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Abstract—Efficient power management is very important for
modern System-on-Chip to satisfy the conflicting demands on
high performance and low power consumption. Nowadays, global
power management is mostly implemented in firmware (FW)
due to the relative ease of development and its flexibility.
Recent advances in system-level power modeling and estimation
open up opportunities for early validation of these FW-based
power management strategies. In this paper, we propose a
novel approach for this purpose using SystemC-based Virtual
Prototypes (VPs) and constrained random (CR) techniques. The
CR-generated representative system workloads are executed in
a power-aware FW/VP co-simulation to validate that available
performance and power budgets are satisfied. As a proof-of-
concept, we demonstrate our power validation approach on the
LEON3-based SoCRocket VP.

I. INTRODUCTION

Modern System-on-Chips (SoCs) must satisfy stringent re-
quirements on power consumption and performance. With a
continuously fast increase in number of implemented function-
alities as well as in their complexity, meeting these require-
ments has become one of the major challenges in embedded
system design. This new challenge demands a major shift in
the design flow where power optimization/management is no
longer an afterthought. There is an industry-wide consensus
that waiting for the availability of RTL is not feasible anymore,
because once the RTL is written, power saving opportunities
have already been greatly cut off [1]. As both software
(SW) and hardware (HW) have a significant impact on the
overall power consumption, early design steps at the system
level, in particular HW/SW co-design, should take power into
consideration.

On the other hand, the emergence of Virtual Prototypes
(VPs) at the abstraction of Electronic System Level (ESL)
has played a major role in modernizing the SoC design
and verification flow. In industrial practice, the C++-based
modeling language SystemC and Transaction Level Modeling
(TLM) techniques [2], [3] are being heavily used together
to create VPs. The much earlier availability as well as the
significantly faster simulation speed in comparison to RTL
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are among the main benefits of SystemC-based VPs. These
enable functional validation and verification [4], [5] as well
as SW development very early in the design flow. Building on
this success story, extending VPs to be power-aware to enable
early power analysis is a very promising direction. Admittedly,
RTL is the first stage where enough details are present to
provide reasonably accurate power numbers, however, ESL
power modeling and estimation techniques are rapidly getting
better (see e.g. [6], [7], [8]).

At the system level, the focus is not on low-level techniques
such as power gating or dynamic voltage and frequency
scaling but rather on fundamental design decisions that have
a large impact on the power consumption, e.g. low-power
architectures or power management strategies. The latter can
contribute a great deal to the overall power saving by putting
unused components into low-power states and waking them
up properly in an intelligent manner. In most modern SoCs,
the global power management strategy is implemented in
firmware (FW) with the main advantages being the relative
ease to develop and the flexibility in reconfiguring the strategy
for different target applications. The recent advances in ESL
power modeling and estimation enable to execute a particular
SW application in FW/VP co-simulation and check whether its
power budget and performance requirement are met. However,
there is still a number of shortcomings with this basic ap-
proach. First, production-level SW is not yet available in early
design stages. Second, simulating a full SW stack can still be
very time-consuming, even at the speed of VPs. Third, a SW
application is executed under some predetermined workloads
(i.e. application and environment inputs). These workloads
might very possibly miss rare corner cases where the power
budget is exceeded or the performance constraint is violated.

To address these shortcomings, we propose a novel VP-
based approach to assess the power-versus-performance trade-
off of FW-based power management. Instead of executing
real SW applications, our approach makes use of system-
level workload scenarios. The main novelty of the approach
is the modeling of workload scenarios based on constrained
random (CR) techniques [9] that are very successful in the
area of SoC/HW functional validation and verification. Each
workload scenario corresponds to a system-level use-case with
a specific power comsumption profile and is described by



a set of constraints. The constraints define the set of legal
concrete workloads that are conform to the intended use-case.
The constraint-based description enables automated generation
of a large number of different workloads within the scenario,
hence reducing the risk of missing a corner case.

In this paper, we present the first attempt of realizing
the proposed approach together with a proof-of-concept case
study. As there is no freely available VP with power modeling
and estimation, we build our case study around the open-
source LEON3-based VP SoCRocket [10]. We extend the base
VP with power management features and implement a FW-
based dynamic power management strategy. Our approach is
however not limited to a particular VP or power modeling
technique. The obtained results demonstrate the potential of
the approach and point out areas for further improvements.

The remainder of the paper is organized as follows. Sec-
tion II reviews briefly related work. The proposed approach
is outlined in Section III. The SoCRocket case study is then
described in Section IV including the details of our power-
aware extensions to the SocRocket VP. After the results are
presented at the end of Section IV, Section V concludes the
paper and discusses future work.

II. RELATED WORK

ESL power estimation provides the basic technique for
comparing different architectural/implementation options by
providing power estimates using simulation. It has been in-
tensely investigated in academia and industry.

In academia, approaches using cycle-accurate architectural
simulators (e.g. [11]), power models per functional unit
(e.g. [12], [13]) and ESL design extensions by power models
(e.g. [7], [8]) have been proposed.

As a next step methods which allow for including power-
management concepts (e.g. power states and power domains)
have been developed. The PwARCH framework has been
introduced in [14]. This framework follows the UPF principles
and allows to add a power architecture to a SystemC TLM
model such that different power design alternatives can be
explored. A similar approach has been presented in [15] but
it is based on metamodeling techniques.

A complete HW/SW co-design exploration methodology
wrt. power has been introduced in [6]. The authors of [16]
proposed an exploration approach targeting power domain
partitioning at ESL. A design space exploration approach for
power-efficient distributed embedded applications has been
presented in [17].

Among the commercial tools for ESL power estimation are
for instance Virtualizer from Synopsys or Vista from Mentor
Graphics.

However, while these solutions (both academic and com-
mercial) finally enable the comparison of power consumption
for different design alternatives, they assume that appropriate
workloads are already provided (mostly in form of some
existing SW benchmarks). If the provided workloads are not
representative enough, especially wrt. intended system-level
use-cases, the comparison results might be misleading. The

approach proposed in this paper targets this issue by providing
means to specify abstract workload scenarios and enable
automatic generation of concrete workloads.

III. EARLY VALIDATION OF FW-BASED POWER
MANAGEMENT STRATEGIES

This section introduces the proposed approach for FW-
based power management validation using constrained random
techniques. At first, the overall workflow is described. Then,
we present the specification principles for workload scenarios
using constraints. Finally, the developed constrained random
generator for these workload scenarios is introduced.

A. Overall Workflow

The overall workflow of the proposed approach is depicted
in Fig. 1 and detailed in the following. The approach starts
with a set of workload scenarios that have been formulated by
the user (e.g. system architect or power validation engineer).
The scenarios should have different characteristics of power
consumption to ensure the thoroughness of the validation.
Please note that it is possible to evaluate this thoroughness
in an automated manner based on coverage metrics. This is,
however, not in the scope of this paper, and is left for future
work. Each scenario is described by workload constraints
together with its power and performance budget. The workload
constraints define the set of possible legal concrete workloads.
Each scenario is furthermore associated with a number N –
the minimum number of concrete workloads to be exercised in
this scenario. The power and performance budget specification
can be either absolute (i.e. absolute power consumption in µW
or execution time in µs) or relative. Since the former is rather
straight-forward, in the following, we focus only on the latter
(relative) for a more compact representation. Also, in many
cases, as the concrete workloads can be strongly varying, it
might be not appropriate to specify an absolute budget. The
relative budget is specified by percentages of the maximum
possible for a concrete workload, e.g. performance within 70%
of the maximum but power consumption not more than 50%.
This maximum will be calculated by the approach as described
below.

Our approach processes each scenario individually. Since
the scenarios are independent, it is possible to distribute the
computation over a cluster to speed-up the overall validation
process. In the first step, a Constrained Random Generator
(CRG) is instantiated. Then, for each scenario, the workload
constraints are fed into the CRG, which is then instructed to
solve the constraints and generate N different solutions. If the
number of solutions is less than N , this is reported back to the
user1. Each solution of the workload constraints is a concrete
application workload for the considered scenario.

Then, for each concrete workload, our approach, in par-
ticular the Program Generator, generates two different pro-
grams. These programs are to be executed in a FW/VP co-
simulation on the target VP. While they are equivalent from

1This step is omitted from Fig. 1 for the simplicity of representation.
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Fig. 1. Power management validation overview

the functional point of view, their power consumptions will
be different: While the first program uses the FW-based power
management strategy under validation, in the second program,
all components of the VP are set to work in full-power mode
(i.e. without FW-based power management). The attentive
reader will already have deduced that the second program
will be used to calculate the maximum power consumption
and performance for the concrete workload. Subsequently
both programs are cross-compiled to the instruction set of the
target VP. The resulting binaries are loaded into the VP and
executed. Under the assumption that the VP is power-aware
and can generate detailed reports on power consumption and
performance, these reports are inspected by our approach to
validate whether the FW-based power management satisfies
the specified (relative) power- and performance budget.

We now describe the two most important ingredients of
the approach: how workload constraints for a scenario are
specified (Section III-B) and how concrete workloads are
generated (Section III-C). Then, we continue with the case
study in Section IV.

B. Constraint-based Workload Scenarios

Before dealing with the workload constraints for a scenario,
let us focus on how a concrete application workload is mod-
eled. A workload is viewed as an abstraction of an execution

of a SW application and contains a list of instruction blocks
(IBs). Currently, our approach supports three types of IBs:
arithmetic, memory and IO-device. Besides the basic common
fields, e.g. block type IB.type and position in the list IB.pos,
every instruction block has specific options, for example, with
the block type is arithmetic, the options num instr (i.e. number
of instructions in block) and op type (i.e. type of operation)
are available. These options describe how many instructions
are executed and what operation, e.g. integer addition or
multiplication is used, respectively.

A scenario is then a symbolic description of a family of
concrete workloads. The constraints describe the relationships
between the instruction blocks and their specific options.
Currently, we provide the following primitive functions to
formulate these relationships: 1) Exists, 2) Ensure, 3) Assert,
4) Size and 5) Select. Formally a solution, i.e. list of NB
instruction blocks, is valid if it satisfies the conjunction of
all Exists, Ensure and Assert constraints. With the list of
instruction blocks denoted as LIB, the primitive constraints
are defined as follows:

• Exists(pred) : ∃b ∈ LIB : pred(b). The Exists constraint
accepts an IB predicate pred. It is satisfied if such an IB
satisfying pred exists in the list.

• Ensure(sel, pred) : ∀b ∈ LIB : sel(b) =⇒ pred(b).
The Ensure constraint accepts an IB selection predicate
sel and a further IB predicate pred. It is satisfied if every
IB that satisfies sel (i.e. selected IB) also satisfies pred.

• Ensure(sel1, sel2, pred) : ∀b1, b2 ∈ LIB with b1 6= b2 :
sel1(b1) ∧ sel2(b2) =⇒ pred(b1, b2). This extended
form of Ensure has the same semantics as the simple
form, but works for a pair of IBs instead of one single
IB.

• Assert(expr). The Assert constraint expects a Boolean
expression as argument and is satisfied if the expression
is valid.

• Size(pred): x = |{b ∈ LIB|pred(b)}|. The Size function
returns a new symbolic variable x that represents the
number of IBs that satisfies the predicate pred. The result
of the Size function can be used to build larger predicates,
which can then be passed to either Exists, Ensure or
Assert constraints.

• Select(pred). This helper function provide a way to define
named predicates that can be reused in other constraints.

In addition, Exists can also be assigned to a named predicate
allowing more succinct constraint specification. The pred-
icates are mainly defined using the lambda notation, e.g.
lambda x : x.type == arithmetic. is satisfied by any
arithmetic instruction block.

Example Constraints: An example for a constraint-based
workload scenario is shown in Fig. 2. The example describes
an abstract (symbolic) application workload that start with
CPU-intensive code followed by mixed instructions. The first
two lines specify that the initial five instruction blocks have
arithmetic type. The next two lines require two of these five
arithmetic instruction blocks to be executed with high interrupt
frequency from peripherals and IO devices. Line 7 and 8



1 // initial five instruction blocks have arithmetic type
2 A = Select(lambda x: x.pos <= 5)
3 Ensure(A, lambda x: x.type == InstrType.Arithmetic)
4
5 // two of the blocks from A have a small irq scaler

(frequency at which interrupts arrive) - please
note numbers starting with ’0x’ are in
hexadeximal format

6 B = Select(A, lambda x: x.irq.scaler != 0 &&
x.irq.scaler <= 0x50)

7 Assert(Size(B) == 2)
8
9 // the position of DeviceIO blocks is an odd number

10 C = Select(lambda x: x.type == InstrType.DeviceIO)
11 Ensure(C, lambda x: x.pos & 1)
12
13 // at least to memory intensive instruction blocks are

available
14 D = Select(lambda x: x.type == InstrType.Memory)
15 Assert(Size(D) >= 2)
16
17 // at least on block has arithmetic type and more than

10000 instructions
18 Exists(lambda x: x.type == InstrType.Arithmetic &&

x.arithmetic.num_instr > 10000)
19
20 // there shall be an IO-device access with fast

processing and another with slow processing of
incoming/outgoing data (device.scaler denotes the
processing speed) and the fast block appears
before the slow one (specified by last constraint)

21 E = Exists(lambda x: x.type == InstrType.DeviceIO &&
x.device.scaler < 0xfff)

22 F = Exists(lambda x: x.type == InstrType.DeviceIO &&
x.device.scaler > 0x7ffff)

23 Ensure(E, F, lambda a,b: a.pos < b.pos)

Fig. 2. A constraint-based workload scenario

pos = 1 

num-instr = 20000 

type = arithmetic 

op-type = int-add 

pos = 2 

num-instr = 10000 

type = arithmetic 

op-type = int-add 

pos = 3 

num-instr = 20000 

type = arithmetic 

op-type = int-mult 

pos = 4 

num-instr = 10000 

type = arithmetic 

op-type = float 

pos = 5 

num-instr = 10000 

type = arithmetic 

op-type = int-mult 

pos = 6 

num-chars = 400 

type = memory 

io-mode = READ 

pos = 7 

num-bytes = 256 

type = io-device 

scaler = 0xff 

irq-scaler = 0 irq-scaler = 0x40 irq-scaler = 0x40 irq-scaler = 0x80 irq-scaler = 0 

irq-scaler = 0 irq-scaler = 0 

pos = 9 

num-bytes = 16 

type = io-device 

scaler = 0xffffff 

irq-scaler = 0x80 

pos = 10 

num-chars = 200 

type = memory 

io-mode = WRITE 

irq-scaler = 0 

pos = 8 

num-instr = 40000 

type = arithmetic 

op-type = int-add 

irq-scaler = 0x60 

Fig. 3. Application workload (constraint solution)

specify that IO devices are not accessed immediately one after
another, there is always processing time in-between. The next
two lines require that at least two memory intensive instruction
blocks are present in the list. Line 13 requires that at least
one arithmetic block exists with more than 10000 instructions.
The last three lines ensure some specific instruction blocks
are present. In particular, there shall be an IO-device access
with fast processing and another with slow processing of
incoming/outgoing data. The last constraint determines the
order of these IO accesses: fast before slow.

A solution to these workload constraints with 10 instruction
blocks, i.e. a concrete workload of the example scenario is
shown in Fig. 3. It satisfies all workload constraints, i.e.
Assert, Exists and Ensure constraints. For example, the first
five blocks are of arithmetic type. Other options that have not
been constrained such as the type of arithmetic operation op-
type (e.g. integer multiplication or floating point operation) are
randomly generated. The generated list of instruction blocks

allows the Program Generator to build a concrete application
by randomizing the instructions within a block according to
the block properties. The concrete application can then be
simulated on the target VP.

C. Constrained Random Generator

The constraint language described above is implemented as
a Domain Specific Language in Python (version 3). For a fully
integrated SystemC-based flow, it would be better to build the
language on top of a CRG framework for SystemC/C++ such
as CRAVE [18]. A further advantage is that one could benefit
from sophisticated CRG algorithms already implemented in
such framework (see e.g. [19]). However, this would require
substantial more implementation efforts. Furthermore, state-
of-the-art CRG for SystemC/C++ only support constraints on
bit-vectors, while our workload constraints can be formulated
more naturally and efficiently on integers (not to be confused
with their representation as bit-vectors). Therefore, for rapid
prototyping and exploring our ideas, we decided to use Python
at this stage and leave the option of a SystemC/C++ imple-
mentation for the final stage. The CRG as well as the overall
flow is implemented completey in Python3. For the generation
of concrete workloads of a scenario, the CRG starts with a
predetermined number NB of symbolic instruction blocks.
Then, it initializes NB symbolic blocks and maps the specified
constraints for these blocks to the SMT fragment QF LIA
(i.e. quantifier-free linear integer arithmetic). In the next step,
the CRG employs the state-of-the-art QF LIA solver Z3
(v4.5.0) to solve the resulting SMT formula and generate N
different solutions. Note that Z3 can by-default generate only
one solution, our CRG contains an all-solution-solving layer
over Z3 that adds additional constraints after the generation
of a solution to block this solution from being considered in
the future. If less than N different solutions can be found, the
generator will increase NB to generate more solutions until
the number N is reached.

In the next section we demonstrate the proposed approach
for a LEON3-based VP.

IV. SOCROCKET CASE STUDY

This section presents a case study where we apply the
proposed approach to the open-source VP SoCRocket [10].
Since there is no freely available VP with power modeling and
estimation and SoCRocket is open-source, we first extend the
base VP with power management features (see Section IV-A)
and implement a FW-based dynamic power management strat-
egy (see Section IV-B). Then, in Section IV-C we demonstrate
our approach by providing an extensive validation of the
power-management strategy.

A. Power Management Extensions

SoCRocket already includes basic power models. There are
three types of power consumption values for each component:
1) static power, 2) internal power, 3) switching power. Both
static and internal power can be considered application in-
dependent, thus their value only depends on the simulation



1 virtual double get_sta_power(PM_STATE s) {
2 std::map<PM_STATE, double>::const_iterator it =

int_power_coefficients.find(s);
3
4 if (it == int_power_coefficients.end())
5 throw std::runtime_error("Unknown power state

(get_sta_power)");
6
7 return it->second * pm->int_power;
8 }

Fig. 4. Retrieve the static power of a component based on its current power
state

time. Switching power will increase when the component is
actively working, e.g. it depends on the number of executed
instructions of the CPU and the number of bytes accessed
by the memory and so on. Every component in SoCRocket
possesses these power information, see [20] for more informa-
tion. Adding up those power values for all components allows
to compute the total power consumption at every simulation
time step. We extend this basic scheme to support multiple
power states and discuss how this information can be tracked.
Furthermore, we add a lightweight Power Interface Unit (PIU)
connected to the AHB bus of the system to act as a power
interface for the firmware.

1) Power Modeling: For power modeling we add a power
layer for every component. This layer stores the power states
the component supports together with the currently active state
and component specific delays due to power state changes. For
example the CPU supports the full power mode (RTM), some
power save modes (PS0, PS1, PS2) where it is still able to
execute instructions, and sleep modes (DS0, DS1, DS2) where
the CPU only waits for interrupts. In general every component
supports some power save and sleep states in addition to the
obligatory full power mode. For every power state the CPU
power layer specifies how many extra cycles are added during
instruction processing compared to the base value provided
by SoCRocket. The memory power layer specifies how many
extra cycles are necessary due to power save modes to process
read/write instructions and so on. Similarly the base power
consumption values for static, internal and switching power
(which are provided in SoCRocket already) are modified based
on the active power state of the components. As example the
static power retrieval is shown in Fig. 4. Based on the current
state s of the component pm a scaling factor is retrieved from
a lookup table (Line 2) and applied to the base static power
of the component (Line 7).

2) Power Tracking: For power tracking, every component
is registered in the power monitor before simulation. Tracking
static and internal power is straightforward because it is
application independent. Therefore, at registration the static
and internal power for every supported power state of every
component is retrieved as shown in Fig. 4 and dumped to
a log file. These power values describe how many static and
respectively internal power is consumed by the component per
second in each power state. Switching power depends on the
application code and therefore is periodically read and reset for

1 virtual double get_and_reset_swi_power(PM_STATE s) {
2 std::map<PM_STATE, double>::const_iterator it =

swi_power_coefficients.find(s);
3
4 if (it == swi_power_coefficients.end())
5 throw std::runtime_error("Unknown power state

(get_swi_power)");
6
7 double ans = it->second * pm->swi_power +

pending_state_change_power;
8 pm->reset_swi_power();
9 pending_state_change_power = 0;

10 return ans;
11 }

Fig. 5. Retrieve and reset the switching power of a component based on its
current power state

every component, as shown in Fig. 5. In order to compute the
total power at each time step, the power monitor also dumps
all power state changes of every component together with a
simulation timestamp.

3) Power Interface Unit: The Power Interface Unit (PIU)
act as a power interface for the firmware. Therefore, it pro-
vides memory mapped addresses to the firmware, which the
firmware can write and read. The PIU is connected ot the
AHB bus of the system. Every component is registered in the
PIU. The PIU has two tasks: 1) decode firmware commands
for power state changes and sent it to the corresponding
component, 2) provide hardware performance characteristics
to the firmware. In particular the CPU and memory controller
track their idle and active times, i.e. their duty cycle. The
firmware can access this information through the memory
mapped addresses of the PIU.

B. Firmware-based Power Management

The power layer on top of SoCRocket does not have any
logic to decide power state changes of the components. The
power management strategy is completely implemented in
firmware. Therefore, the firmware manages a set of data
structures. Essentially, its the current power states of the
components as well as counters and auxiliary data struc-
tures for guiding the power management and synchronizing
firmware code called from application code and firmware code
asynchronously triggered by interrupts. In the following we
describe the duty cycle based power management strategies
for the CPU and memory controller as well as firmware code
to access IO devices in more detail.

1) Duty Cycle-based Power Management: The power state
transitions of the CPU and memory controller are based on
duty cycles (i.e. active and idle times) obtained from the
hardware. Therefore, the PIU periodically triggers an interrupt.
The interrupt handler is shown in Fig. 6. It retrieves the duty
cycle bitvector from a memory mapped address and updates
the power states of the CPU, memory and IO devices. A duty
cycle of 75 for the CPU means the CPU spends 75% of the
last time interval being active and was therefore idle 25% of
the time.

As an example we will describe how theses duty cycles are
used in the CPU power management strategy in the following.



1 void pm_irq_handler(int irq) {
2 uint32_t dc = *DUTY_CYCLE_ADDR;
3 update_leon3_power_state(CPU_DUTY_CYCLE(dc));
4 update_memory_power_state(MEMORY_DUTY_CYCLE(dc));
5 update_devices_power_state();
6 }

Fig. 6. Regularly triggered by interrupts to update power states of the
hardware components

1 void update_leon3_power_state(uint8_t leon3_dc) {
2 switch (leon3_stat.pm_state) {
3 case PM_STATE_RTM:
4 if (leon3_dc < 75)
5 leon3_change_power_state(PM_STATE_PS0);
6
7 break;
8
9 case PM_STATE_PS0:

10 if (leon3_dc < 50)
11 leon3_change_power_state(PM_STATE_PS1);
12 else if (leon3_dc >= 75)
13 leon3_change_power_state(PM_STATE_RTM);
14 break;
15
16 case PM_STATE_PS1:
17 if (leon3_dc < 25)
18 leon3_change_power_state(PM_STATE_PS2);
19 else if (leon3_dc >= 50)
20 leon3_change_power_state(PM_STATE_RTM);
21 break;
22
23 case PM_STATE_PS2:
24 if (leon3_dc >= 25)
25 leon3_change_power_state(PM_STATE_RTM);
26 break;
27
28 default:
29 assert (0 && "unkonwn power state");
30 }
31
32 if ((leon3_stat.pm_state == PM_STATE_RTM) &&

(leon3_stat.num_rtm > 3)) {
33 leon3_change_power_state(PM_STATE_PS1);
34 }
35
36 if (leon3_stat.pm_state == PM_STATE_RTM)
37 ++leon3_stat.num_rtm;
38 else
39 --leon3_stat.num_rtm;
40 }

Fig. 7. Update CPU power state based on the CPU’s duty cycle - regularly
triggered by interrupts

The power management strategy of the memory controller and
memories is similar to that of the CPU. For IO devices we use
a strategy that will sent them to sleep mode in case they are
currently not in use (i.e. there is no pending operation by the
application code, which has been interrupted by this interrupt
handler) and have not been used in the last time interval.

Fig. 7 shows the LEON3 power management strategy
(i.e. the CPU core). The strategy will slowly increase the
power save modes in case the CPU is idle, but it will
immediately go into full power mode when sufficient work
is available (”ondemand” policy). For example consider the
case in Line 17-Line 21. The CPU is already in PS1 mode.
The action depends on how much time the CPU has been idle
in the last time interval:

• at least 75% : the CPU will go into PS2.

1 void io_device_read_data(int device_id, char *buf,
unsigned int to_recv) {

2 uint32_t n = leonbare_disable_traps();
3 io_device_stats[device_id].pending_io = 1;
4 leonbare_enable_traps(n);
5
6 io_ensure_power_up(device_id);
7
8 unsigned int num_recv = 0;
9 while (num_recv < to_recv) {

10 if (io_get_available_chars(device_id) > 0) {
11 buf[num_recv] = io_read_char(device_id);
12 num_recv++;
13 } else {
14 io_wait_for_data(device_id);
15 }
16 }
17
18 n = leonbare_disable_traps();
19 io_device_stats[device_id].pending_io = 0;
20 leonbare_enable_traps(n);
21 }

Fig. 8. Firmware function to read data from an IO device

• between 75% and 50% : the CPU will stay in PS1.
• less than 50% : the CPU will change into full power mode

(RTM).

The lines Line 32-Line 39 ensure that the CPU will not stay
for too much time in full power mode. In case the CPU does
not become idle within three time intervals, it will change to a
power save mode to avoid extensive power consumption (and
also heat dissipation).

2) Read IO data: The application code does not access
IO devices (e.g. peripherals, UART, ...) directly but only
through a function layer provided by the firmware. For
example to read 12 bytes from IO device 1, the appli-
cation code will call io device read data ( int device id ,
char ∗dst , int num) with device id=1, num=12, and provide
a char pointer dst to store the bytes. Fig. 8 shows the code
to read data from an IO device. Interrupts are disabled while
accessing data structures shared with the interrupt handlers
The function leonbare disable traps disables interrupts and
leonbare enable traps re-enables them again.

The function will power up the IO device if necessary,
i.e. the function io ensure power up will power up the io
device in case it is currently in sleep mode (this happens when
the io device is not used for some time intervals), and then
iterate until to recv chars have been received into buf. In each
iteration the firmware will try to receive a single char (Line 10-
12) or put the CPU to sleep mode in case no data is available
(Line 14).

The io wait for data function puts the CPU to sleep mode.
Please note, that this is a shared operation with the inter-
rupt handler who also updates the power state of the CPU.
Therefore interrupts are disabled before sending the CPU
to sleep mode. In SoCRocket we ensure that interrupts are
automatically re-enabled when the CPU goes into sleep mode.
Otherwise the CPU would not wakeup again as no interrupts
would come in.



TABLE I
EXPERIMENT RESULTS (SIMULATION TIME IN SECONDS, POWER CONSUMPTION IN µJ ) ON THE SOCROCKET PLATFORM

Scenario
Full Power Mode Firmware-based Difference

sta int swi all time sta int swi all time Power Speed
S1) High CPU Load 110995 140838 3136 254969 2.03 40949 52009 1447 94405 2.42 -62.97% +19.21%
S2) Interrupt Intensive 59572 75589 26113 161274 1.09 49681 63055 16609 129345 1.68 -19.80% +54.13%
S3) Alternating Workload 151497 192229 53649 397375 2.77 83682 106234 21072 210988 3.74 -46.90% +35.02%
S4) Memory and IO Intensive 416425 528388 59748 1004561 7.63 96399 122250 59748 278397 10.88 -72.29% +42.60%
S5) Small Tasks 99540 126303 44813 270656 1.82 80772 102510 25473 208755 2.88 -22.87% +58.24%

On average 8,000,000 instructions executed on the SoCRocket platform per concrete workload.

Fig. 9. Example power diagram of a concrete workload from scenario S3. It shows the static, internal, switching and total power consumed of all components
at different simulation time steps.

C. Results

In this section we present results of applying our validation
approach on the SoCRocket VP. Validation results for 5
scenarios are presented in Table I. For every scenario we
generate 50 concrete workloads using our constrained random
technique. For every concrete workload a concrete application
is generated and executed in full power mode (RTM) and with
firmware-based power management (FW) on the SoCRocket
platform. Table I shows the average results over all runs. All
power consumption values are specified in micro Joule (µJ)
and simulation time in seconds. On average 8,000,000 instruc-
tions are executed on the SoCRocket platform per concrete
workload. Validation of a scenario takes 15 minutes in average.
All experiments have been run on a Linux machine with a
2,4 GHz Intel and 16 GB RAM. Please note, with simulation
time we do not refer to the wall time, but the time it takes for
the application code to execute on the SoCRocket platform,
i.e. when the code will run on the real hardware (estimated

at system level using the SystemC-based VP). Therefore, a
higher simulation time directly implies a lower performance
of application code. We define the power- and performance-
budget of the firmware-based power management to be 80%
of power consumption and 150% of simulation time compared
to full power mode, i.e. the power management should save
at least 20% power and should reduce the performance by no
more than 50%.

Table I shows the scenario name in the first column. The
second and third columns show results for simulating the
concrete application in full power mode (RTM) and with
firmware-based power management (FW), respectively. For
both modes we further report the static (sta), internal (int),
switching (swi) and total (all) power consumed, as well as
the simulation time (time) on the SoCRocket platform. The
fourth column shows the difference in power consumption
and simulation time on the SoCRocket platform between both
modes. For example, it can be observed that the firmware-



based power management strategy on average saves 62.97%
power consumption at the cost of losing 19.21% performance
compared to full power mode for the concrete workloads in
scenario S1. In particular, we consider the following scenarios:
S1 describes workload that is very CPU intensive. It gener-

ates instructions with high CPU load.
S2 generates interrupt intensive workload. Application code

is interrupted by incoming interrupts with very high
frequency.

S3 describes workload with alternating instructions blocks.
It ensures the neighboring code blocks do not have the
same instruction type.

S4 generates workload that is very memory and IO intensive.
The CPU load is comparatively low. It ensures that all IO
devices are used with different processing speed.

S5 describes workload with many small tasks. This leads
to application code with many small blocks of different
instruction types.

It can be observed that the power- and performance-
budgets are satisfied for most scenarios (S1,S3,S4). Scenario
S2 slightly exceeds both the power- and performance-budget,
and S5 the performance budget only. S2 describes interrupt
intensive code which will interrupt the normal application flow
and perform some computation before giving the control back.
This can lead to inefficient sleep intervals when waiting for
IO, as the CPU will wakeup from the interrupt (and also check
the device for available input again) to be put back to sleep
again. S5 changes the workload type very frequently. When
changing from CPU intensive to IO or memory bound code
and vice versa, the firmware will reduce the power state of
the CPU and power it back up again. Therefore, both S2 and
S5 can lead to an increased switching frequency of power
states in firmware code. We can use our approach to generate
additional workload for further investigation. Furthermore, we
can plot power diagrams which show the power consumption
(of the whole system or any particular component) at different
simulation time steps to get further insight. An example power
diagram is shown in Fig. 9.

V. CONCLUSION AND FUTURE WORK

In this paper we presented an approach for early power
validation of firmware-based power management at system
level using SystemC-based Virtual Prototypes (VPs). We em-
ploy constrained random (CR) techniques to generate con-
crete workloads and then validate that available power and
performance budgets are satisfied, by using a power aware
simulation on the VP. First experiments with the LEON3-based
SoCRocket VP demonstrate the applicability and effectiveness
of our approach.

For future work we plan to investigate power aware cov-
erage metrics in order to evaluate the thoroughness of the
validation. A viable solution might be to combine information
about reached power states of all components of the system
as well as transitions between power states with well known
code coverage metrics. To speed-up the overall validation, we
plan to distribute the processing of scenarios using multiple

threads or even clusters connected by a network. This is a
natural and very promising extension as all scenarios are
processed independent of each other. Finally, we plan to extend
our constraint language and program generator to support
generation of multi-threaded workload.
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