
Data Flow Testing for Virtual Prototypes
Muhammad Hassan1, Vladimir Herdt1, Hoang M. Le1, Mingsong Chen2, Daniel Große1,3, Rolf Drechsler1,3

1Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
2Shanghai Key Lab of Trustworthy Computing, East China Normal University, Shanghai, China

3Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
{hassan,vherdt,hle,grosse,drechsle}@informatik.uni-bremen.de ; mschen@sei.ecnu.edu.cn

Abstract—Data flow testing (DFT) has been shown to be an
effective testing strategy. DFT features a high fault detection
rate while avoiding the intense scalability problems to achieve
full path coverage. In this paper we propose to apply data flow
testing for SystemC virtual prototypes (VPs). Our contribution
is twofold: First, we develop a set of SystemC specific coverage
criteria for data flow testing. This requires to consider the Sys-
temC semantics of using non-preemptive thread scheduling with
shared memory communication and event-based synchronization.
Second, we explain how to automatically compute the data flow
coverage result for a given VP using a combination of static
and dynamic analysis techniques. The coverage result provides
clear suggestions for the testing engineer to add new testcases in
order to improve the coverage result. Our experimental results
on real-world VPs demonstrate the applicability and efficacy of
our analysis approach and the SystemC specific coverage criteria
to improve the testsuite.

I. INTRODUCTION

The last few years have witnessed fast-growing adoption
of Virtual Prototypes (VPs) at the abstraction of Electronic
System Level (ESL). Essentially, a VP is a software simulation
model of the entire hardware platform, created by composing
models of the individual IP blocks (i.e. Instruction Set Simu-
lators, bus and peripheral models, etc.). For this purpose, the
C++-based system modeling language SystemC together with
Transaction Level Modeling (TLM) techniques [1] are being
heavily used in industrial practice. Overall, the adoption of
SystemC-based VPs has led to significant improvements on the
design and verification of System-on-Chips (SoCs). The much
earlier availability as well as the significantly faster simulation
speed in comparison to the Register Transfer Level (RTL)
models are among the main benefits of VPs. These enable
hardware/software co-design and verification very early in the
development flow. Serving as reference for (early) embedded
software development and hardware verification, the functional
correctness of VPs is very important. Hence, a whole VP as
well as its individual components are subjected to rigorous
verification.

Despite the recent progress in formal verification of Sys-
temC models (see e.g. [2]–[8]), simulation-based verification is
still the method of choice for SystemC-based VPs in industrial
practice thanks to its scalability and ease of use. Basically, a set

This work was supported in part by the German Federal Ministry of
Education and Research (BMBF) within the project EffektiV under contract
no. 01IS13022E, German Research Foundation (DFG) within the Reinhart
Koselleck project DR 287/23-1, University of Bremens graduate school
SyDe, funded by the German Excellence Initiative, National Natural Science
Foundation of China (No. 61672230), and German Academic Exchange
Service (DAAD) in the PPP 57138060.

of stimuli is applied to the Design Under Verification (DUV;
which can be either a whole VP, a set of components or a
single component) and for each stimulus, the actual behavior
is checked against the expected behavior (e.g. specified by
reference outputs or temporal properties). Since a VP is in
essence a software model, simulation-based verification for
VPs is actually very similar to software testing and therefore,
techniques from this domain can be borrowed to ensure a high
quality of verification results. For example, high statement
coverage of the DUV implied by the set of stimuli (also
referred to as testsuite in the remainder of the paper to reflect
the software testing point of view) is nowadays a minimum
requirement.

However, although a necessary step, statement coverage
(and also stronger code coverage metrics) have some well-
known limitations in their capability to detect bugs as well
as to reflect the thoroughness of verification. In the software
testing community, a fault-based technique with better bug
detection capability, known as mutation analysis [9], [10], has
been considered for decades. Essentially, mutation analysis
measures the adequacy of the testsuite with respect to its
ability to detect a set of injected faults, which are introduced
to the program under test by applying small syntactic changes.
The key to effectiveness is a fault model that is both simple
and representative for typical coding mistakes. The ideas have
also been successfully transferred to hardware verification as
well as to SystemC. For instance, dedicated fault models for
SystemC-based mutation analysis have been proposed in [11]–
[13]. Mutation based solutions for software-driven verification
have also been presented [14]. Commercial mutation analysis
tools with support for SystemC such as Certitude from Syn-
opsys are also available.

Considering the successful adoption of mutation analysis,
it is rather surprising that another effective testing technique
know as Data Flow Testing (DFT) [15], [16], to the best of
our knowledge, has not been yet considered for SystemC. DFT
also holds the promise of better bug detection capability. The
underlying idea of DFT is that the propagation of (wrong)
data is a necessity to reveal bugs: If a line of code produces
a wrong value, the execution after that point must include
another line of code that uses this erroneous value, otherwise
there will be no observable failures. Based on this information,
researchers have proposed several data flow adequacy criteria.
These criteria require the testsuite to sufficiently exercise
the identified definition-use pairs, i.e. pairs of definition (a
statement where a value is produced) and use (a statement
where this value is used). Recent research in DFT focused on



automated test generation for data flow adequacy [17], [18]
and on extending DFT to object-oriented programs [19], [20].

In this paper we propose the first DFT approach for
SystemC-based VPs, which does not come without challenges.
A SystemC DUV is essentially a concurrent program with non-
preemptive thread scheduling, shared memory communication
and event-based synchronization. This unique combination
requires rethinking of the known DFT techniques. To this end,
our contribution is twofold: First, we develop a set of SystemC
specific coverage criteria for DFT, which takes the non-
preemptive context switches and synchronization primitives
of SystemC into consideration. Second, we explain how to
automatically compute the data flow coverage result for a
DUV using a combination of static and dynamic analysis.
The coverage result provides clear suggestions for the testing
engineer to add new testcases in order to improve the coverage
result. Our experimental results on real-world VPs demonstrate
the applicability and efficacy of our analysis approach and
the SystemC specific coverage criteria to improve the testsuite
quality.

II. PRELIMINARIES

A. SystemC Running Example
For brevity, we refrain from giving a proper introduction

to SystemC. Instead, we present here an example SystemC
program (Fig. 1) that will be used to showcase the main
ideas of our approach throughout this paper. The SystemC
constructs and semantics necessary to understand the example
will be explained as needed. We omitted the SystemC code
required for instantiation and binding of components, i.e.
the elaboration phase. The example consists of two mod-
ules producer and consumer that communicate through a
FIFO. Their behavior is implemented in thread functions (pro-
ducer: prod_thread() Line 37 - consumer: recv() Line 53,
filter() Line 68, send() Line 79) registered in the simulation
kernel. The behavior of the consumer depends on the input
provided by the producer.

The FIFO provides a write and a read function that adds or
removes an element, respectively. The write function is used
from the producer thread in Line 41 and the read function
from the consumer thread in Line 57. Both functions can
potentially suspend the threads execution in case the FIFO
is empty on read attempt (Line 16) or full at write attempt
(Line 7). The thread becomes runnable again when the awaited
event is notified in Line 11 or Line 21, respectively

The consumer module itself consists of three threads. The
thread recv() is responsible to retrieve the next produced
element x (Line 58) from the FIFO and transfers it to the send
thread for processing. The transfer can happen in two ways:
1) Through the filter() thread that applies post-processing
and checking (Line 68), or 2) directly without delay to the
send() thread for high priority items (Line 79). However,
the send thread only accepts one fast transfer at a time
(Line 80, controlled by the fast_mode variable). Therefore,
the filtering is always unconditionally initiated (Line 59) as
fallback in case the send thread currently does not support fast
processing. Finally, the send() thread will notify the recv()

thread (Line 91) to transfer the next element.

Static Analysis
All Def-Use 

Pairs

Testcases

Evaluation
Coverage
Results

Executed Def-
Use Pairs

Instrumented
Code

Instrumented 
Exe

Clang

Source code

Static Data Flow Analysis

Dynamic Data Flow Analysis

C
o

m
p

ile

Strong
TFirm
TWeak
SyncStrong
SyncWeak

def-use:

all-uses

all-defs

wait-notify:

all-sync
all-SyncStrong
all-SyncWeak

all-Strong
all-TFirm
all-TWeak

Within functions
Across functions
Context switches

Add tests

Fig. 2. An overview of our data flow testing approach for SystemC

B. Def-Use Association and Data Flow Testing

A def-use association is an ordered triple (x, d, u) such
that d is a statement where variable x is defined and u is
a statement where x is used. Furthermore, there is a path
in the program from d to u without re-definition of x. For
example, consider Fig. 1: variable fast_mode is defined in
Line 80 and used in Line 82, so it is a def-use association.
A def-use association (x, d, u) is exercised by a testcase t,
iff execution of t goes through definition d and then use u
without re-definition of variable x in-between.

Data flow testing tries to maximize the exercised def-use
associations. Essentially, it works by refining the testsuite
by adding testcases until the coverage criteria are met or
testing resources are exhausted. This requires to detect def-use
associations and measure the data flow coverage of the current
testsuite. How to do this for SystemC and thereby taking
SystemC specifics into account is shown in the following.
Please note that we will use the term data flow association as
a generalization of a def-use association to avoid confusion.
The reason is that we define a SystemC specific wait-notify
association, which is also a data flow association.

III. DATA FLOW TESTING FOR SYSTEMC
A. Overview

An overview of our data flow testing approach for SystemC
is shown in Fig. 2. Essentially, our approach combines a
static and dynamic analysis to fully automatically compute
a SystemC specific data flow coverage result.

The static analysis (upper half of Fig. 2) identifies the set
of all data flow associations. Our static analysis computes an
over-approximation of all def-use associations and thus also
contains infeasible associations, i.e. associations that cannot be
exercised no matter which input is applied. A precise compu-
tation of all feasible associations requires heavy use of formal
verification techniques and therefore is not practical due to
scalability issues. To guide testcase selection, associations are
classified into different disjoint groups based on the likeliness
of being infeasible. Please note that the static analysis needs
to be only run once at the beginning on the source code.

The dynamic analysis (lower half of Fig. 2) detects which
data flow associations have been exercised by the current test-
suite. It works by instrumenting the SystemC source file to log
relevant runtime information. The instrumented source file is
then compiled with a standard C++ compiler and executed for
every testcase. The resulting logs are analyzed and combined
to obtain the set of exercised data flow associations.



1 struct fifo : public sc_channel {
2 fifo(sc_module_name name)
3 : sc_channel(name), num_elements(0), first(0) {}
4
5 void write(char c) {
6 if (num_elements == max)
7 wait(read_event);
8
9 data[(first + num_elements) % max] = c;

10 ++num_elements;
11 write_event.notify();
12 }
13
14 void read(char &c){
15 if (num_elements == 0)
16 wait(write_event);
17
18 c = data[first];
19 --num_elements;
20 first = (first + 1) % max;
21 read_event.notify();
22 }
23
24 private:
25 enum e { max = 10 };
26 char data[max];
27 int num_elements, first;
28 sc_event write_event, read_event;
29 };
30
31
32 SC_MODULE(producer) {
33 SC_CTOR(producer) {
34 SC_THREAD(prod_thread);
35 }
36
37 void prod_thread() {
38 wait(0); // start together with the consumer
39 const char *str = "SystemC Example"; // input to

the design, can influence consumer behavior
40 while (*str)
41 out->write(*str++); // out is bound to fifo

instance
42 }
43
44 sc_port<fifo> out;
45 };
46
47
48 SC_MODULE(consumer) {
49 SC_CTOR(consumer) {
50 SC_THREAD(recv); SC_THREAD(send);

SC_THREAD(filter);
51 }
52
53 void recv() {
54 wait(0, SC_NS); // ensure send and filter are run

first
55 char c;
56 while (true) {
57 in->read(c); // in is bound to fifo instance
58 x = c;
59 filter_event.notify(1, SC_NS);
60 if (x < 10) {
61 // high priortiy data handled immediately
62 send_fast_event.notify();
63 }
64 wait(recv_event);
65 }
66 }
67
68 void filter() {
69 while (true) {
70 wait(filter_event);
71 if (x < 0)
72 x = 0;
73 if (x > 126)
74 x = 126;
75 send_regular_event.notify(1, SC_NS);
76 }
77 }
78
79 void send() {
80 bool fast_mode = true;
81 while (true) {
82 if (fast_mode) {
83 wait(send_regular_event | send_fast_event);
84 fast_mode = false;
85 } else {
86 wait(send_regular_event);
87 fast_mode = true;
88 }
89 assert (x >= 0);
90 cout << x << endl;
91 recv_event.notify();
92 }
93 }
94
95 sc_port<fifo> in;
96 private:
97 int x;
98 sc_event recv_event, filter_event,

send_regular_event, send_fast_event;
99 };

Fig. 1. SystemC example

In the next step, both static and dynamic analysis results
are evaluated and combined to obtain a coverage result.
Essentially, the result shows which data flow associations have
been exercised by at least one testcase and which have been
completely missed. An association can be missed due to two
reasons: 1) The testsuite is insufficient to cover it. In this
case a new testcase needs to be added. 2) The association
is infeasible, i.e. there is no possible input that will cover it.
In this case it can be ignored.

Our classification system, that ranks associations according
to their likeliness of being infeasible, allows the testing engi-
neer to focus his efforts on promising testcases to efficiently
improve the coverage result. Please note that we do not yet
consider automated test generation to exercise a specific data
flow association in this work, as it will exceed the scope of
this paper. Automated test generation is left for future work.

In the following we describe our classification system and
the coverage result in more detail and demonstrate both using
the running example.

B. Classification of Data Flow Associations
Our classification system attempts to preserve scalability of

the data flow testing approach and at the same time provide
meaningful results and suggestions to guide the testcase gener-
ation. We define five SystemC specific classifications: Strong,
TFirm, TWeak, SyncStrong, and SyncWeak.

The first three (details see below) extend the classical notion
of data flow testing that reason about variable definition and
use. Therefore, these fall into the def-use association category.
These classifications especially deal with the non-preemptive
threads of the SystemC simulation (and hence the T in TWeak
and TFirm).

The last two classifications are used to classify event-
based synchronization of SystemC by means of the wait/notify
function. This can also be considered as a data flow relation.
The wait can be considered a definition which suspends the
active thread, while the notify is considered a use. However,
to avoid confusion we introduce a new data flow association
called wait-notify association for these synchronization related
flows.

1) Def-Use Associations: Our static analysis reports the
following def-use associations (x, d, u): There is a static path
from d to u in the program without re-definition of x in-
between. Please note, there is a static path from every context
switch statement from one thread to the start of a transition
of every other thread. A transition starts at the beginning of a
thread and right after a context switch.

Based on this general observation we define three classifi-
cations for def-use associations (x, d, u). In this context we
define a du-path as a static path between d and u without
re-definition of x:



• Strong : a) Every du-path is without context switch, or b)
x is a thread local variable, or c) d is the only definition
of x, i.e. x is a constant.

• TFirm : At least one du-path is without context switch
and at least one du-path with context switch.

• TWeak : Every du-path contains a context switch.
Since a local thread variable cannot be re-defined on context

switch, the def-use associations is considered Strong. This
refinement of def-use associations provides clear guidelines for
testcase selection. In general one should focus on Strong and
TFirm associations first. In both cases there exists at least one
(static) path without context switch in-between the definition
and use.

2) Wait-Notify Associations: Similarly to def-use associa-
tions, we define a wait-notify association as an ordered triple
(e, w, n) where w contains a wait of event e and n contains a
notify of event e, and there exists a path in the program such
that w is notified from n.

This definition does not require a notify to happen after the
wait during execution. This is due to timed notification, where
the notify statement only schedules the notification to happen
at a later point in time. Such a timed notification is much
more difficult to handle precisely using static information.
Furthermore, the notification can be canceled, e.g. by issuing
a new notification of event e. Immediate notifications on the
other hand more directly resemble the classical data flow
relation as the notification happens when the notify statement
is executed. Events are inherently not thread local and there
is always a context switch between a wait and a notify, which
makes static analysis more difficult.

Our static analysis detects the following wait-notify associ-
ations (e, w, n): (1) A timed notify n for event e is executed
and the scheduled notification is not canceled until a context
switch is executed. And w is a wait for event e. (2) w is a
wait for event e in one thread and n is an immediate notify
of event e on another thread.

This approximation can be further refined by applying an
additional analysis that computes transitions between threads
more precisely. However, this approximation is sufficient when
dealing with SystemC synchronization primitives. One of the
reasons is that often only very few wait-notify statements
operate on a single event. Therefore, it is reasonable to assume
that most of them are feasible.

This observation motivates to introduce the following two
classifications for wait-notify associations (e, w, n):

• SyncStrong : Wait w should have a one-to-one relation-
ship with a notify n for an event e.

• SyncWeak : Otherwise, i.e. multiple wait or notify state-
ments are available for event e.

C. Coverage Result

Every classification defines a disjoint set of data flow
associations. Therefore, we define a coverage criterion for each
classification. For instance, the all-Strong criterion is satisfied,
iff all data flow associations classified as Strong have been
exercised. Criteria for the remaining classifications – i.e. all-
TFirm, all-TWeak, all-SyncStrong, and all-SyncWeak – can be
defined analogously.

Based on these criteria, we can define specific def-use and
wait-notify criteria:

• The all-uses criterion requires that all-Strong, all-TFirm
and all-TWeak are satisfied.

• The all-defs criterion requries that for every definition D
in the program at least one def-use association (x, d, u)
with D = d is exercised.

• The all-sync criterion requires that all-SyncStrong and
all-SyncWeak are satisfied.

Finally, the all-data-flow criterion is satisfied iff all-uses and
all-sync criteria are satisfied.

While in general satisfying all-data-flow criterion is not
practical due to imprecisions in the static analysis, which can
result in infeasible data flow associations, it is possible that
some of the (sub-)criteria can be fully satisfied – or at least
up to a high degree, i.e. 95% of the associations have been
exercised. In particular, we expect that all-Strong, all-TFirm
and all-SyncStrong to be the primarily focused criteria.

Both Strong and TFirm associations contain a (static) path
without re-definition and without context switch between the
definition and use. Therefore, we expect that a testcase will
exercise them. Otherwise, the definition is dead code or all
relevant paths (without re-definition of variable x) between
definition and use are infeasible.

Similarly, if the SyncStrong criterion is not satisfied, it
means that some notification has never reached a wait, or some
wait has not been notified. This implies that some wait/notify
statement is essentially unused.

D. Illustration
We have executed the SystemC example in Fig. 1 with

four different inputs to gradually increase the data flow cov-
erage. In particular, we used the following inputs for the str

variable in Line 39: 1) “SystemC Example”, 2) “Abc\x7f”,
3) “a\tb\xff”, and 4) “Test\x80”. Table I shows the results,
i.e. the statically classified data flow associations, and by
which testcase they have been exercised (marked by X).
Infeasible data flow associations are marked with ’-’ for all
testcases. The information is grouped in four main columns,
and is read from top-to-bottom and then from left-to-right.
In this order the Strong, TFirm, TWeak, SyncStrong and
SyncWeak associations are listed.

For example consider the Strong def-use association
(num elements, 10, 6) shown in the first column and ex-
ercised by all testcases. This one is Strong because all
paths between Lines 10 and 6 are without re-definition of
num elements and are free of context switches. In fact there
is only one possible path from Line 10 to Line 6 – first the
write function is exited, then the while loop is not finished
and so the write function is called again.

For the def-use association (num elements, 10, 9), there
are two paths between Line 10 and Line 9, due to the branch
in Line 6. One involves a context switch and the other path
does not. Therefore, this association is TFirm.

The def-use association (first , 20, 9) is TWeak, because
the only way to reach the use starting from the definition is
through a context switch. This association is only exercised
by the first testcase.



TABLE I
DATA FLOW ASSOCIATIONS FOR THE SYSTEMC EXAMPLE IN FIG. 1 SORTED BY CLASSIFICATION.

Strong (x,72,73) X TWeak (x,58,89) X X X X
(c,5,9) X X X X (x,58,60) X X X X (data,9,18) X X X X (x,58,90) X X X X
(c,57,58) X X X X (first,20,9) X
(fast mode,80,82) X X X X TFirm (num elements,10,15) X SyncStrong
(fast mode,84,82) X X X X (data,3,18) - - - - (num elements,10,19) X X X X (filter event,70,59) X X X X
(fast mode,87,82) X X X X (first,3,9) X X X X (num elements,19,6) - - - - (read event,7,21) X
(max,25,6) X X X X (first,3,18) X X X X (num elements,19,9) X (recv event,64,91) X X X X
(max,25,9) X X X X (first,3,20) X X X X (num elements,19,10) X (send fast event,83,62) X
(max,25,20) X X X X (first,20,18) X X X X (x,72,71) - - - - (write event,16,11) X X X X
(num elements,3,6) X X X X (first,20,20) X X X X (x,72,89) X
(num elements,3,15) X X X X (num elements,3,9) X X X X (x,72,90) X SyncWeak
(num elements,10,6) X X X X (num elements,3,10) X X X X (x,74,71) - - - - (send regular event,83,75) X X X X
(num elements,19,15) X X X X (num elements,3,19) - - - - (x,74,73) - - - - (send regular event,86,75) X X X X
(str,39,40) X X X X (num elements,10,9) X X X X (x,74,89) X
(str,39,41) X X X X (num elements,10,10) X X X X (x,74,90) X
(str,41,40) X X X X (num elements,19,19) X X X X (x,58,71) X X X X
(str,41,41) X X X X (x,58,73) X X X X

The associations involving the max variable are classified
Strong because it is a constant, so it cannot be redefined. The
association (c, 5, 9) is also Strong, even though there are two
paths from 5 to 9 and one involves a context switch, because
c is thread local – so it cannot be redefined due to the context
switch. Most wait-notify associations are SyncStrong because
there is only a single wait and notify for the event. The ports
in and out are bound in the elaboration phase, which is not
shown in the example. Therefore, no def-use association is
reported for them in Table I.

The first testcase already achieves a reasonable data flow
coverage. In particular for the FIFO component, which works
independent of the actual input. Since the all-Strong and all-
TFirm coverage criteria are already satisfied, the next step is
to consider the TWeak associations.

The second and third inputs use special characters which are
processed separately in the filter thread in Line 71 - Line 74.
With the first three inputs, all feasible def-use associations are
covered. Therefore, the maximal def-use coverage has been
achieved for this example. Please note that full branch and
statement coverage has also been achieved with this test set.

However, the coverage with regard to wait-notify asso-
ciations can still be increased. In particular the association
(send fast event, 83, 62) has not been exercised. The reason
is that with the current testsuite all special characters were
passed through the filter thread, since the send thread has
not been in fast mode, i.e. waiting in Line 86. Therefore, we
have added a fourth testcase to exercise its association. This
testcase was able to detect a bug in the design, where an invalid
character is passed to the send thread.

This example demonstrates that standard def-use cover-
age criteria alone are not sufficient for extensive testing of
SystemC designs. Our proposed SystemC specific wait-notify
coverage criteria is important for a high quality testsuite.

IV. IMPLEMENTATION DETAILS

This section describes the static and dynamic analysis of
our data flow testing framework in more details. As afore-
mentioned, the static analysis computes an over-approximation
of data flow associations classified into disjoint groups. The
dynamic analysis then detects which data flow associations
really have been exercised by the testsuite.

A. Static Analysis
The static analysis is implemented using the LibTooling

library for Clang compiler. Clang generates an Abstract Syntax
Tree (AST) of the SystemC source code. The AST is parsed
to extract the required information to perform static analysis.
Then it applies three subsequent analysis steps: 1) Local
analysis within every function, 2) Information propagation
across function calls, 3) Consideration of the effects of context
switches.
B. Dynamic Analysis

The dynamic analysis works in two steps: 1) Instrument the
SystemC source code using the Clang compiler framework to
log data flow relevant information. Then execute all testcases
on the instrumented executable to generate the log. 2) Analyse
the log line by line to build the exercised data flow associa-
tions. Both steps are described in the following.

1) Source Code Instrumentation: In the first step the Sys-
temC source code is instrumented to log data flow relevant
information. Therefore, it is analyzed statement by statement
to detect 1) definitions and uses of variables, and 2) wait
and notifies of events. For every such detected information
a print instruction, which writes to a log, is placed before the
statement. Please note, that the order of the print instructions is
important in case multiple information are available, e.g. i++;,
in general the uses are placed before the definitions. For the
while loop (and similarly the for loop) print instructions for
the loop condition are replicated at the end of the loop since
the condition is re-evaluated in every loop step. Therefore, it
is not enough to place them only before the while loop.

2) Data Flow Association Construction:
a) Def-Use Associations: The def-use associations can

be identified in a straightforward way. We keep a mapping of
active definitions. It relates each variable to its last definition,
which is updated on re-definition. Whenever a use for a
variable is found in the log, the corresponding definition is
retrieved from the mapping.

b) Wait-Notify Associations: Detecting wait-notify asso-
ciations requires additional work due to timed notifications.
This decouples the notify statement from the actual event
triggering. Therefore, we modified the SystemC kernel to write
a log entry whenever an event is triggered.

For example consider the statement sequence e.notify(1,
SC NS); wait(e);, where an event e is scheduled for noti-
fication and then the thread is suspended to wait for the



notification e. The execution log contains a notify entry for
event e followed by a wait entry for e. The actual trigger from
the SystemC kernel appears later. In-between can be other log
entries. Other threads can also wait for event e. However, a
new notification for e will cancel the one before.

Based on this information, we keep a mapping from an event
to a set of active wait statements and a mapping to the last
scheduled notification. Once the kernel trigger is parsed for an
event e, retrieve the last notification n and set of active waits S.
Then add a wait-notify association (e, w, n) for every w ∈ S.
Immediate notifications are handled in the same manner, the
trigger simply appears directly after the notification scheduling
in the log.

V. EXPERIMENTAL RESULTS

In this section we present a case study to demonstrate our
DFT approach for SystemC. We consider the LEON3-based
VP SoCRocket [21] which has been modeled in SystemC TLM
and consider one component from it in more detail: the In-
terrupt Controller for Multiple Processors (IRQMP). IRQMP
handles the interrupts coming from different connected de-
vices using priority mechanism. The model has I/O wires,
register file and APB slave interface. Total of 32 interrupts
are supported. When an interrupt arrives, the corresponding
bit in the register is set. The IRQMP communicates with
connected processors with an interrupt request (irq req) or
an acknowledgment (irq ack). When an interrupt request is
signaled for a processor, the IRQMP combines the mask
register and the pending register with the force
register to find the highest priority interrupt. The IRQMP
also reads the broadcast register before forwarding
the request to the processors. If the corresponding bit is set
in broadcast register, the interrupt is broadcasted to
all processors, i.e. written to the force register of all
connected processors. In this scenario, the IRQMP expects ac-
knowledges from all processors. On the arrival of an interrupt
request, if the corresponding bit is not set in the broadcast
register, it is simply set in the pending register.
In this scenario, IRQMP expects an acknowledge from any
processor.

The initial testsuite shipped with the IRQMP component
consists of 60 tests achieving 63% statement coverage, 74%
branch coverage, and 63% data flow coverage: a total number
of 571 data flow associations has been computed by our
static analysis, and 359 of them have been found to be
exercised by the testsuite using our dynamic analysis. Initially
62% Strong, 71% TWeak, and 58% SyncWeak data flow
associations are exercised. There is no TFirm association as
each instruction has to pass wait statement, hence, a context
switch is inevitable. The testsuite does not fulfill the all-
uses, all-defs, and all-sync criteria. Therefore, the all-data-flow
criterion is not satisfied. One interesting point is that there are
no SyncStrong wait-notify pairs, instead there are 5 SyncWeak
wait-notify pairs wrt. the only sc event e signal.

To increase the def-use coverage, the uncovered 38% Strong
associations are satisfied first by adding additional tests man-
ually. They are followed by 29% TWeak and 42% SyncWeak
associations. In total, 54 additional tests are added to the

initial testsuite. These new tests increased the overall data
flow coverage to 88%, with 96% Strong, 91% TWeak, and
69% SyncWeak data flow associations exercised. After this
point, we found it to be very hard to improve these numbers
further. This demonstrates the need for future research on
automated test generation techniques for SystemC that are
capable to derive hard-to-find tests and to prove infeasibility
of associations. With the now enhanced testsuite, we also
achieve 92% statement coverage and 89% branch coverage.
Despite the very high values of these code coverage metrics,
they provide no insight into potential synchronization issues.
In contrast our developed data flow coverage with regards to
wait-notify association shows that in many cases there was no
wait statement waiting for notify because some other function
had already fulfilled the wait condition. This can lead to
potential problems in integration of the component in a larger
system/subsystem, e.g. an incoming interrupt which needs to
be handled quickly can be delayed.

VI. CONCLUSION

In this paper we presented the first DFT approach for
SystemC based VPs and SystemC specific coverage criteria.
The criteria uses five classifications (Strong, TFirm, TWeak,
SyncStrong, SyncWeak) for data flow associations. Further-
more, we explain how to automatically compute the data flow
coverage results for a DUV using a combination of static and
dynamic analysis. This allows to improve the coverage results
by adding tests for uncovered def-use pairs since the users can
get useful information. We have demonstrated the applicability
in a real world VP showing the results of one IP model.

REFERENCES

[1] IEEE Standard SystemC LRM, IEEE Std. 1666, 2011.
[2] D. Große, H. M. Le, and R. Drechsler, “Proving transaction and system-level properties

of untimed SystemC TLM designs,” in MEMOCODE, 2010, pp. 113–122.
[3] C.-N. Chou, Y.-S. Ho, C. Hsieh, and C.-Y. Huang, “Symbolic model checking on

SystemC designs,” in DAC, 2012, pp. 327–333.
[4] A. Cimatti, I. Narasamdya, and M. Roveri, “Software model checking SystemC,” TCAD,

vol. 32, no. 5, pp. 774–787, 2013.
[5] H. M. Le, D. Große, V. Herdt, and R. Drechsler, “Verifying SystemC using an intermedi-

ate verification language and symbolic simulation,” in DAC, 2013, pp. 116:1–116:6.
[6] V. Herdt, H. M. Le, and R. Drechsler, “Verifying SystemC using stateful symbolic

simulation,” in DAC, 2015, p. 49.
[7] H. M. Le, V. Herdt, D. Große, and R. Drechsler, “Towards formal verification of real-

world SystemC TLM peripheral models – a case study,” in DATE, 2016, pp. 1160–1163.
[8] V. Herdt, H. M. Le, D. Große, and R. Drechsler, “Compiled symbolic simulation for

SystemC,” in ICCAD, 2016, p. 52.
[9] R. G. Hamlet, “Testing programs with the aid of a compiler,” IEEE Trans. Softw. Eng.,

no. 4, pp. 279–290, 1977.
[10] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data selection: Help for

the practicing programmer,” IEEE Computer, vol. 11, no. 4, pp. 34–41, 1978.
[11] N. Bombieri, F. Fummi, and G. Pravadelli, “A mutation model for the SystemC TLM 2.0

communication interfaces,” in DATE, 2008, pp. 396–401.
[12] ——, “On the mutation analysis of SystemC TLM-2.0 standard,” in MTV Workshop,

2009, pp. 32–37.
[13] A. Sen, “Concurrency-oriented verification and coverage of system-level designs,” TO-

DAES, vol. 16, no. 4, p. 37, 2011.
[14] D. Große, H. M. Le, M. Hassan, and R. Drechsler, “Guided lightweight software test

qualification for IP integration using virtual prototypes,” in ICCD, 2016.
[15] J. W. Laski and B. Korel, “A data flow oriented program testing strategy,” IEEE Trans.

Softw. Eng., vol. 9, no. 3, pp. 347–354, May 1983.
[16] S. Rapps and E. J. Weyuker, “Selecting software test data using data flow information,”

IEEE Trans. Softw. Eng., vol. 11, no. 4, pp. 367–375, Apr. 1985.
[17] M. Vivanti, A. Mis, A. Gorla, and G. Fraser, “Search-based data-flow test generation,” in

ISSRE, 2013, pp. 370–379.
[18] T. Su, Z. Fu, G. Pu, J. He, and Z. Su, “Combining symbolic execution and model checking

for data flow testing,” in ICSE, 2015, pp. 654–665.
[19] R. T. Alexander, J. Offutt, and A. Stefik, “Testing coupling relationships in object-

oriented programs,” STVR, vol. 20, no. 4, pp. 291–327, 2010.
[20] G. Denaro, A. Margara, M. Pezzè, and M. Vivanti, “Dynamic data flow testing of object

oriented systems,” in ICSE, 2015, pp. 947–958.
[21] T. Schuster, R. Meyer, R. Buchty, L. Fossati, and M. Berekovic, “SoCRocket - A virtual

platform for the European Space Agency’s SoC development,” in ReCoSoC, 2014, pp.
1–7, available at http://github.com/socrocket.


