
Exploiting Inherent Characteristics of Reversible Circuits
for Faster Combinational Equivalence Checking

Luca Amarú1, Pierre-Emmanuel Gaillardon1, Robert Wille2,3, Giovanni De Micheli1
1Integrated Systems Laboratory (LSI), EPFL, Lausanne, Switzerland
{luca.amaru, pierre-emmanuel.gaillardon, giovanni.demicheli}@epfl.ch

2Integrated Circuit and System Design, Johannes Kepler University, Linz, Austria
robert.wille@jku.at

3University of Bremen and DFKI GmbH, Bremen, Germany
rwille@informatik.uni-bremen.de

Abstract— Reversible circuits implement invertible logic functions.
They are of great interest to cryptography, coding theory, interconnect
design, computer graphics, quantum computing, and many other fields.
As for conventional circuits, checking the combinational equivalence of
two reversible circuits is an important but difficult (coNP-complete)
problem. In this work, we present a new approach for solving this
problem significantly faster than the state-of-the-art. For this purpose,
we exploit inherent characteristics of reversible computation, namely
bi-directional (invertible) execution and the XOR-richness of reversible
circuits. Bi-directional execution allows us to create an identity miter out
of two reversible circuits to be verified, which naturally encodes the equiv-
alence checking problem in the reversible domain. Then, the abundant
presence of XOR operations in the identity miter enables an efficient
problem mapping into XOR-CNF satisfiability. The resulting XOR-CNF
formulas are eventually more compact than pure CNF formulas and
potentially easier to solve. As previously anticipated, experimental results
show that our equivalence checking methodology is more than one order
of magnitude faster, on average, than the state-of-the-art solution based
on established CNF-formulation and standard SAT solvers.

I. INTRODUCTION

Reversible computing is a non-conventional computing style where
all logic processing is conducted through bijective, i.e., invertible,
Boolean functions. Reversible circuits implement invertible Boolean
functions at the logic level and are represented as cascades of
reversible gates. In conventional technologies, reversible circuits
find application in cryptography [1], coding theory [2], interconnect
design [3], computer graphics [4] and many other fields where the
logic invertibility is a key asset. In emerging technologies, such as
quantum computing [5], reversible circuits are one of the primitive
computational building blocks.

Whether they are finally realized in conventional or emerging tech-
nologies, the design of reversible circuits faces two major conceptual
challenges: synthesis and verification [6]. Synthesis maps a target
Boolean function into the reversible logic domain while minimizing
the number of additional information bits and primitive gates [7],
[8]. Verification checks if the final reversible circuit conforms to the
original specification [9].

In this work, we focus on reversible circuit verification and, in
particular, on combinational equivalence checking. The problem of
combinational equivalence checking consists of determining whether
two given reversible circuits are functionally equivalent or not. As
for conventional circuits, this is a difficult (coNP-complete) problem
[10]. We present a new approach for solving this problem significantly
faster than the state-of-the-art verification approaches [9].

For this purpose, our methodology exploits, for the first time,
inherent characteristics of reversible computation, i.e., its invertible
execution and the XOR-richness of reversible circuits. This stands
in contrast to previously proposed solutions such as introduced
in [9] which only adapted established verification schemes for
conventional circuits but ignored the potential of the reversible
computing paradigm. Our proposed methodology consists of the
following steps. First, we create an identity miter by cascading

one circuit with the inverse of the other. If the two reversible
circuits are functionally equivalent, then the resulting cascade realizes
the identity function. Next, we encode the problem of checking
whether the resulting circuit indeed realizes the identity into a mixed
XOR-CNF satisfiability problem. The possibility to express natively
XOR operations, frequently appearing in reversible circuits, reduces
significantly the number of variables and clauses as compared to a
pure CNF formulation. Finally, we solve the XOR-CNF satisfiability
problem using CryptoMiniSat [11], a MiniSat-based solver handling
XORs through Gaussian elimination [12]. Experimental results show
that, on average, the proposed methodology is more than one order
of magnitude faster than the state-of-the-art reversible circuit checker
based on the established CNF-formulation and MiniSat solver [9].
Besides that, the proposed approach also provides potential for im-
proving combinational equivalence checking of conventional circuits.

The remainder of this work is organized as follows. Section II
provides the background on reversible circuits and on Boolean
satisfiability. Section III presents the proposed methodology for
equivalence checking of reversible circuits. Section IV describes the
setup applied for our experimental evaluation and summarizes the
obtained results. Section V discusses the future research directions –
in particular for combinational equivalence checking of conventional
circuits. Section VI concludes the paper.

II. BACKGROUND

In this section, we briefly review the background on reversible
circuits and on Boolean satisfiability.

A. Reversible Circuits

A logic function f : Bni → Bno is reversible if and only if it
represents a bijection. This implies that:
• the number of inputs is equal to its number of outputs (i.e.,

ni = no) and
• it maps each input pattern to a unique output pattern.
A reversible function can be realized by a circuit G = g1g2 . . . gd

comprised of a cascade of reversible gates gi, where d is the number
of gates. Multiple forks and feedback are not directly allowed [5].
Several different reversible gates have been introduced including the
Toffoli gate [13], the Fredkin gate [14], and the Peres gate [15]. In
accordance to the common approach in reversible circuit design (see
e.g., [7], [8]), we focus on Toffoli gates in the following. Toffoli gates
are universal, i.e., all reversible functions can be realized by means
of this gate type alone [13].

A Toffoli gate has a target line t and control lines {c1, c2, . . . , cn}1.
Its behavior is the following: If all control lines are set to the
logic value 1, i.e., c1· c2· . . . · cn = 1, the target line t is inverted,
i.e., t′. Otherwise, the target line t is passed through unchanged.

1Toffoli gates have originally been introduced with just two control lines.
However, their functionality is commonly extended to n control lines.

Hence, the Boolean function of the target line can be expressed as
(c1· c2· . . . · cn)⊕t. All remaining signals (including the signals of the
control lines) are always passed through unchanged. Fig. 1 depicts
a Toffoli gate with its respective output functions. We follow the
established drawing convention of using the symbol ⊕ to denote the
target line and solid black circles to indicate control connections for
the gate.

t

c2

(c1 c2 … cn) t ⊕

c1

cn

c2

c1

cn

Fig. 1: A Toffoli gate.

A Toffoli gate with no control lines always inverts the target line
and is a NOT gate. A Toffoli gate with a single control line is called
a controlled-NOT gate (also known as the CNOT gate). The case of
two control lines is the original gate defined by Toffoli [13].

Example 1. Fig. 2 shows a reversible circuit composed of m = 3
circuit lines and d = 6 Toffoli gates. This circuit maps each input
pattern into a unique output pattern. For example, it maps the input
pattern 111 to the output pattern 100. Inherently, every computation
can be performed in both directions (i.e., computations towards the
outputs and towards the inputs can be performed).

b

a

c

a b

a

(ab) c

⊕

⊕
Fig. 2: A reversible circuit composed of Toffoli gates

B. Boolean Satisfiability

The Boolean Satisfiability (SAT) problem consists of determining
whether there exists or not an assignment of variables so that a
Boolean formula evaluates to true. In its most common formulation,
Boolean SAT deals with Conjunctive Normal Form (CNF) formulas,
i.e., a conjunction of disjunctions (clauses). For example, a standard
CNF is

(a+ b′)(a+ c′)(a′ + b+ c)

which is satisfiable by (a = 1, b = 1, c = 1).
Even though SAT for generic CNFs is a difficult (NP-complete)

problem, modern SAT solvers can handle fairly large problems in
reasonable time [16]. The core technique behind most SAT solvers
is the DPLL (Davis-Putnam-Logemann-Loveland) procedure, intro-
duced several decades ago [17]. It basically performs a backtrack
search in the space of partial truth assignments. Through the years,
the main improvements to DPLL have been smart branch selection
heuristics, a fast implication scheme, and extensions such as clause
learning, randomized restarts, as well as well-crafted data structures
such as lazy implementations and watched literals for fast unit
propagation [16].

b

a

c

a b

a

(ab) c

⊕

⊕

Circuit 2

b

a

c

a b

a

(ab) c

⊕

⊕

Circuit 1

Fig. 3: Two functionally equivalent reversible circuits.

Recently, researchers considered SAT to solve other important
problems in computer science, for example, cryptographic applica-
tions [19]. Here, SAT solvers are often faced with a large amount
of XOR constraints. These XORs are typically difficult to handle
using pure CNF and standard SAT solvers. However, the presence
of these XOR constraints can be exploited within a DPLL solving
framework by using on-the-fly Gaussian elimination [12]. Some SAT
solvers have been proposed which exploit this potential and, hence,
work on mixed XOR-CNF formulas rather than pure CNF formulas.
For example, a mixed XOR-CNF is

(a⊕ b′)(a⊕ c)(a′ + b+ c)

which is satisfiable by (a = 1, b = 1, c = 0).
CryptoMiniSat [11] is one of the most popular solvers for XOR-

CNF formulas based on MiniSat [24] and Gaussian elimination to
handle XOR constraints [12].

III. MAPPING COMBINATIONAL EQUIVALENCE CHECKING
FOR REVERSIBLE CIRCUITS TO XOR-CNF SAT

In this section, we present the proposed approach for checking the
combinational equivalence between two reversible circuits. Without
loss of generality, we consider reversible circuits composed only of
Toffoli, CNOT, and NOT gates. Since Toffoli gates are universal, any
other primitive reversible gate can be decomposed into a combination
of those.

In the remainder of this section, we first describe how to create
an identity miter out of two reversible circuits under test. Then, we
propose an efficient encoding of the identity check problem into
XOR-CNF satisfiability.

A. Creating an Identity Miter

In the considered scenario, two reversible circuits need to be
checked for combinational equivalence. As an example, consider the
circuits depicted in Fig. 3.

Following established verification schemes, both circuits are fed
by the same input signals. Differences at the outputs are observed
by applying XOR operations. This eventually leads to a new circuit
specifically used for equivalence checking which is commonly called
miter circuit [20]. If at least one output of the miter can evaluate to
the logic value 1, for some input pattern, then the two circuits are
functionally different. Otherwise, the two circuits are functionally
equivalent.

b

a

c

b

a

c

e

d
f

g

h
i

l m

Circuit 2 Circuit 1

ID (?)
Fig. 4: The resulting identity miter.

The very same approach can be used to verify the combinational
equivalence of two reversible circuits (and, in fact, has been done be-
fore in [9]). However, just an adaptation of this conventional scheme
entirely ignores the potential that comes by following the reversible
computing paradigm. In fact, properties of reversible circuits can
be exploited to create a different type of miter. More precisely, a
reversible circuit realizes a function f when considered from the
inputs to the outputs. But thanks to the reversibility, it also realizes the
inverse function f−1 when considered from the outputs to the inputs2.
Therefore, by cascading one reversible circuit with the inverse (I/O
flip) of a functional equivalent one always yields to a circuit realizing
the identity function over all signal lines. This concept is illustrated
in Fig. 4 which shows the resulting identity miter comprised from
the example circuits of Fig. 3.

We call such composite circuit an identity miter. If at least one
output of the identity miter does not represent the identity function,
i.e., if f(x) 6= x, then the two reversible circuits are functionally
different. Otherwise, the two circuits are functionally equivalent.

Note that the idea of creating an identity miter out of two reversible
circuits is not new per se. Indeed, it has been already studied in [18].
However, in that work, the use of an identity miter did not lead
to substantial improvements for equivalence checking of reversible
circuits. This is because researchers used canonical data structures,
decision diagrams and alike, to perform the identity checking task.
The scaling limitations of canonical data structures severely confined
the potential efficiency of using an identity miter.

Instead, in this work, we propose an innovative SAT formulation
to describe the identity miter checking problem. SAT can handle
much larger problems than canonical data structures before hitting
serious scaling limitations. Moreover, we develop an ad-hoc mixed
XOR-CNF formulation to natively handle the identity miter checking
problem and significantly expedite its solving as compared to a pure
CNF formulation.

B. XOR-CNF Formulation

To test the equivalence of two reversible circuits, we need to check
whether their identity miter actually represents an identity function or
not. If such an assignment can be determined, then the identity miter
does not actually represent the identity function and the two reversible
circuits under test are not functionally equivalent (in this case, the
determined assignment works as counterexample). Otherwise, the
identity miter represents the identity function and the two reversible
circuits are functionally equivalent.

2This holds since self-inverse reversible gates such as Toffoli gates, CNOT
gates, NOT gates, etc. are considered here. If other gate libraries are applied,
similar observations can be made by additionally replacing each gate with its
corresponding inverse gate.

Besides that, the XOR-richness of the considered circuits can be
exploited. In fact, most of the reversible circuits are inherently com-
posed of XOR operations only – caused by the applied Toffoli gate
library as introduced in Section II-A. This allows for a formulation in
terms of a mixed XOR-CNF satisfiability problem which, as reviewed
in Section II-B, can be handled much better using dedicated solvers
rather than the conventionally applied CNF satisfiability.

The resulting formulation is defined as follows: First, correspond-
ing SAT variables are introduced. More precisely, for each primary
input of the identity miter as well as for each reversible gate, a new
free variable is introduced.

Example 2. Consider again the identity miter as shown in Fig. 4.
For the primary inputs, the variables a, b, c are introduced. The
variables d, e, . . . ,m represent reversible gates outputs.

Afterwards, two types of constraints are introduced: The first type
covers the functionality of the circuit, i.e., symbolically restricts the
set of possible assignments to those which are valid with respect to
the given gate functions and connections. The second type covers the
objective, i.e., symbolically restricts the set of possible assignments
to those which show, for at least one circuit line, the non-identity of
the input x and the output f(x) (in other words, assignments which
violate x = f(x)).

Considering the functional constraints, there are as many functional
constraints as Toffoli, CNOT, and NOT gates in the circuit. Each
of them introduces its particular set of functional constraints which
restrict the output value (denoted by o in the following) of the
respective target lines. More precisely,
• a NOT gate with a target line t is represented by (o = t′),
• a CNOT gate with target line t and control line c is represented

by (o = c⊕ t), and
• a Toffoli gate with target line t and control lines {c1, c2, . . . , cn}

is represented by (o = p⊕ t) and (p = c1· c2· . . . · cn).
All these constraints must simultaneously hold in order to properly
represent the circuit functionality.

Example 3. Consider again the identity miter shown in Fig. 4. For
this circuit, the following functional constraints are created:

Functionality



d = b⊕ a
e = a⊕ d
f = d′

g = c⊕ p1
p1 = f · e
h = f ′

i = e⊕ h
l = h⊕ i
m = g ⊕ p2
p2 = i· l

(1)

As an example, consider the variable g which symbolically represents
the output value of the fourth gate from Fig. 4. The functionality of
this gate is represented by g = c ⊕ p1. The variable p1 represents
thereby the controlling part of this Toffoli gate and is accordingly
represented as p1 = f · e. The remaining constraints in Eq. 1 are
derived analogously.

Considering the objective constraints, there are as many objective
constraints as lines in the reversible circuit. Here, the functional
constraints as described above are utilized. For a generic linei
(i ≤ m), the primary outputs in the identity circuit are respectively
defined by the cascade of gates g1g2 . . . gd. The functional constraints
represent these gates by means of a cascade of XOR operations so
that linei is eventually defined as linei = h1 ⊕ h2 · · · ⊕ hd where
each hj (j ≤ d) is either

• the product p = c1· c2· . . . · cn of the control connections of
gate gj (in case the corresponding gate gj is a Toffoli gate),

• the control signal c (in case the corresponding gate gj is a CNOT
gate), or

• the logic value 1 (in case the corresponding gate gj is a NOT
gate).

Because of this cascade of XOR operations, the objective constraints
only have to ensure that, for at least one linei, its corresponding out-
put assumes the logic value 1, i.e., behaves as an inverter rather than
a buffer. This can be formulated as ∃i ∈ {1, 2, . . . ,m} : linei = 1,
where m is the number of lines.

Example 4. Consider again the identity circuit considered above.
For this circuit, the following objective constraints are added:

Non-Identity


∃i ∈ {1, 2, 3} : linei = 1
line1 = d⊕ h
line2 = a⊕ 1⊕ 1⊕ i
line3 = p1 ⊕ p2

(2)

As an example, consider the bottom (third) line of the reversible
circuit from Fig. 4. We have that line3 = p1 ⊕ p2. The values of p1
and p2 are derived from the functional constraints, in particular from
control lines of the respective Toffoli gates. The objective constraint
asks for at least one of the three lines to evaluate to the logic value 1,
thus to invert the corresponding input bit (so not being an identity).

As one can visually notice, the set of constraints in Eq. 1 and Eq. 2
are not yet in XOR-CNF form. Hence, some further transformations
are needed. For this purpose, we exploit the fact that, in the Boolean
domain, (a = b) can equally be represented as (a ⊕ b′ = 1).
This allows us to transform most of the equalities directly into
XOR clauses. In contrast, special treatment is required for the AND
constraints caused by the representations of the control lines, i.e.,
for p. For these ones, it is more efficient to rely on the established
Tseitin transformation [21]. Tseitin transformation sets a particular
gate Boolean expression equal to constant 1 and transforms it into
a conjunction of disjunctions. For this reason, Tseitin transformation
encodes an AND function over k inputs into k+1 OR clauses. Finally,
the constraint ∃i ∈ {1, 2, 3} : linei = 1 is naturally mapped into a
standard OR clause.

Example 5. Following the example from above, all constraints from
Eq. 1 and Eq. 2 are eventually transformed into the following single
set of XOR-CNF clauses:

XOR-CNF



d′ ⊕ b⊕ a
e′ ⊕ a⊕ d
f ′ ⊕ d′

g′ ⊕ c⊕ p1
p1 + f ′ + e′

p′1 + f
p′1 + e
h⊕ f
i′ ⊕ e⊕ h
l′ ⊕ h⊕ i
m′ ⊕ g ⊕ p2
p2 + i′ + l′

p′2 + i
p′2 + l
line′1 ⊕ d⊕ h
line′2 ⊕ a⊕ 1⊕ 1⊕ i
line′3 ⊕ p1 ⊕ p2
line1 + line2 + line3

(3)

The resulting XOR-CNF problem is unsatisfiable as the considered

CryptoMiniSAT

Identity Miter

XOR-CNF Encoder

file1.real file2.real

EQ/NEQ
Fig. 5: The proposed equivalence checking flow.

identity miter shown in Fig. 4 indeed represents the identity. That
means that the two original reversible circuits to be verified (shown in
Fig. 3) are combinationally equivalent. This can be proved manually
or, more efficiently, using a XOR-CNF satisfiability solver.

Note that the XOR-CNF formulation in Eq. 3 is composed of
18 clauses and 16 variables. In contrast, the established formulation
based on pure CNF requires 82 clauses and 34 variables [9]. This
reduction alone is likely to lead to a solving speed-up. Moreover, the
presence of more than 60% XOR clauses opens even more speed-
up opportunities. Mixed XOR-CNF solvers take advantage of XOR
clauses through fast Gaussian elimination. Results showed in the next
section confirm the predicted improvement.

IV. EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed approach,
we implemented the techniques described above and compared them
against the state-of-the-art solution presented in [9]. In this section,
we summarize the respectively obtained results. Details on the applied
methodology as well as the experimental setup are provided. Our ex-
perimental environment is publicly available and can be downloaded
from [22].

A. Methodology and Setup

The proposed equivalence checking scheme has been implemented
as a tool chain which is sketched by Fig. 5. Two reversible circuits
(provided in the *.real-format [23]) are taken and re-arranged into
an identity circuit as well as mapped into an equivalent XOR-CNF
formulation. For this purpose, the concepts described in Section III
have been implemented in terms of a C-program. Afterwards, the
resulting formulation is passed to CryptoMiniSAT 2.0 – an XOR-CNF
solver [11]. In case the solver proved the unsatisfiability of the
instance, equivalence (EQ) has been proven; otherwise, it has been
shown that the considered circuits are not equivalent (NEQ).

For comparison, we additionally considered the SAT-based re-
versible circuit checker presented in [9]. From a high-level perspec-
tive, this tool first creates an XOR-miter of the given reversible
circuits. Then, it encodes the XOR-miter into a pure CNF formula
which is eventually solved using MiniSAT [24]. Even though this flow
has been explicitly tuned for verification of reversible circuits in [9], it
still employs the state-of-the-art schemes as applied for verification
of conventional circuits. To enable a fair runtime comparison, we

TABLE I: Experimental results (all run-times in CPU seconds)
State-of-the-art [9] Proposed solution

Circuit1 (lines/gates) Circuit2 (lines/gates) Vars/Clauses Answer Runtime Vars/Clauses XOR% Answer Runtime
Unstructured Reversible Functions (from RevLib)
urf3 1 (10/26k) urf3 2 (10/26k) 133609/527485 EQ 98.85 104212/210085 32 EQ 14.20
urf3 1 (10/26k) urf3 bug (10/26k) 133433/526926 NEQ 5.91 104212/210085 32 NEQ 1.69
urf1 1 (9/11k) urf1 2 (9/6k) 58122/229437 EQ 17.89 35847/61885 60 EQ 2.54
urf1 1 (9/11k) urf1 bug (9/6k) 58124/229390 NEQ 2.77 45438/91655 31 NEQ 0.52
urf5 1 (10/10k) urf5 2 (10/10k) 51746/20401 EQ 15.85 40350/81455 31 EQ 3.75
urf5 1 (10/10k) urf5 bug (10/9k) 51810/204249 NEQ 1.54 40312/81377 31 NEQ 0.42
urf6 1 (15/10k) urf6 2 (15/10k) 54888/216888 EQ 5694.22 42565/85526 33 EQ 570.39
urf6 1 (15/10k) urf6 bug (15/9k) 54682/216370 NEQ 2.64 42524/85445 33 NEQ 0.49
urf4 1 (11/32k) urf4 2 (11/31k) 162247/636237 EQ 883.27 127254/255271 55 EQ 92.37
urf4 1 (11/32k) urf4 bug (11/31k) 162349/636563 NEQ 6.04 127245/255252 55 NEQ 2.03
Total URF 921010/3443964 – 6728.98 709959/1418036 39 – 688.40
Components of the RISC CPU (from RevLib)
alu1 1 (756/3k) alu1 2 (756/10k) 82617/281684 EQ 5649.74 23128/99803 28 EQ 670.96
alu1 1 (756/3k) alu1 bug (756/2k) 66182/216644 NEQ 67.84 10625/65921 21 NEQ 6.96
alu2 1 (6204/3k) alu2 2 (6204/3k) 5568/20216 EQ 304.65 21254/22521 79 EQ 186.44
alu2 1 (6204/3k) alu2 bug (6204/3k) 5657/20610 NEQ 369.49 21250/22517 80 NEQ 76.21
alu3 1 (255/10k) alu3 2 (255/11k) 227505/752851 EQ 12751.02 35406/253957 12 EQ 728.98
alu3 1 (255/10k) alu3 bug (155/8k) 209887/691117 NEQ 56.91 30424/232584 12 NEQ 9.90
alu4 1 (757/4k) alu4 2 (757/7k) 28671/111480 EQ 8899.70 20941/40794 42 EQ 320.87
alu4 1 (757/4k) alu4 bug (757/4k) 22140/85537 NEQ 825.71 16496/30987 55 NEQ 169.00
alu5 1 (256/9k) alu5 2 (256/10k) 47290/185110 ? >1 day 33150/65249 45 EQ 6948.86
alu5 1 (256/9k) alu5 bug (256/9k) 43966/171863 NEQ 51.56 30894/60329 51 NEQ 10.36
Total RISC CPU 739483/2537112 – 115376.62 243568/894662 42 – 9128.54
Grand Total 1660493/5981058 – 122105.60 953527/2312698 41 – 9816.94
Improvement compared to [9] 1/1 – 1 1.74/2.58× – – 12.44×

downloaded, compiled, and run the reference tool from [9] for our
evaluations.

As benchmarks, we considered reversible circuits (provided in the
*.real-format) from the RevLib benchmark library [23]. We neglected
small reversible circuits for which the verification runtime was less
than a second. We focused on complex reversible circuits (with >2k
gates) for which the verification task required more computational
effort. In particular, we give results for two classes of bench-
marks: circuits realizing Unstructured Reversible Functions (URF)
as well as circuits realizing arithmetic components of a RISC CPU.
These classes are the largest and toughest benchmarks available at
RevLib [23] and, hence, are appropriate to challenge the proposed
verification scheme.

Whenever required, all gates in these circuits have been locally
transformed into universal Toffoli gates. In order to consider both
cases of equivalence as well as non-equivalence three versions of
each circuit have been considered, namely (i) the original version,
(ii) an optimized version, and (iii) an erroneous version.

All experiments have been conducted on a Dual Xeon 6 cores
X5650 machine with 24GB RAM running under RHEL 5.8 - 64 bits
OS. All benchmarks, the implementation, and the experimental setup
can be downloaded from [22] for the sake of repeatability.

B. Results

Table I summarizes the experimental results. Considering the URF-
benchmarks, equivalence checking can be conducted approx. 9 times
faster compared to the reference verification scheme. If the CPU-
benchmarks are considered, even better improvements can be ob-
served; namely speed-ups of a factor of approx. 12. Here, particular
the benchmark alu 5 is of interest. Applying the reference scheme
proposed in [9], no result was obtained within 24 hours (its contribu-
tion to the total runtime nevertheless has been considered as 24 hours,

i.e., 86400 in favor to the reference flow). In contrast, the proposed
approach was able to check the equivalence in less than two hours.
Over all benchmarks, an improvement of more than one order of
magnitude (more precisely, a factor of 12.44) is observable.

We see the two reasons for this significant improvement: On the
one hand, the number of variables and clauses are considerably
smaller in the proposed XOR-CNF formulation compared to the
pure CNF formulation (a reduction by the factor of 1.29 and 2.42,
respectively). On the other hand, the richness of XOR-clauses in
our formulation helps the solving engine in simplifying the formula
early in the process (e.g., through Gaussian elimination). Further
investigation is needed to numerically separate the contributions for
each speedup source.

Besides that, non-equivalent cases have been solved quite faster
than equivalent cases for both, the proposed scheme as well as the
reference scheme. This is expected as SAT solvers are known to
be very fast in detecting satisfying assignments rather than proving
unsatisfiability.

V. DISCUSSION

The proposed solution provides an alternative verification scheme
for reversible logic which leads to significant improvements with
respect to the state-of-the-art. Beyond that, it also opens promising
new paths for improving verification of conventional designs. This
section briefly discusses new research opportunities in this direction.

A. Application to the Verification of Conventional Circuits

The significant speed-up obtained in this work is enabled by intrin-
sic properties of reversible circuits such as bi-directional execution
and XOR-richness. Conventional circuits usually do not inherit these

particular properties. Hence, at a first glance, the proposed verifi-
cation scheme may seem applicable only to reversible computation
paradigms.

However, conventional logic can also be represented in terms of
reversible logic by using extra I/Os and extra gates. Previous studies
explored this direction in order to (ideally) map any combinational
design into reversible circuits [26]. This motivates us to consider a
new verification flow. The core idea is to convert conventional circuits
into reversible ones and perform the verification tasks in the reversible
domain. In this way, the efficiency of the reversible equivalence
checking flow proposed in this work can be further exploited. The
conventional-to-reversible mapping may also be inefficient, from an
optimization standpoint, but the benefits demonstrated so far are large
enough to absorb such inefficiency and possibly leave room for a
relevant improvement.

The main issue here is defining a robust and trustable
conventional-to-reversible mapping technique. In this context, ex-
isting conventional-to-reversible mapping techniques [26] do not
natively fit the requirements as they are intrinsically developed for
logic optimization purposes. Our future research efforts are focused
on the development of such reversible conversion method starting
from arbitrary combinational logic circuits.

Provided that, conventional verification tasks will take full ad-
vantage of the reversible computing paradigm opening new exciting
research directions.

B. Easy Exploitation of Parallelism

The proposed equivalence checking method can be further im-
proved by exploiting concurrent execution. To speed-up SAT solvers,
researchers are studying parallel and concurrent execution (e.g., [27]).
This is motivated by the fact that, nowadays, multi-cores are wide-
spread and computing resources are inexpensive. However, to fully
exploit the potential offered by parallelization, also the respective
SAT problems must be formalized in a parallel fashion. This is
usually not obvious for the established equivalence checking solutions
proposed in the past.

In contrast, a parallel consideration is simple for the solution
proposed in this work. In fact, the formulation described in Section III
can easily be split for each circuit line. By this, the overall equiv-
alence checking problem is decomposed into m separate instances
(with m being the number of circuit lines). These instances are
smaller and can be solved independently from each other. As soon
as one of the instances is found satisfiable, non-equivalence has been
proven. Overall, this does not only allow for easier instances to be
separately solved, but also enables the full exploitation of multiple-
cores – something which is much harder to accomplish for almost
all (conventional) verification schemes available thus far.

VI. CONCLUSIONS

Reversible circuits are of great interest to various fields, including
cryptography, coding theory, communication, computer graphics,
quantum computing, and many others. Checking the combinational
equivalence of two reversible circuits is an important but difficult
(coNP-complete) problem. In this work, we presented a new ap-
proach for solving this problem significantly faster than the state-of-
the-art. The proposed methodology explicitly exploited the inherent
properties of reversible circuits, namely the bi-directional execution
as well as their XOR-richness. This eventually enabled speed-ups of
more than one order of magnitude on average. While this represents
a substantial improvement for the verification of circuit descriptions
aimed for reversible computation, it also offers promising potential
to be exploited in the verification of conventional designs. Possible

directions for future work in this regard have been outlined and briefly
discussed.

ACKNOWLEDGEMENTS

This research was supported by the ERC-2009-AdG-246810 and
by the EU COST Action IC1405.

REFERENCES

[1] D. Kamalika, I. Sengupta. Applications of Reversible Logic in Cryptog-
raphy and Coding Theory, Proc. 26th Intl. Conf. on VLSI Design. 2013.

[2] K. Czarnecki, et al., Bidirectional transformations: A cross-discipline
perspective, Theory and Practice of Model Transformations. Springer
Berlin Heidelberg, 2009. 260-283.

[3] R. Wille, R. Drechsler, C. Oswald, A. Garcia-Ortiz, Automatic Design
of Low-Power Encoders Using Reversible Circuit Synthesis In Design,
Automation and Test in Europe (DATE), pg: 1036-1041, 2012.

[4] S. Lee, Sunil, C.Dong Yoo, T. Kalker, Reversible image watermarking
based on integer-to-integer wavelet transform, IEEE Transactions on
Information Forensics and Security, 2.3 (2007): 321-330.

[5] M. Nielsen, I. L. Chuang, Quantum computation and quantum informa-
tion, Cambridge university press, 2010.

[6] R. Wille, R. Drechsler, Towards a Design Flow for Reversible Logic,
Springer, 2010.

[7] R. Drechsler, R. Wille, From Truth Tables to Programming Languages:
Progress in the Design of Reversible Circuits, IEEE International Sym-
posium on Multiple-Valued Logic, pages 78-85, 2011.

[8] M. Saeedi, I. L. Markov, Synthesis and optimization of reversible circuits
– a survey, ACM Computing Surveys (CSUR) 45.2 (2013): 21.

[9] R. Wille, D. Große, D.M. Miller, Rolf Drechsler, Equivalence checking
of reversible circuits, IEEE International Symposium on Multiple-Valued
Logic, 2009.

[10] S.P. Jordan, Strong equivalence of reversible circuits is coNP-complete,
Quantum Information & Computation 14.15-16 (2014): 1302-1307.

[11] CryptoMiniSAT tool - http://www.msoos.org/cryptominisat2/
[12] M. Soos, Enhanced Gaussian Elimination in DPLL-based SAT Solvers

POS@ SAT. 2010.
[13] T. Toffoli, Reversible computing, in Automata, Languages and Pro-

gramming, W. de Bakker and J. van Leeuwen, Eds. Springer, 1980, p.
632, technical Memo MIT/LCS/TM-151, MIT Lab. for Comput. Sci.

[14] E. F. Fredkin, T. Toffoli, Conservative logic, International Journal of
Theoretical Physics, vol. 21, no. 3/4, pp. 219253, 1982.

[15] A. Peres, Reversible logic and quantum computers, Phys. Rev. A, no.
32, pp. 32663276, 1985.

[16] A. Biere, M. Heule, Hans van Maaren, eds. Handbook of satisfiability,
Vol. 185. ios press, 2009.

[17] M, Davis, G. Logemann, D. Loveland, A Machine Program for Theorem
Proving, in Communications of the ACM, vol. 5, n. 7, 1962, pp. 394397.

[18] S. Yamashita, I. L. Markov. Fast equivalence-checking for quantum
circuits, Proceedings of the 2010 IEEE/ACM International Symposium
on Nanoscale Architectures. IEEE Press, 2010.

[19] M. Soos, K. Nohl, C. Castelluccia, Extending SAT solvers to crypto-
graphic problems, Theory and Applications of Satisfiability Testing-SAT
2009. Springer Berlin Heidelberg, 2009. 244-257.

[20] D. Brand. Verification of large synthesized designs, Proc. ICCAD 93,
pp. 534 -537.

[21] G. S. Tseitin, On the complexity of derivation in propositional calculus,
Automation of reasoning. Springer Berlin Heidelberg, 1983. 466-483.

[22] Reversible CEC Package Experiments – available for download at:
http://lsi.epfl.ch/RCEC.

[23] R. Wille, D. Große, L. Teuber, G.W. Dueck, R. Drechsler, RevLib:
An Online Resource for Reversible Functions and Reversible Circuits,
International Symposium on Multiple-Valued Logic, pages 220-225, 2008.
RevLib is available at http://www.revlib.org.

[24] MiniSat: open-source SAT solver http://minisat.se
[25] D.M. Miller, R. Wille, G.W. Dueck, Synthesizing Reversible Circuits

for Irreversible Functions, In Euromicro Conference on Digital System
Design (DSD), pages 749-756, 2009.

[26] R. Wille, O. Keszocze, R. Drechsler. Determining the Minimal Number
of Lines for Large Reversible Circuits. In Design, Automation and Test
in Europe (DATE), 2011.

[27] Y. Hamadi, J. Said, S. Lakhdar et al., ManySAT: a parallel SAT solver,
Journal on Satisfiability, Boolean Modeling and Computation 6 (2008):
245-262.

