
Logic Synthesis for Quantum State Generation
Philipp Niemann

Department of Computer Science,
University of Bremen,

D-28359 Bremen, Germany
Email: pniemann@cs.uni-bremen.de

Rhitam Datta
Indian Institute of Engineering

Science & Technology,
Shibpur, India

Email: rhitamdatta4@gmail.com

Robert Wille
Institute for Integrated Circuits,

Johannes Kepler University,
A-4040 Linz, Austria

Email: robert.wille@jku.at

Abstract—Quantum computation established itself as
a promising emerging technology and, hence, attracted
considerable attention in the domain of computer-aided
design (CAD). However, quantum mechanical phenomena
such as superposition, phase shifts, or entanglement lead
to a logic model which poses serious challenges to the
development of a proper design flow for quantum circuits.
Consequently, researchers addressed synthesis of quan-
tum circuits not as a single design step, but considered
sub-tasks such as synthesis of Boolean components or syn-
thesis of restricted subsets of quantum functionality. Ge-
nerating a particularly desired quantum state is another
of these sub-tasks. However, logic synthesis of quantum
circuits accomplishing that has hardly been considered
yet. In this work, we propose a generic method which
automatically synthesizes a quantum circuit generating
any desired quantum state from an initially given basis
state. The proposed method allows for both, a theoretical
determination of upper bounds as well as an experimental
evaluation of the number of quantum gates needed for this
important design step.

I. INTRODUCTION

Quantum computation [1] established itself as a promising
emerging technology for many practically relevant problems
such as factorization (and its application in cryptography),
database search, graph/algebraic problems, and many more.
Driven by these prospects as well as recent accomplishments
in the physical realization of corresponding devices (see
e.g. [2]), how to design a quantum circuit description realizing
the desired functionality attracted considerable attention in the
recent years. Originally, researchers considered the respective
issues theoretically. This led, amongst others, to the term
quantum algorithm as a description of several computational
steps to be conducted (see e.g. the initial accomplishments of
Grover’s Algorithm [3], Shor’s Algorithm [4], as well as the
general investigations on how to describe and realize arbitrary
quantum functionality [5]–[11]).

With increasing interest in this domain, these efforts were
enriched by investigations towards the development of meth-
ods for computer-aided design (CAD). Here, researchers
consider the underlying problems from a logic design and
logic synthesis perspective. The overall goal is to provide
methods which, similar to the design and synthesis of con-
ventional circuits, automatically generate a circuit description
of the desired (quantum) functionality. While this general
scheme is perfectly in-line with established design flows
for conventional circuits (where electro-technical devices are
eventually abstracted and designed on a Boolean logic level),
how to synthesize quantum circuits significantly differs from
established CAD methods and flows.

In fact, quantum mechanical phenomena such as superpo-
sition, phase shifts, or entanglement lead to a logic model
which is significantly different to the established logic models
available for conventional CAD. In fact, no discrete repre-
sentations, an infinite space of possible states, or operations
working in high-dimensional Hilbert spaces and described by

unitary matrices which may include complex numbers pose
serious challenges to the development of proper and efficient
CAD methods for quantum circuits. Although approaches for
the synthesis of arbitrary quantum functionality have been
considered in the past (see e.g. [5]–[9]), they lead to a signif-
icant amount of gates and additionally rely on arbitrary sets of
gates (rather than a dedicated gate library). Hence, in order
to efficiently tackle these obstacles, researchers considered
synthesis of quantum circuits not as a single design step,
but as a separation of concerns. For example, researchers
separately considered:
• Synthesis of Boolean Components:

Boolean components usually constitute a large building
block in many quantum circuits (e.g. the oracle function
in Grover’s Algorithm [3] or the modular exponentiation
in Shor’s Algorithm [4]). Since quantum computations
are inherently reversible, these components are usually
realized in a two-stage fashion: First, the desired
Boolean functionality is realized as a reversible circuit
(for which various synthesis approaches have been
proposed in the past; see [12]–[17]). Then, the resulting
reversible circuit is mapped into a cascade of equivalent
quantum gates (using mapping schemes as initially
introduced in [5] and refined in [18]–[20]).

• Synthesis of Restricted Quantum Functionality:
Many design objectives can be realized without em-
ploying the full power of arbitrary quantum operations
(e.g. stabilizer circuits for error-correcting codes [21]
as well as the realization of applications such as the
Greenberger-Horne-Zeilinger experiment [22], quantum
teleportation [23], or dense quantum coding [24]). In this
case, the consideration of a subset of quantum function-
ality, e.g. Clifford group operations (see e.g. [25]), is
sufficient. Corresponding synthesis methods addressing
this particular need have been proposed e.g. in [26].

In this regard, the synthesis of arbitrary quantum states,
i.e. the generation of a circuit which realizes a desired
quantum state, is another important concern in the design
of quantum circuits. In fact, many quantum algorithms in-
herently assume a particular, pre-defined initial state in order
to perform the desired computations. However, the respective
physical device may only allow to initialize a limited range
of states, but not the desired one. Hardly any CAD method
addressing this need has been proposed and evaluated yet.

In this work, we are addressing this gap. We propose
a method which automatically synthesizes a quantum cir-
cuit generating any desired quantum state. To this end, a
three-stage-scheme is employed which iteratively modifies
an initially given basis state until the desired target state is
obtained. The resulting methodology allows for determining
theoretical results on the number of gates needed in order to
realize an arbitrary quantum state. Furthermore, the method
has been implemented by means of a CAD tool which allows
for an experimental evaluation of the quantum circuits for
dedicated quantum states. In fact, experiments show that many
quantum states can be realized with a significantly smaller
number of gates than the upper bound would suggest.



The remainder of the paper is structured as follows: In
Section II, the background of quantum computation and
quantum circuits is reviewed. Section III introduces the main
concepts of the proposed synthesis scheme, while the result-
ing synthesis algorithm is described in detail in Section IV.
A theoretical discussion and experimental evaluation is pre-
sented in Section V. Finally, Section VI concludes the paper.

II. QUANTUM COMPUTATION AND CIRCUITS

To make this paper self-contained, this section reviews the
basics of quantum computation and circuits. The respective
descriptions are kept brief; readers wishing an in-depth intro-
duction are referred to the respective literature such as e.g. [1].

A. Quantum Systems and Measurement
Quantum systems are composed of qubits. Analogously

to conventional bits, a qubit can be in one of the compu-
tational basis states |0〉 and |1〉, but, more generally, also
in a so called superposition α0|0〉 + α1|1〉 for complex
numbers α0, α1 with |α0|2 + |α1|2 = 1. More formally, a
qubit can be described by a two-dimensional Hilbert space
where its (quantum) state is given by a unit vector

(
α0

α1

)
–

the so called state vector. Accordingly, for larger quantum
systems composed of n qubits, there are 2n basis states
(|0 . . . 00〉, |0 . . . 01〉, . . . , |1 . . . 11〉), the system can be in an
arbitrary superposition of these states |ψ〉 =

∑2n−1
k=0 αk|k〉

with
∑2n−1
k=0 |αk|2 = 1, and the corresponding state vector

(αk)0≤k≤2n−1 has dimension 2n.
However, due to physical limitations there is no possibility

to precisely read-out the state of a quantum system, i.e. to
obtain the so called amplitudes αk. In fact, it is only possible
to perform a measurement which causes the system to col-
lapse to some basis state where the probability for measuring
basis state |k〉 is given by |αk|2.

Example 1. Consider the following three different states of
a qubit: |x1〉 = 1√

2

(
1
1

)
, |x2〉 = 1√

2

(
1
−1

)
, |x3〉 = 1√

2

(
i
i

)
. For

all three states, the probability of measuring |0〉 is the same
as measuring |1〉: |α0|2 = |α1|2 = 1

2 .

In this regard, the amplitudes are often represented in polar
coordinates by αk = pk · eiθk , i.e. as a decomposition into
the modulus pk = |αk| ∈ [0, 1] (determining the probability
of measuring the corresponding basis state |k〉) and the so
called phase θk ∈ [0, 2π).

Example 2. Consider again the three qubit states from
Example 1. While the modulus is always the same ( 1√

2
), we

observe three different phases: 0 (ei·0 = 1), π/2 (ei·π/2 = i),
and π (ei·π = −1). Moreover, |x1〉 and |x3〉 are equal up to
a global phase (|x3〉 = i · |x1〉) which means that they are
physically indistinguishable and there is no way to find out
which of them is actually present. In contrast, |x2〉 – though
having the same moduli – can in principle be distinguished
from these states as shown later on in Example 3.

Besides superposition and phase shifts, entanglement is
another powerful feature of quantum systems. In an entangled
state, measuring one qubit has an effect on the measurement
of other qubits and might even completely determine the
measurement result. However, as entanglement is not relevant
for the present paper, we will not go into more detail here.

B. Quantum Operations and Circuits
By the postulates of quantum mechanics, the evolution of a

quantum system due to a quantum operation can be described
by a unitary transformation matrix, i.e. an invertible complex-
valued matrix whose inverse is given by the adjoint matrix.

Commonly used quantum operations include the rotation
operations Rx, Ry, Rz (parametrized by a rotation angle θ),
the Hadamard operation H (setting a qubit into a balanced
superposition), as well as the NOT operation X which flips
the basis states |0〉 and |1〉. The corresponding unitary matri-
ces are defined as

Rx(θ) =

(
cos θ

2
−i sin θ

2

−i sin θ
2

cos θ
2

)
, Ry(θ) =

(
cos θ

2
− sin θ

2

+sin θ
2

cos θ
2

)
,

Rz(θ) =

(
e−iθ/2 0

0 eiθ/2

)
, H = 1√

2

(
1 1
1 −1

)
, X =

(
0 1
1 0

)
.

Example 3. Applying H to the basis state |0〉 =
(

1
0

)
, i.e.

computing H × |0〉 yields the state |x1〉 = 1√
2

(
1
1

)
from Ex. 1.

Similarly, we obtain that H × |x1〉 = |0〉 and H × |x2〉 = |1〉.
This means that we can apply the Hadamard operation in
order to distinguish between |x1〉 and |x2〉 which is not
possible with a direct measurement (c.f. Example 2).

Besides these operations that work on a single target
qubit, there are also controlled operations on multiple qubits.
The state of the additional control qubits determines which
operation is performed on the target qubit. More precisely,
the operation on the target qubit is executed if and only if the
control qubits with a positive control are in the |1〉-state and
the ones with a negative control are in the |0〉-state.

Example 4. An example is the controlled NOT (CNOT)
operation on two qubits (with a positive control) which
applies the NOT operation to the target if the control qubit
is in the |1〉-state. On the matrix level, it is defined by1 0 0 0

0 1 0 0
0 0 0 1
0 0 1 0

 .

Realizations of such elementary quantum operations are
represented by quantum gates gi which eventually form a
quantum circuit G = g1 . . . gd with 1 ≤ i ≤ d.

Quantum operations and circuits are inherently reversible,
i.e. there is an operation/circuit that realizes the inverse
transformation. In most cases, inverting a given quantum
circuit is a relatively easy task. In fact, most quantum gates
are self-inverse (like the Hadamard, NOT, and CNOT gate) or
determining the inverse is straight-forward (e.g. for rotations
by taking the negated rotation angle). Consequently, the
inverse quantum circuit is obtained by (1) reverting the gate
order and (2) replacing each gate by its individual inverse.

III. GENERAL METHODOLOGY

In this section, we introduce the general idea of the pro-
posed synthesis approach. Furthermore, we discuss which set
of gates (eventually forming a CAD gate library) is adequate
for this purpose. Based on that, the technical details of the
synthesis approach are afterwards provided in Section IV.

A. General Idea
The logic synthesis task considered in this work is to de-

termine a quantum circuit that efficiently generates a desired
quantum state |τ〉 (denoted as target state in the follow-
ing) which is given as a state vector (αk) with amplitudes
αk = pk · eiθk (0 ≤ k ≤ 2n − 1). While basis states are easy
to generate physically, the target states considered here may
be of arbitrary nature and, hence, require explicit quantum
operations to be applied. More precisely, target states may
inherit various characteristics to be addressed, namely:
• Superposition: The target state may have multiple

non-zero amplitudes, i.e. its amplitudes may sat-
isfy |{k | αk 6= 0}| > 1. In contrast, basis states have a
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...
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p0 · eiθ0
p1 · eiθ1
p2 · eiθ2
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(b) Sketch of its characteristics.

Fig. 1. Visualization of a target state’s characteristics.
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(b) Sketch of its characteristics.

Fig. 2. Visualization of a basis state’s characteristics.

single non-zero amplitude αj only (with pj = 1), while
all other amplitudes αk with k 6= j are set to 0.

• Different Probabilities: The multiple non-zero ampli-
tudes of the target state may have different moduli pk.
Consequently, when measuring a quantum system in this
state, there will be (multiple) possible outcomes which
occur with different probabilities. In contrast, measuring
a basis state always leads to the same outcome.

• Different Phases: In addition to the moduli, the ampli-
tudes of a target state may also inherit arbitrarily differ-
ent phases θk which, potentially, can also be measured
as outlined in Section II. In contrast, the amplitudes of
a basis state all have the same (global) phase which has
no physical meaning and cannot directly be measured.

Besides that, the target state may inherit further characteristics
such as entanglement which, however, were not found to
be relevant for the proposed approach and are, thus, not
discussed in more detail in this motivational description.

Example 5. Fig. 1 visually illustrates the discussed charac-
teristics of a target state to be synthesized. More precisely,
Fig. 1(a) gives the state vector description of an arbitrary
quantum state |τ〉 while Fig. 1(b) sketches the discussed
characteristics with respect to the modulus (left-hand side)
and the phases (right-hand side) of |τ〉’s amplitudes. In
contrast, Fig. 2 shows the corresponding characteristics of
an exemplary basis state.

Hence, the goal of logic synthesis is to determine a circuit
which takes an easy to generate basis state as input and
applies quantum operations (i.e. gates – preferably from a
restricted, predefined gate library) until the desired target
state with its respective characteristics results. In order to
address this problem, we consider the task in an inverse
fashion. That means, we take the given target state |τ〉 as input
and, based on its particular characteristics, determine which
quantum operations are to be applied so that a transformation
from |τ〉 to a basis state is accomplished. By inverting the
resulting circuit (which can easily be conducted as reviewed
in Section II), the desired quantum circuit transforming a basis
state to |τ〉 is synthesized.

Following this scheme, a given target state |τ〉 is trans-
formed to a basis state as sketched in Fig. 3. More precisely,
the following three steps are performed:

1) Unify phases, i.e. transform the potentially different
phases θk of |τ〉’s amplitudes to a single (global) phase.

2) Unify probabilities, i.e. transform the potentially differ-
ent moduli pk of |τ〉’s amplitudes to an equal probabil-
ity distribution.

...m
od

ul
i

...ph
as

es

...

...

...

...

...

...
⇒

⇒
⇒

1) Unify phases 2) Unify probabilites 3) Remove superposition

Fig. 3. General methodology of the proposed synthesis approach.

3) Remove superposition, i.e. transform |τ〉’s unified am-
plitudes to a state with a single non-zero amplitude
and, by this, generate a basis state (potentially with a
negligible global phase).

Before we describe the respective steps in detail, we first
discuss which set of gates (eventually forming a CAD gate
library) might be adequate for these sub-tasks.

B. Applied Gate Library
In order to evaluate which set of gates might be required

to conduct the sub-tasks sketched above, we first consider
each step with respect to a quantum system composed of a
single qubit which is assumed to be in the state

(
α
β

)
. Then,

the proposed transformations can be conducted as follows:
1) Unify Phases: In order to unify the phases of two

amplitudes, we can use Rz rotation gates as illustrated by
means of Fig. 4(a). In fact, the Rz rotation applies phase
shifts, i.e.

Rz(θ)×
(
α

β

)
=

(
e−iθ/2α

eiθ/2 β

)
.

Hence, assuming that α = a · eiφ and β = b · eiψ , a rotation
by φ− ψ gives

Rz(φ− ψ)×
(
α

β

)
=

(
α̃

β̃

)
= eiκ

(
a

b

)
, where κ = φ+ψ

2 .

As a result, both amplitudes have the same phase.
2) Unify Probabilities: Given that the amplitudes have the

same phase, Ry rotations can be employed to unify their
moduli and, hence, their probabilities as sketched in Fig. 4(b).
In fact, a Ry rotation combines amplitudes, i.e.

Ry(θ)×
(
α

β

)
=

(
cos θ2α− sin θ

2β

sin θ
2α+ cos θ2β

)
.

Hence, assuming that α = a · eiκ and β = b · eiκ, a rotation
angle θ exists such that

Ry(θ)×
(
α

β

)
=

(
γ

γ

)
= eiκ

(
c

c

)
with c =

√
a2+b2

2 .

A precise calculation yields that an appropriate angle for this
purpose is given by

θ = 2 sin−1

(
a− b√

2(a2 + b2)

)
.

These rotations can be applied in order to modify an arbitrary
set of amplitudes until all amplitudes are unified, i.e. each
amplitude of the state has the same probability.
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ψ
⇒

i

−i
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(a) Unify phases.

i
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α

β

κ

⇒
i

1
γ

κ

(b) Unify probabilites.

Fig. 4. Applying rotation gates.

3) Remove superposition: After the transformations from
the previous steps, removing superposition and, by this,
determining a basis state can easily be realized by applying
Hadamard gates – more precisely by

H ×
(
α

β

)
= eiκ√

2

(
1 1
1 −1

)
×
(
c

c

)
= eiκ

(
1

0

)
.

Overall, a gate library composed of Ry and Rz rotation
gates as well as Hadamard gates1 provides a set of operations
(and, hence, a gate library) which is sufficient to conduct the
sub-tasks sketched above. Besides that, we additionally need
CNOT gates in order to handle quantum systems composed
of more than a single qubit (described in detail in the next
section). Fortunately, all these gates are well-studied and
can be either executed directly or implemented with little
overhead in many technologies that are actually used for
quantum computation like, e.g. quantum dots, ion traps, or
superconducting qubits (see e.g. [27]). With this as basis, a
detailed description of the resulting overall synthesis approach
can be provided.

IV. THE RESULTING SYNTHESIS APPROACH

In the previous section, we sketched the general methodo-
logy of the proposed synthesis approach and discussed which
gate library may be adequate to perform the identified three
steps. Based on that, this section first describes on an abstract
level which building blocks with a dedicated functionality are
composed together in order to transform a given target state
into a basis state. Afterwards, the actual realization of those
building blocks in terms of elementary quantum gates from
the assumed gate library is provided.

A. Generating the Circuit for Arbitrary Quantum States
In Section III-B, we demonstrated for a pair of amplitudes

how their phases and moduli can be unified using Rz and
Ry rotations. However, Step 1 and Step 2 of the overall
methodology aim for unifying all 2n amplitudes of the target
state. For this purpose, we apply a scheme which successively
unifies pairs of amplitudes until all amplitudes have the same
phases and moduli.

Figure 5 exemplarily illustrates this scheme for a target
state (ak)0≤k≤7 composed of n = 3 qubits. More precisely:
• In the first rotation step, we unify adjacent pairs of am-

plitudes by applying correspondingly chosen Rz and Ry

1The Hadamard gate can also be interpreted as a combined rotation (up
to global phase), i.e. H = eiπ/2Ry(π/2) ·Rz(π).
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Fig. 5. Construction scheme for n = 3 qubits.

rotations. Appropriate rotation angles can be computed
as shown before in Section III-B. After this step, the
vector consists of pairs of unified amplitudes β0, . . . , β3.

• Then, in a first swapping step, these equal pairs are split
up by permuting the amplitudes. On an abstract level,
we interchange |q0q1q2〉 with |q0q2q1〉, i.e. we swap
qubits q1 and q2. For the state vector, this results in
interchanging the amplitude corresponding to |001〉 with
the one of |010〉 and |101〉 with |110〉. This gives an
interleaved structure of the amplitudes with two blocks
β0, β1 followed by two blocks β2, β3.

• In the next rotation step, we repeat the first step and
obtain a vector that consists of quadruples of unified
amplitudes γ0 and γ1. Note that the upper/lower two
pairs are unified using the same set of rotations.

• In another swapping step, we again split up equal pairs
by permuting the amplitudes. Now, we swap the qubits
q0 and q2 which corresponds to interchanging the am-
plitudes of |001〉 with the one of |100〉 and |011〉 with
|110〉. This again gives an interleaved structure of the
amplitudes with several γ0, γ1 blocks.

• In the last rotation step, we again repeat the first step and
unify adjacent pairs. This finally gives us a state vector
with all amplitudes being the same. More precisely, the
qubits are in a balanced superposition with amplitude
δ = 1

2
√

2
· eiΘ and some global phase Θ.

• Finally, this balanced superposition is removed by ap-
plying Hadamard gates on each qubit (not depicted in
Fig. 5), resulting in the basis state eiΘ|0 . . . 0〉.

For a larger number of qubits n > 3, another rotation and
swapping step is introduced for each additional qubit such
that the rotation steps unify adjacent pairs and the swapping
steps restore an interleaved structure by swapping qubits.

Note that the swaps required in the swapping steps can be
realized by simply applying three consecutive CNOT gates on
the respective qubits (with control and target swapped for the
central gate). In some technologies, there are even dedicated
SWAP gates for this purpose. Thus, it only remains open how
to realize the rotation steps of the approach using gates from
the gate library considered in Section III-B. This matter will
be discussed next.

B. Realizing a Rotation Block

In order to realize a single rotation step of the scheme
sketched above, we have to apply rotations by individual
rotation angles to (pairwise) different pairs of amplitudes.
However, applying an elementary rotation gate does not only
effect a single pair of amplitudes. In fact, the entire state
vector will be affected.
Example 6. Consider a quantum system consisting of two
qubits q0, q1 being in the state |ψ〉 = (α00, α01, α10, α11)T .



Applying an (uncontrolled) Rz(θ) gate on qubit q1 yieldse
−iθ 0 0 0
0 eiθ 0 0
0 0 e−iθ 0
0 0 0 eiθ

× |ψ〉 =
e
−iθα00

eiθ α01

e−iθα10

eiθ α11


meaning that all amplitudes of |ψ〉 are affected.

Consequently, to address distinct pairs of amplitudes, we
need to apply controlled rotations.
Example 7. Consider the same setting of a quantum system
consisting of two qubits q0, q1 as in the previous example.
Now, applying a controlled-Rz(θ) gate on qubit q1 with a
negative control on qubit q0 yields e−iθ 0 0 0

0 eiθ 0 0
0 0 1 0
0 0 0 1

× |ψ〉 =
e
−iθα00

eiθ α01

α10

α11


such that only one particular pair of amplitudes is affected.

Clearly, the higher the number of qubits, the more controls
have to be applied for each rotation in order to address one
particular pair of amplitudes. In a naive fashion, we can
read from Fig. 5 that we need 2n−1 controlled rotation gates
with n − 1 controls for Rz and Ry in each rotation step.
However, this number only holds for the first step. In fact, in
the remaining steps, several pairs of rotations have the same
rotation angles and can, thus, be combined to a single rotation
with less controls.

Example 8. Consider again Fig. 5. In the second rotation
step the rotation angles of the upper two and lower two pairs
of amplitudes are identical. Consequently, the corresponding
rotation gates do not need a control on qubit q1, but only on
qubit q0. In the third/last rotation step, the rotation angle is
the same for all pairs of amplitudes. Consequently, no control
at all is required in this step.

In summary, for the kth rotation step we require at most
2n−k controlled rotations with n − k controls (for Rz and
Ry rotations). On the first view, this seems to be very
expensive, as according to the well-known decomposition
presented in [5], each multiple-controlled gate has a cost of
at least 2n−k − 2 CNOTs and 2n−1 − 1 controlled rotation
gates (Lemma 7.1) which, in turn, require one CNOT and
two elementary rotations each (Lemma 5.5). However, in our
special case we can exploit the fact that similar multiple-
controlled gates occur together where each combination of
positive/negative controls is present (to address each block
of the state vector). This setting is also called a uniformly
controlled (rotation) gate [7] and a relatively cheap realization
of the whole block of multiple-controlled Rz or Ry gates
using only 2k CNOTs and 2k rotation gates in total (where
k is the number of controls) has been presented in [10].

Example 9. Consider Fig. 6 for a sketch of the construction
for n = 3 qubits. On the left-hand side we see the four
2-controlled rotations used in the first rotation step of Fig. 5.
Horizontal lines denote the three qubits, positive (negative)
controls are indicated by a black (white) dot. On the right-
hand side we see the implementation in terms of gates from
our gate library using 4 CNOTs ( ) and 4 rotation gates.

V. DISCUSSION AND EXPERIMENTAL EVALUATION

The synthesis methodology together with the detailed de-
scriptions given in the previous sections provides the basis for
(1) a theoretical discussion e.g. on the number of quantum
gates needed in order to realize an arbitrary quantum state as
well as (2) an implementation of a CAD tool which can be

R(θ0) R(θ1) R(θ2) R(θ3)

=

R(γ0) R(γ1) R(γ2) R(γ3)

Fig. 6. Uniformly controlled rotation for n = 3 qubits.

used to experimentally evaluate the actual number of gates
needed to generate an explicitly given (practically relevant)
quantum state. In this section, we discuss the results obtained
from this basis.

A. Theoretical Discussion
The proposed approach is a structural synthesis scheme

from which an upper bound on the number of gates can be
derived. More precisely, we showed in the previous section
that the kth rotation step (for an n-qubit quantum state)
requires 2n−k CNOTs and 2n−k elementary rotations (for Rz
and Ry each). Moreover, we argued that the swaps required in
the swapping steps can be realized at a cost of three CNOTs
and that the final step requires n Hadamard gates.

Overall, in order to generate an arbitrary quantum state in
an n-qubit quantum system, the approach requires at most
• n Hadamard gates to finally remove superposition,
• 3(n− 1) CNOT gates to realize the swapping steps and

2 · (2n−1 + 2n−2 + . . . + 21 + 0) = 2n+1 − 4 CNOTs
to realize the rotation steps (no CNOT is required in
the last step as that particular rotation is uncontrolled,
c.f. Example 8), as well as

• 2 · (2n−1 + 2n−2 + . . .+ 21 + 1) = 2n+1− 2 elementary
Rz and Ry rotation gates.

B. Experimental Evaluation
In order to experimentally evaluate the proposed synthesis

methodology by means of explicitly given quantum states,
the methods and schemes described in Section IV have been
implemented in MatLab. Afterwards, we applied different
target states to the resulting algorithm and recorded the
obtained circuits. To this end, a set of target states has been
considered which provides a representative variety – including
quantum states needed in practically relevant applications.
More precisely, the following target states have been con-
sidered:
• A set of states in which both, the phases and the moduli,

have been generated randomly (denoted by random).
• A set of superposed states (denoted by superposed)

which are required e.g. as input for Grover’s algorithm
and, usually, can easily be realized by just applying H
gates. This set of states is considered in order to eval-
uate the automation overhead caused by applying the
proposed synthesis methodology.

• A set of superposed states which additionally con-
tain (randomly) chosen phases (denoted by super-
posed+phase). This set of states is similar to the su-
perposed-set but inherits characteristics which cannot be
handled as easily anymore.

• A set of states that are obtained by applying an arbitrary
Clifford group operation to a randomly chosen basis
state (denoted by clifford). These states have practical
applications e.g. for stabilizer circuits or error-correcting
codes.

• A set of states which have been derived similarly using
Quantum Fourier Transformations (denoted by qft). This
set of states has applications e.g. in Shor’s algorithm.

Table I summarizes the obtained results2. The first two
columns provide the size (in terms of number of qubits) as

2All results have been obtained in negligable run-time (less than a CPU
second) on an current machine.



TABLE I
EXPERIMENTAL EVALUATION

#Qubits Target state Rz, Ry CNOT + SWAP H Total

2 upper bound 6 4 + 3 · 1 2 15

random 5 4 + 3 · 1 2 14

superposed 1 0 + 3 · 0 2 5

superposed+phase 3 4 + 3 · 1 2 12

clifford 2 0 + 3 · 1 2 7

qft 2 0 + 3 · 1 2 7

3 upper bound 14 12 + 3 · 2 3 35

random 14 12 + 3 · 2 3 35

superposed 4 4 + 3 · 0 3 11

superposed+phase 5 12 + 3 · 2 3 26

clifford 4 4 + 3 · 0 3 11

qft 3 0 + 3 · 2 3 12

5 upper bound 62 60 + 3 · 4 5 139

random 57 60 + 3 · 4 5 134

superposed 1 0 + 3 · 0 5 6

superposed+phase 27 30 + 3 · 4 5 74

clifford 16 60 + 3 · 4 5 93

qft 5 0 + 3 · 4 5 22

10 upper bound 2046 2044 + 3 · 9 10 4127

random 2046 2044 + 3 · 9 10 4127

superposed 1 0 + 3 · 0 10 11

superposed+phase 1008 2044 + 3 · 9 10 3089

clifford 514 2044 + 3 · 8 10 2592

qft 10 0 + 3 · 9 10 47

well as the name (according to the denotations introduced
above) of the respectively considered target state. After-
wards, the required number of gates (distinguished between
rotation gates, CNOT/SWAP3 gates, and Hadamard gates)
are reported. In order to evaluate the improvement of the
resulting CAD tool with respect to the theoretical results
available thus far, additionally the upper bound of the required
gates is provided for each number of qubits (denoted by
upper bound).

The results provide interesting insights: For example, ran-
domly generated target states almost always hit the upper
bound. This goes in line with many observations in logic syn-
thesis: While for practical relevant functionality significantly
smaller results are often possible, randomly generated func-
tions frequently require worst case efforts. Another interesting
observation can be made when considering the set of super-
posed-benchmarks. Here, a simple Hadamard gate applied
to each qubit would be sufficient. The proposed approach
requires slightly more than that. This nicely illustrates the
required automation overhead caused by applying a scheme
which is generically applicable to arbitrary quantum states.

But despite these special cases, the results clearly show the
advancement of the implemented CAD tool: In many cases,
dedicated quantum states (including practically relevant ones)
can be realized by circuits which are significantly smaller
than the upper bound would suggest. To the best of our
knowledge, this provides the first evaluation on logic synthesis
for quantum state generation.

VI. CONCLUSIONS

In this work, we consider the synthesis of circuits realizing
arbitrary quantum states. Together with other tasks, such as
the synthesis of Boolean components or the synthesis of
restricted subsets of quantum functionality, this constitutes
an important step in the computer-aided design of devices for
quantum computation. The proposed methodology explicitly
takes the characteristics of the quantum states to be realized
into consideration and, accordingly, applies operations for
their generation. To this end, gates from a gate library are

3Note that, as discussed in Section IV, swap gates are either also part of
the gate library for many technologies or can easily be realized by simply
applying three consecutive CNOT gates on the respective qubits.

employed for which implementations in many technologies
such as quantum dots, ion traps, or superconducting qubits
already exist. From the resulting synthesis approach, theo-
retical bounds on the number of required gates have been
derived. An experimental evaluation confirmed that, for many
dedicated quantum states, significantly less gates are required.
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