
Towards a Catalog of Structural and Behavioral Verification Tasks for UML/OCL Models 1

Towards a Catalog of Structural and Behavioral
Verification Tasks for UML/OCL Models

Frank Hilken1, Philipp Niemann1, Martin Gogolla1, Robert Wille2

Abstract: Verification tasks for UML and OCL models can be classified into structural and behav-
ioral tasks. For both task categories a variety of partly automatic solving approaches exist. But up to
now, different interpretations of central notions as, for example, ‘consistency’ or ‘reachability’ can
be found in current approaches and tools. This paper is designed to clarify central verification notions
and to establish a collection of typical verification tasks that are common to multiple approaches and
tools. In addition, the verification tasks are categorized with the aim of creating a central catalog of
tasks, providing a common understanding of the terms used in model verifications.

1 Introduction

The increasing usage of modelling languages like the Unified Modelling Language (UML)
and the Systems Modeling Language (SysML) and their formalizations have lead to a va-
riety of verification engines for various model descriptions. Along with these tools, a heap
of verification tasks were created and defined, each approach with their own definitions.
This process has lead to model verification terms, such as, consistency or reachability, that
are used multiple times with differing semantics [CCR08].

In order to establish a general terminology and create a common understanding, this paper
takes frequently used verification tasks, describes their goals and categorizes them into a
catalog. The categories give a general idea and quick overview of the goals of the tasks
assigned to them. In addition, these categories and tasks are divided into structural and
behavior topics. The descriptions shall clarify the interpretation of verification tasks. Sim-
ilar, distinct tasks were given concrete names and descriptions to seperate their overlap.
For example, the consistency task was split into a weak and a strong consistency.

The goal of the catalog is a common understanding of the various existing verification
tasks to reduce misinterpretations and establish a foundation for communicating about
them with a clear understanding of their semantics. The catalog provided in this paper is
not meant as a final product, but rather a basis to discuss and extend it.

The remainder of this paper is structured as follows: Section 2 pictures the state of the art
and further motivates the categorization of verification tasks. Section 3 introduces a short
running example that is used to exemplify the goal of selected verification tasks. Section 4

1 University of Bremen, Computer Science Department, D-28359 Bremen, Germany
Email: {fhilken|pniemann|gogolla}@informatik.uni-bremen.de

2 Johannes Kepler University, Computer Science Department, A-4040 Linz, Austria
Email: robert.wille@jku.at

2 Frank Hilken et. al.

first defines a metamodel to represent verification tasks and then finished with the actual
catalog, categorizing and describing the verification tasks. Section 5 wraps up the paper
with a conclusion.

2 Motivation

Modeling languages such as the Unified Modeling Language (UML) or the Systems Mod-
eling Language (SysML) together with textual constraints, e.g., provided by the Object
Constraint Language, have been established to specify the design of complex systems.
They provide different concepts such as class diagrams, sequence diagrams, or activity di-
agrams which are expressive enough to formally specify a complex system, but hide spe-
cific implementation details. Since modeling languages permit formal descriptions, they
additionally enable the verification of the respective specification already in the absence
of a specific implementation1.

The corresponding verification tasks can be divided into

• Structural Verification Tasks, where a single system state is considered, as well as
• Behavioral Verification Tasks, where a sequence of system states as well as their

transitions (e.g., described by operations with pre- and postconditions) is considered.

For both categories of verification tasks, a variety of (automatic) solving approaches have
been introduced in the recent past [CCR08, SWD11, An07, Ba12, CKZ11, EW04, La07,
Ro14]. However, until today different interpretations and terminologies exist for the re-
spectively considered verification tasks.

For structural verification tasks, definitions as proposed e.g. in [GKH09] became rather es-
tablished. Nonetheless, even in this context, multiple notions and variations can be found
in the literature. For instance, consider the well-established task of checking “consistency”,
i.e. investigating whether a model description is consistent in that sense that an instanti-
ation of the model exists which satisfies all of the model’s constraints: in [CCR08], any
non-empty instantiation of the model is accepted, while [GHH14] forces each class of the
model to be instantiated at least once.

For behavioral verification tasks, so far a comprehensive list of tasks has not even been
attempted at all (to the best of our knowledge). In contrast, for other areas of validation
and verification in modeling, similar compilations of verification tasks and techniques have
been presented, e.g. a survey on tasks for model transformations in [CS13] or a survey on
modeling techniques for behavioral verification of software product lines in [Be15].

In this work, we aim for providing a unique and clear definition of important verifica-
tion tasks that can be applied on UML/OCL models. This includes a comprehensive con-
sideration of both, structural and behavioral issues. Thus far, verification tasks are often
1 In model-driven engineering, it is common to apply so called model transformations to automatically transform

models into a different description mean or language during the design process. In this context, it is an important
task to validate/verify whether source and target model of a transformation are equivalent. However, this is out
of the scope of the present paper where we focus on the verification of stand-alone model descriptions

Towards a Catalog of Structural and Behavioral Verification Tasks for UML/OCL Models 3

referenced using different terms or using the same term, but having in mind different mean-
ings. By presenting a fine granular differentiation of tasks in the following sections, we try
to reduce misinterpretations and establish a common basis for an improved and clarified
communication about verification tasks.

3 Traffic Light Running Example

Controller
request : Boolean

pedRequest()
switchPedLight()
switchCarLight()

Signal

green : Boolean

inv safety:
not (carLight.green

and pedLight.green)
pedRequest()

pre: not pedLight.green
post: request

switchPedLight()
pre: request
post: not request
post: pedLight.green

<> pedLight.green@pre
switchCarLight()

post: carLight.green
<> carLight.green@pre

1

1 carLight

1

pedLight 1

Fig. 1: Traffic light running example.

In this section we introduce a simplified
pedestrian traffic light preemption which
will serve as a running example to illus-
trate concepts discussed in the next sec-
tion. The corresponding model is depicted
in Fig. 1. The main class of the exam-
ple is the Controller which is connected
to exactly two traffic light signals, one
for cars (carLight) and one for pedes-
trians (pedLight). For simplicity, we as-
sume two-state signals (green light on/off).
With the operation pedRequest(), pedes-
trians express the desire to cross the road from either side. The controller stores these
requests in the request attribute and switches the corresponding signals using the
switchPedLight() and switchCarLight() operations. To prevent accidents, the in-
variant safety ensures that pedestrians and cars may not both face a green light (indicat-
ing a safe crossing) at the same time.

4 Categorizing Verification Tasks

We have identified a variety of verification tasks that are used in model checkers and ex-
tracted use cases from them. These use cases were assigned to five basic categories, giving
a quick overview of the general goal of each task. The five categories are Consistency,
Independence, Reachability, Executability and Consequence. The Consistency category
represents general instantiability use cases, the Independence category describes use cases
checking relations of model elements, the Reachability category contains use cases that
check if certain goals are reachable when the behavior of the model is simulated, the Ex-
ecutability category specifies use cases that examine possible transitions between system
states and, finally, the Consequence category characterizes use cases that deduct model
properties and put model elements into relation. These categories naturally divide into two
areas: structural and behavioral tasks.

Figure 2 illustrates the extracted use cases and relations in between them and the general
categories. The dotted line in the middle indicates the separation between structural and
behavioral verification tasks, with structural tasks on the left of the line and behavioral
tasks on the right, respectively. As for the five categories, the classification into structural
and behavioral verification tasks is not as strict, as behavioral tasks may be categorized

4 Frank Hilken et. al.

Fig. 2: Overview of verification task catalog.

StateDefinitionSequence

StateDefinition

SystemState

partial : Boolean

Constraint

0..1

0..*

InitialStateDefinition

FinalStateDefinition

Transition

states {ordered}0..*

0..1
pred

0..1
succ

Fig. 3: Data model of inputs for verification tasks.

in a structural category (Operation Independence) or extend on structural tasks (Property
Reachability). The listed verification tasks will be explained later in this section.

4.1 Verification Task Metamodel

In order to describe verification tasks in a formal fashion, we use the metamodel shown in
Fig. 3. It shows an abstract metamodel that we use as a baseline for the declaration of the
verification task input. The metamodel describes a structure that contains the information
verification engines need to solve a certain verification task. The model creates a skeleton
of information that must be filled in with a valid assignment by the verification engine.

Structural tasks utilize the StateDefinition, in the center of Fig. 3. This class repre-
sents a single abstract system state, which imposes no restrictions on a verification engine
when generating a result. Using the abstract class SystemState, a concrete assignment

Towards a Catalog of Structural and Behavioral Verification Tasks for UML/OCL Models 5

for this state can be given. The attribute partial determines, whether more elements
may be added to this system state or not. Finally, the class Constraint allows to add
(boolean) properties to a StateDefinition that have to be satisfied in the result. These
methods to describe a system state can be mixed as necessary. To give a concrete example,
a StateDefinition might be an object diagram or a state in a state machine.

While structural tasks only need the three classes mentioned above, behavioral tasks have
access to additional information about the sequence in which these defined states oc-
cur (StateDefinitionSequence), the predecessors and successors of the states as well
as the order and possibly the type of transitions between them. For example, the abstract
class Transition might be extended to represent operation calls, state transitions in a
state machine or signals. Finally, a StateDefinition can explicitly be declared as the
initial or final state.

Figure 4 shows an example for a Reachability verification task pictured as an instance of
the metamodel2. In the example, an initial and a final state is given by object diagrams. In
the final state, both signals are set to green and the task is to find valid transitions from the
initial to the final state, using the behavior defined in the model from Sect. 3. Since there
is no path of transitions given in between the two system states, the amount and type of
transitions is not restricted. Additionally, the system states could be further restricted by
constraints in which the objects can be accessed using their names. The object names are
also used to map them in between system states.

c:Controller
request=true

s1:Signal
green=true

s2:Signal
green=false

carLight pedLight

:SystemState c:Controller
request=false

s1:Signal
green=true

s2:Signal
green=true

carLight pedLight

:SystemState

:StateDefinitionSequence:InitialStateDefinition :FinalStateDefinition

Fig. 4: Verification task metamodel example to define a reachability task with object diagrams.

4.2 Verification Tasks

In the following, the categories and their associated verification tasks from Fig. 2 are de-
tailed and examples are given to illustrate the goals of selected tasks. The list of verification
tasks, as framed in this work, is not meant to be complete. However, the provided list is a
good viewpoint to show verification tasks that model checkers should be able to perform
on UML/OCL models. We encourage others to extend the list and iteratively collect a more
complete catalog of verification tasks.

4.2.1 Consistency

A Consistency verification task describes the instantiability property of a model, taking
into account different sets of constraints applied, e.g., explicit and implicit model con-
straints, additional properties that serve as a certain verification goal, or even a reduced
2 Due to space restrictions, we leave out exact details, how the abstract classes are extended to represent the

information as an object diagram.

6 Frank Hilken et. al.

set of constraints. This category contains crucial verification tasks like showing whether
a model contains contradictions and, therefore, might not be instantiable at all. Consis-
tency problems are structural problems and do not involve behavior, like the execution of
operations.

Weak Consistency This task describes the general instantiability of a model. The goal is
to generate a system state that uses at least some model elements while satisfying all
model constraints. Note that invariants assigned to classes that are not instantiated,
are satisfied by design in the standards.

Strong Consistency This task is an extension of Weak Consistency by the property that
all model elements have to be considered in the generated system state, i.e., at least
one object of all classes and one link of all associations have to be instantiated.

Consistency w.r.t. particular UML Features This task extends the former two tasks al-
lowing particular UML features, such as multiplicities, aggregation and composition
rules or invariants, to be ignored.

Property Satisfiability This task represents a consistency task including external proper-
ties in addition to the model. The goal is to find a valid system state satisfying all
model constraints plus the additional properties. Figure 5 shows a small example
requiring at least a system state with a controller c. In addition, a specific property
is specified as an OCL constraint, requiring both signals of this controller show the
green signal, which fails due to the invariant safety.

c:Controller
request=false

:SystemState:StateDefinition

:Constraint
c.pedLight.green and c.carLight.green

Fig. 5: Verification task model for property satisfiability task.

4.2.2 Independence

Independence describes verification tasks that reason about (in)dependencies between
model elements. This includes any type of dependencies that can exist between, e.g., at-
tributes, roles or invariants. In addition, tasks setting these dependencies in relation also
belong in this category.

Invariant Independency The goal of this task is to check whether invariants exist that
are implicitly specified by one or more others and are therefore always satisfied
when the dependant invariants are satisfied. Further extensions of this task is the
identification of which invariants imply the dependent invariant.

4.2.3 Consequence

Verification tasks in the category Consequence describe tasks that deduct information from
a model. These consequences are inherent in the model and are given by the model con-
straints, e.g., multiplicities, invariants or more complex deductions.

Property Deduction This task describes the action of identifying information not explic-
itly in a model, but that are clearly implied by one or more model elements from

Towards a Catalog of Structural and Behavioral Verification Tasks for UML/OCL Models 7

the model. In contrast to the Property Satisfiability task, these information deducted
from the model are not restricted to boolean properties.

4.2.4 Reachability
Reachability verification tasks include all tasks with a certain defined goal in mind that
is reached by executing the behavior of a model such as operations or state machine state
transitions. In contrast to Consistency verification tasks, Reachability tasks involve at least
two system states that are connected by model transitions, defined by the behavior of the
model.

Property Reachability Similar to the Property Satisfiability verification task, this task
checks the satisfiability of properties in a model. This tasks, however, tries to satisfy
them by executing model transitions and additionally allows to specify initial and
intermediate system states that must be included in the simulation. The properties to
be reached can be given as system states or constraints, as defined in the metamodel
in Fig. 3. In the running example, it is desirable to reach a state where the pedestrians
are finally allowed to cross the street, when the signals are currently allowing the
cars to cross, and vice versa.

4.2.5 Executability
In the Executability category are all verification tasks that focus on the transitions and
their contracts between system states. While this paper focuses on operation calls, the
metamodel in Sect. 4.1 allows for any form of state transition.

Livelock Finding This task identifies state transitions that result in a livelock, i.e., the
system is in a state where there is no possible sequence of transitions to reach a
defined end state, while transitions can still be executed.

Deadlock Finding This verification task is the extension of the Livelock task, searching
for reachable system states, where the system comes to a complete halt and no fur-
ther transition is possible, without being in a defined end state. This task can make
sure that, in the running example, there is no possibility to get into a state where
only either cars or pedestrians are allowed to cross the street (forever).

Executable Operations The goal of this verification task is to identify all executable tran-
sitions of a single system state. In the running example this is achieved by evaluating
the preconditions of all operations against the given system state. This task is the ba-
sis for many other verification tasks.

Executable Operation Tree This verification task extends the previous task by checking
the possible transitions not only for a single system state, but also simulating the
operation calls and iteratively evaluate the executable state transitions, building a full
tree of operation call sequences up to a given depth. Again the task can be restricted
by giving a certain final state as a goal or constraining the transition sequence using
simple OCL. The constraints on the sequence can be as complex as temporal logic.

Operation Independence This task introduces the detection of dependencies in opera-
tions from the former verification task. An example is the identification of mutually
exclusive operation calls, i.e., identifying operation calls that are never available at
the same time in a single system state.

8 Frank Hilken et. al.

5 Conclusion

We have presented a catalog of general verification tasks for UML/OCL verification tasks
including their categorization into five groups. All tasks are individually detailed to estab-
lish a fine granular differentiation between their goals. These definitions shall help mod-
ellers to communicate with each other and unify the term usage in verification engines. In
addition, we have presented a metamodel to represent these verification tasks in a formal
fashion.

References
[An07] Anastasakis, Kyriakos; Bordbar, Behzad; Georg, Geri; Ray, Indrakshi: UML2Alloy: A

Challenging Model Transformation. In: MoDELS. Springer, pp. 436–450, 2007.

[Ba12] Banerjee, Ansuman; Ray, Sayak; Dasgupta, Pallab; Chakrabarti, P. P.; Ramesh, S.; Gane-
san, P. Vignesh V.: A dynamic assertion-based verification platform for validation of
UML designs. ACM SIGSOFT Software Engineering Notes, 37(1):1–14, 2012.

[Be15] Benduhn, Fabian; Thüm, Thomas; Lochau, Malte; Leich, Thomas; Saake, Gunter: A Sur-
vey on Modeling Techniques for Formal Behavioral Verification of Software Product
Lines. In: Proceedings of the Ninth International Workshop on Variability Modelling of
Software-intensive Systems. VaMoS ’15. ACM, pp. 80:80–80:87, 2015.

[CCR08] Cabot, Jordi; Clarisó, Robert; Riera, Daniel: Verification of UML/OCL Class Diagrams
using Constraint Programming. In: First International Conference on Software Testing
Verification and Validation, ICST 2008. IEEE Computer Society, pp. 73–80, 2008.

[CKZ11] Choppy, Christine; Klai, Kais; Zidani, Hacene: Formal Verification of UML State Dia-
grams: A Petri Net based Approach. Softw. Eng. Notes, 36(1):1–8, 2011.

[CS13] Calegari, Daniel; Szasz, Nora: Verification of Model Transformations: A Survey of the
State-of-the-Art. Electronic Notes in Theoretical Computer Science, 292:5 – 25, 2013.
Proceedings of the XXXVIII Latin American Conference in Informatics (CLEI).

[EW04] Eshuis, Rik; Wieringa, Roel: Tool Support for Verifying UML Activity Diagrams. ITSE,
30(7):437–447, 2004.

[GHH14] Gogolla, Martin; Hamann, Lars; Hilken, Frank: Checking Transformation Model Prop-
erties with a UML and OCL Model Validator. In (Amrani, Moussa; Syriani, Eugene;
Wimmer, Manuel, eds): Proc. 3rd Int. Workshop on Verification of Model Transforma-
tion (VOLT’2014). CEUR Proceedings, Vol. 1325, pp. 16–25, 2014.

[GKH09] Gogolla, Martin; Kuhlmann, Mirco; Hamann, Lars: Consistency, Independence and Con-
sequences in UML and OCL Models. In (Dubois, Catherine, ed.): Tests and Proofs, Third
International Conference, TAP. volume 5668 of LNCS. Springer, pp. 90–104, 2009.

[La07] Lam, Vitus S. W.: A Formalism for Reasoning about UML Activity Diagrams. Nordic
Jrnl. of Comp., 14(1):43–64, 2007.

[Ro14] Rodríguez, Ricardo J.; Fredlund, Lars-Åke; Herranz-Nieva, Ángel; Mariño, Julio: Exe-
cution and Verification of UML State Machines with Erlang. In: Software Engineering
and Formal Methods. pp. 284–289, 2014.

[SWD11] Soeken, Mathias; Wille, Robert; Drechsler, Rolf: Verifying Dynamic Aspects of UML
Models. In: DATE. IEEE, pp. 1077–1082, 2011.

