
compilers tend to remove any information that is not needed
for the execution of the program (including e.g. data about
an object’s types, fields, methods etc.) or, if it is required for
execution, stores it in compiler-specific structures (such as the
virtual function tables), it is inherently difficult to develop a
generically applicable solution to extract information about a
design from a SystemC implementation.

A variety of approaches has been implemented to extract
the data, each of which differs concerning applicability, pre-
requisites, completeness and other criteria.

• Parsers [10], [16], [6], [4], [2] are based on the informa-
tion that can be extracted from the source code and are
thus limited concerning the supported language constructs
and the ability to extract parametric design variations.

• Approaches that rely on the modification of compilers
(and maybe the consecutive execution of a modified
program) [18], [11], [17] are inherently limited to the
compiler architecture they are based on, excluding any
designs that rely on compiler-specific constructs from a
different platform. The same is true for approaches that
use a debugger to observe the running program [5], [20].

• As all compilers are generating and storing information
for the debugger to be able to retrieve meta data about
a running program, this data can also be used as a
foundation for data retrieval methods. Relying on the
debug data and reading it during execution allows for
a detailed structural analysis but does not capture the
behaviour of a design [22].

• Aspect Oriented Programming modifies the source code
before compilation, injecting new features that can be
used to observe the design [24]. It is hard to implement
and debug though. Ultimately, it is limited in its expres-
siveness, too, and needs to be consistently updated to
remain compatible with the developments of the different
compilers and the C++ langauge itself.

While there are some approaches to then visualize the given
data [12], [13], even these dedicated works are focusing on
the data extraction and remain on a proof-of-concept stage
concerning the visualization itself.

We consider the difficulty in generating the data to be
visualized in the first place a major issue when it comes to
the implementation of visualization engines for the ESL or
SystemC in particular: if it requires a major effort to just get
the data, then any visualization reduces itself to a proof-of-
concept idea.

Without a common interface to pass generated data onwards
to a visualization tool, engineers are more unlikely to take this
step and build a visualization. An exchange format for ESL



Fig. 5. Objects during runtime on the ESL [23]

data may be able to remedy this issue: If user interface experts
can easily retrieve exemplary data and build tools for these,
the entry threshold for building an according tool should be
reduced significantly.

C. Visualizing SystemC

When extracting all available data, simply visualizing the
given results using established means such as UML/SysML
is not a valid solution as the data is too complex to handle.
Figure 5 illustrates this issue for an object diagram: when
all reachable objects are extracted from a running SystemC
simulation, displaying them all does not make the system any
easier to understand. When the additional information that
is present in the ESL is added to the given representations,
the complexity is going to increase even more, contradicting
the idea of providing an easy-to-grasp interface to a design’s
distinct features.

This issue works both ways: adding hardware elements
to software visualization approaches produces models that
are about as hard to grasp as those that are based on
adding software elements to established hardware visualization
approaches (which already suffer from the given systems’
complexity, as well).

We implemented a proof-of-concept visualization that uses
data we can extract from a given SystemC design to illustrate
a model of the system (as illustrated in Figures 3 and 4).
The core structures are SystemC modules, linked via their
ports using the signals present in the system. The visualization
primarily focuses on the additional illustration of meta-data,
using e.g. the height of the modules being shown to measure
their complexity or the amount of memory they occupy. The
tool is able to link back to the source code to provide designers
with an easy way to edit a given module. It also displays
behavioural information that can be read from VCD files
stored during the simulation of the system.

However, we consider the interface between the visualiza-
tion and the data retrieval method to be the most crucial ele-
ment: in order to create a visualization, complex data retrieval
methods had to be implemented first, with the visualization
being closely tied to the given extraction methods. If the
interface between visualization and data retrieval method was
standardized, developing alternative approaches to either of the
two could be done more quickly.

This interface would have to be able to properly reflect the
structures present on both sides of ESL design, hardware and

software. The data that can be extracted is basically always a
set of nodes (representing entities) and connections, possibly
with a collection of changes over time to reflect behaviour in
some way.

With the extracted models usually representing a graph,
using this as a smallest common denominator to directly
benefit from developments in the visualization community is
a natural step.

Using graphs as a common data structure for e.g. visual-
ization is a step that has been proposed for software [14]
and is a natural representation for hardware (which is a
set of interconnected parts anyway). This step, coming up
with a common base for further processing, is needed for
Hardware/Software Co-Design as well.

This step clearly separates data retrieval (i.e. SystemC
analysis) and application (e.g. visualization). Thus, the given
extraction methods can be refined or tweaked regardless of
the usage of the retrieved data: any third party visualization
tool that supports the given data set may be used to display
the given data. On the other hand, these tools that use the
retrieved data, can be developed separately as well, allowing
innovative, diverse solutions to be built on top of existing
retrieval methods.

We have implemented a bridge that translates the informa-
tion about a given ESL design from various sources into a
neo4j [25] graph, in fact allowing not only the visualization
of a given model but also enabling designers to e.g. quickly
compare graph structures to e.g. a UML specification (which,
of course, has to have an according representation as well).
Figure 6 shows different representations of a neo4j graph for
the class hierarchy of a SystemC design: the syntactic repre-
sentation of the code (which basically just a hierarchical view
of the given code elements) and the semantic representation
(which more accurately shows e.g. the hierarchical structures
of objects having methods, fields etc.).

There are several existing formats available to exchange
graph data [21]. However, SystemC employs features such
as changing data (as values on signals are altered over time)
or even structural features that are changed during simulation
(as new objects are instantiated), which usually is not part
of a graph format. As a proof-of-concept, we implemented
a method to translate the structure of SystemC designs into
the GEXF format which supports such more complex features
such as a hierarchy of nodes or changes in structure and
content over time. It thus serves as a bridge to existing
visualization tools such as sigma.js or gephi [1] (see Figure 7).



Fig. 6. Syntactic (top) and semantic (bottom) representations of the static
code structures of an ESL implementation in the Neo4J graph database

Fig. 7. Class inheritance of a SystemC design data in gephi [1]

As a first result, existing visualization toolkits can be used to
handle the given data structures. These may provide different
approaches to the display of the underlying data, actually
giving users the ability to pick the tool that suits them best
while analysing their design. This is not necessarily limited to
the display, it may also be a question of the architecture as
some may prefer web-based solutions such as d3.js [3] over
e.g. local clients such as gephi or a question of the focus as
some may only want to view the structures while others would
like a database such as neo4j [25] to be able to use database
queries to extract the desired information.

Fig. 8. Visualizations may be needed on handheld devices (left) or even VR
headsets (right) [15], depending on the use case.

This format may thus serve as a reasonable foundation
for HSCV: it provides the required features and is already
supported by several visualization tools.

Concerning the visualization itself, performance is a
straightforward necessity: with SystemC designs consisting of
thousands of modules, classes and connections, the ability to
handle the according amount of data smoothly is an obvious
criterion.

However, the criterion that should benefit more from a given
exchange format is accessibility. In order for such techniques
to be used, they need to be readily available. The standard
SystemC data extraction technique is the registration of signals
and/or fields ot be included in a VCD in order to later view
them as waveforms in a dedicated application. This should be
regarded as an upper limit for interaction prior to the usage of
data in order to make people indeed use the given techniques
instead of e.g. just drawing diagrams manually.

Accessibility, however, concerns both sides of the visualiza-
tion approach: it is an important criterion for the retrieval of
the data and its visualization.

The former encompasses all kinds of extraction methods
that retrieve a set of data concerning the structures and the
behaviour of a SystemC design. As outlined before, with C++
being focused on performance and compilers usually removing
everything that is not required for execution, this is already a
tough problem.

The latter means that dedicated visualization tools need to
be available where designers need them. That means that a
visualization should not only be easy to load and use on a
designer’s workstation but that a common system design data
format should be as ubiquitous, with visualizations available
on both, low level (such as websites or handhelds) or state-
of-the-art hardware (such as e.g. powerwalls or virtual reality
environments) as illustrated in Figure 8.

This ubiquity of tools should be a key focus for HSCV tools.
The previously mentioned common data exchange format (or
lack thereof), however, is a key issue for this case. While
there are several data retrieval methods available and still being
worked on, there is – so far – no common target that this
data is written to. This of course is a showstopper for any
potential visualization tool to be developed: if a team needs
to implement its own extraction methods in order to come up
with a visualization solution, this binds resources to the degree
of making the whole undertaking infeasible.

For GEXF, there is support by existing graph visualization
engines, it supports the timed changes present in a dynamic
system such as a SystemC design and our own data extraction
methods have shown promising results.



We regard the usage of a common exchange format as
a necessary and overdue first step towards more ubiquitous
HSCV technologies.

This detachment of visualization and data retrieval should
enable UI specialists to develop dedicated solutions for HSCV
and incorporate techniques from other fields that have recently
made an impact on user interaction. On handhelds, users may
e.g. want to filter the given information using spoken, natural
language. Using VR sets, the additional dimensions and im-
mersive techniques could be used to browse the data. Websites,
on the other hand, can be used to easily and quickly distribute
information about a design or generate printable overviews for
a documentation. All these use cases and also those that are not
listed here should be quickly implementable: UI design often
evolves around building several prototypical implementations
and trying what works best, which is impossible without a
common foundation.

The goal of the community around the analysis of SystemC
designs should be to provide data to enable other engineers to
create smart solutions. Common interfaces are a necessity for
this and have not been established yet. The given approach
is a suggestion to remedy this issue and provide easy-to-use,
established intermediate data formats.

V. SUMMARY AND CONCLUSION

Visualization techniques for Hardware/Software Co-Design
are still very much in its infancy.

There are lots of open questions concerning how to visualize
these systems and and just as much room for improvements
concerning the retrieval of the required data. This paper
illustrated the current state of affairs for SystemC visualization
and suggested that these two core issues (data retrieval and
visualization) should be properly separated, using a common
interchange format that is easy to pass on and work with.

GEXF, an XML-based graph format, was suggested as a
solution for this issue that is already available, easy to handle
and providing the needed features (such as behavioural and
hierarchical structures).
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