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Abstract. Today’s Real-Time Systems’ (RTSs) increasing speed and
complexity make debugging of timing related faults one of the most
challenging engineering tasks. Debugging starts with capturing the fault
symptoms, which requires continuous cycle-accurate execution traces.
However, due to limitations of on-chip buffers’ area and output ports’
throughput, these cannot be obtained easily.

This paper introduces an approach that divides the tracing into two
tasks, monitoring on-chip execution to retrieve accurate timing informa-
tion and high level functional simulation to retrieve signal contents. A
semi-formal cycle-accurate reconstruction method uses these two sources
to retrieve a complete, cycle-accurate trace of a given signal. An experi-
ment illustrates how this method allows the cycle-accurate reconstruction
of on-chip traces of a Real-Time Autonomous-Guided-Vehicle software.

1 Introduction

Locating errors is a crucial part of the Systems-on-Chip (SoC) development
process. In order to be able to pinpoint bugs in the design, sophisticated logging
and monitoring techniques are used. Usually, designers have to decide between:
1) much information from potentially slow simulations, 2) formal approaches
that often limit the model’s timing (if considered it at all) to a given upper
accuracy and/or duration bounds or 3) limited data from on-chip runs.
Simulation-based techniques may be used to analyze a given system as soon
as there is an executable prototype down to the end of the development process.
While simulators supposedly provide an exact model of the given design, they
inherently only offer 1) an abstraction of the real fabricated final hardware and
2) a fraction of the performance of it (running on general purpose host systems, a
full accurate simulation of a single input-output-combination takes much longer
than on the final SoC). While this is not much of an issue for a wide variety of
use cases, it is for the location of timing-related errors in today’s SoC’s. Correct
SoC’s timing simulations require more details; hence excessive computations
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causing prohibitive slow-down in the simulation performance. Simulations can
count only for those apriori known and modeled effects, so they can not cover
all possible sporadic executions of the actual system.

Model-based approaches utilize functional hardware models that are e.g. pro-
vided to the software developers for functional testing. These models are based
on hardware specifications like an instruction set architecture (ISA) [16]. Ap-
proaches such as worst case execution time (WCET) analyses [21] and abstract
interpretations [19] are using this concept to give some guarantees about the
behavior of the software when it operates on hardware. However, the more reli-
able and formal these methods, the more computation they require to account
for every possibility and aspect in reality. The multitude of environment effects
and variations of input/output interactions makes these model-based verification
techniques very challenging — if not downright impossible. The execution on the
fabricated hardware can still differ from its model-specifications due to possible
unexpected (and hence non-modeled) process variations or other environmental
operating conditions.

On-chip debugging requires stopping the system to get a scan-out of the
current chip registers or state. Traditionally, scan-chains, Multi-Input Shift Reg-
isters (MISR) and Test Access Points (TAP) are used for post silicon valida-
tion [11], whereas specialized trace buffers and debug support units are mainly
used in embedded processors [5]. This run/stop approach is inherently unsuitable
for temporal behavior debugging, and requires many reruns until the root-cause
is identified — which may result in it missing the sporadic behavior. To support
continuous logging in embedded processors domain, current solutions are very
customized (they use on-chip debugging modules and/or depend on compiler’s
generated meta data [2,4]), that they cannot be extended to any SoC. Current
on-chip techniques are often intrusive, i.e. they alter the temporal behavior it-
self, potentially affecting the timing that may be causing the error in the first
place. Therefore, post-silicon timing aspects are usually addressed by different
methods to avoid expensive continuous or time-accurate logging. These, how-
ever, focus only on capturing specified timing constraints violations and do not
provide further means to detect a violation’s root-cause, as in [10] and [15].

Methods for determining which signals to log or monitor to accurately re-
flect the system state at a specific instance (enhancing logic visibility) have been
investigated [18]. However logging such signals continuously on a temporal ac-
curate base was not considered so far.

Assuming that relevant signals have been identified beforehand to provide the
best coverage of possible root-causes, obtaining a temporally accurate access to
their evolution over time is still limited by factors such as the trace-buffers’ area
(if they would be stored on-chip) or the output ports’ capabilities (when they are
to be logged on-line). For SoCs in general, on-chip area can not accommodate
continuous (theoretically) infinite traces; and on-chip signals/transactions speeds
are orders of magnitudes greater than current logging ports capabilities [20].

Each of these techniques thus has its specific but severe issues for spotting
timing-related errors. To address these shortcomings, this work shifts the fo-
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cus from full-scale on-chip tracing to only log the temporal behavior accurately,
omitting the functional content, which is provided via an off-chip functional simu-
lation. To realize the reduced on-chip logging functionality, the idea of signature-
summaries previously used in [8] and [14] is reformulated and generalized to be
applied continuously to any on-chip traced signal. This altered usage of signa-
tures is introduced as the continuous logging of “footprints” to denote their light
weight and periodic nature. Non-temporal information of the erroneous run is
obtained via traces from running a high level functional simulation of the spe-
cific scenario. While the logged simulation data lacks precise timing information
(due to its potential high-level nature, which may sacrifice timing accuracy to
improve the performance), it provides significantly more detail concerning the
order and changes in value of the traced signal. This data (logged temporal exe-
cution footprints containing timing information and detailed off-chip simulation
logs) is combined and used to reconstruct the accurate on-chip behavior.
The contributions of this work are:

1. a novel yet simple consistent methodology for continuous accurate temporal
execution tracing and
2. a semi-formal offline Cycle-Accurate Temporal Reconstruction Algorithm

(CATRA).

A proof-of-concept implementation for efficiently logging footprints from a
running LEONS processor[3], using functional Transaction Level Model (TLM)
simulation traces from the SoCRocket simulator[17], is provided to illustrate how
the approach may be applied and used to capture sporadic timing related bugs.

2 Methodology

The core goal of retrieving cycle accurate traces of on-chip temporal behavior
drives the ideas and design decisions that are taken for the presented approach.
First, an overview of the approach is presented that explains both, the method-
ology itself and the structures of the implementation. Two major parts of the
given approach — the trace logging itself and the merging of on-chip and off-
chip (simulation) traces — are discussed afterwards, providing the details of the
approach.

2.1 Overview

As sporadic timing-related faults are hard to reproduce, precise information
concerning the time and the data of erroneous transactions is required to enable
the designer to identify the cause of the problem. In order to provide both, the
task is split in two parts:

1. Logging precise timing information of the chip’s behavior, i.e. storing infor-
mation concerning when something happened and

2. logging the behavioral information itself, i.e. storing information concerning
what happened.
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The first part is needed to properly capture the temporal on-chip behavior,
and is required to avoid altering the timing and thus changing what is — by
definition — part of the cause of this timing-related fault. Thus, this part is
explicitly logged from the traced on-chip execution. On the other hand, having
an already functioning system removes the burden of logging the exact state or
signal value itself every clock cycle, so only a data-parity-check is logged.

The second part — the data itself — is calculated off-chip in a functional sim-
ulation. Correct abstract functionality is enough to simulate the transitions of
states — or signals values changes — irrespective of their timing, which depends
on architectural and environmental particularities. In practice, SystemC Trans-
action Level Modeling (TLM) models are executed to calculate the behavioral
data of the design. SystemC itself is a C++ library that allows designing hard-
ware systems using high level language constructs, sacrificing synthesizeability
for the sake of being able to quickly develop prototypes, with the TLM addi-
tions providing improved simulation performance at the cost of reduced timing
accuracy. Notice that while the given example relies on SystemC, any functional
simulation framework providing the required data may be used.

These two sources of information are then mapped onto each other, providing
designers with a comprehensive continuous capture of the system’s behavior.
While the hardware is executed, the temporal behavior information (first part)
is logged continuously. When a fault becomes visible, the scenario that was run
on the hardware and lead to the faulty behavior, is used to start a functional
simulation to provide the basic data, of which its temporal behavior was logged
from the hardware execution.

2.2 Definitions

A trace 7 is defined as a consecutive traced values of a signal over time. Hence,
a trace can be represented by an ordered vector %! = {pg,p1,...., pn} if for
the duration [, N different values were traced. Traced values are samples of
the signal’s continuous value, sampled every clock-cycle. A trace is either timed
76l (it contains a value for every time instance), or un-timed 7% (it only con-
tains the consecutive ordered different values, appearing after each other). An
infinite or continuous execution trace is denoted without a period [, i.e. 7¢ or
7¢. When a trace is timed, elements of the trace ordered vector 74!, namely
{Ptos Pt1s - Pt,_, }» Tepresent the value p of a signal S at times tg, t1, ..., t;—1. Due
to the time being discrete and the system running on an internal clock, we can
state that t; = t;_1+1. Thus, if a value p, remained for two clock-cycles, starting
from ¢;, then two consecutive values p;, and p;,,, would be equal. On the other
hand if the trace is un-timed, one value p; which corresponds to both p;, and
pt,,, is added to the trace ordered vector 7*.

Traces could be obtained by continuously logging the values of on-chip signal.
Such a complete trace is called Actual Timed Trace ! and represents the ideal
goal. For cycle accurate tracing, such actual timed trace 7! needs to be either
stored on-chip or logged off-chip, the former being not possible due to limited
on-chip storage, the latter due to the limited bandwidth of available ports. An
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alternative is to obtain the information from the simulation, with such a result
being called Simulation Trace T, or recovered from logged footprints, called
Reconstructed Trace 7,. Each of those traces could be either timed or un-timed.

2.3 Footprints Logging

In this work, we choose to generate and then log the temporal footprints peri-
odically. The actual on-chip trace 7 of the signal S is first divided into equal M
long Trace-cycles TfM , where ¢ is the trace-cycle number. M’s actual value is a
matter of the designer’s preferences. It is a trade-off between the time required to
decode the information, as shall be seen later, the logging bandwidth being used
and the required on-chip storage. The logging is then limited to three distinct
types of information:

— The timing information is encoded using periodic signatures. Fach clock-
cycle within the trace-cycle T is marked with a unique time-stamp T'Sy,
where 0 < n < M indicates the clock cycle within a trace-cycle. For the
given implementation, wrg bits (denoting bit-width of the time-stamps) are
used to encode each clock-cycle within the trace-cycle. The traced signal
S is sampled/monitored in a clock-cycle accurate basis. The old value of
the signal is kept in a register, and is compared to the current value of
S, raising a Temporal Check T'C when it detects a change, as shown in
Fig. 1. Time-stamps marking the cycles at which the given signal changes
are aggregated (in the suggested implementation using XOR operations) into
a single Trace — C'ycle’s signature called Temporal Cyclic Footprint TCF.
In Fig. 1, T'C can be seen to invoke the aggregation of time-stamps T'S 2,
T56,TS8,TS 13, and T'S 14 (when the traced signal changes its value) to
generate a TC'F. Only this generated signature is logged to express change
instances. To reduce the amount of data of this TC'F to a size that fits
through any potential bottlenecks, the time-stamp bit width can be reduced
as desired — at the cost of potentially creating ambiguous footprints.

— A similar technique is applied for the considered signal itself: Each change
in the observed signal’s value at any cycle during the interval, contributes
to creating a signature from the signal, called Functional-Check (FC). (In
the suggested implementation a simple parity check of the consecutive signal
values during the Trace — Cycle is used, also in the form of XOR of these
values). This functional check is later used to match the un-timed simulation
and actual traces.

— Finally, the number of signal changes N is stored and transferred as well.

This data (i.e. the timing and data signatures, and how many signal toggles
occurred within the trace-cycle) is encompassed in a structure, that is logged and
transferred to the host computer each trace-cycle. This set is called a footprint
FP,=<s.FC,s.TCF,s.N> of signal s, describing how the signal s leaves a series
of these distinct traits that are unique to the events that happened (or a set of
possible events that could have happened) but do not represent the information
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Fig. 1. Time-stamps involved in generating the Temporal Cyclic Footprint TCF

itself. For a 16-clock-cycles long trace-cycle, a 16 bits-wide footprint gives ex-
actly one solution, which is equivalent to logging one bit every clock cycle. Such
footprint of width wrop = M enables the full recovery of the trace temporal
check TC (and thus the times at which the signal was altered), irrespective of
the number of changes N. To reduce the required bandwidth, the time-stamps’
width wrop is reduced, and N is used afterwards to narrow the possibilities
down. These footprints do not contain any explicit information about the behav-
ior. However, the missing information is generated using a high-level functional
simulation.

2.4 Functional Simulation

Techniques such as TLM allow designers to run simulations that sacrifice accu-
rate timing information to gain performance. The assumption is thus that the
semantics of the functional simulation are identical to the chip’s behavior but
the timing may be inaccurate and that the simulation can be executed when the
on-chip execution reports an error that needs to be investigated. The data that
can be retrieved from the simulation thus complements the footprints, which
provide the timing information that the simulation’s trace is lacking.

The functional simulation is executed in a controlled environment, so a sig-
nal’s simulated functional values (constituting an un-timed functional simulation
trace T}‘) can easily be generated and stored on a host system. Although the sim-
ulation is conducted on higher granularity and might differ in some details, it still
provides a baseline from which the actual timed trace 7/ can be reconstructed. In
literature, the different flow possibilities of interrupts and threads of executions
of the simulated scenarios can be obtained via methods like [13]. When there
is a set of known flow possibilities that could be short-listed for matching, the
process becomes easier as shall be seen in the experiments section. In general,
the complexity of such dynamic behavior matching was addressed in [9].
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Fig. 2. Methodology for Footprints Logging and Traces Reconstruction

The process of retrieving complete traces is illustrated in Fig. 2. For the func-
tional part (left-hand side of the figure), basic scenario specifications (such as
e.g. inputs with their schedule, a software image and the set of interrupts to be
fed to the system with their periodicity and/or estimated/planned occurrence in-
stances) are needed to execute the functional simulation. From such simulation,
the monitored signal values are also stored and then buffered: i.e. repetitions
are eliminated to obtain un-timed functional traces (as stated in the definitions
section); also the basic trace segments are identified. Segments are those groups
of values of the trace known to be consecutive even if other segments came in
between. Extracting the trace segments can be done with different granularity
levels, in our experiment for example as the SoCRocket simulation already sup-
ports interrupts injection, we considered the whole main program as a single
segment as obtained from simulation and interrupts service routines each as a
segment. These two operations (eliminating repetitions and extracting segments)
are called buffering in the figure. Hence, a potential candidate un-timed trace
7§ -or group of traces as a result from composition of segments- is obtained.

Then, using N and F'C obtained from the hardware (right-hand side of the
figure), the un-timed simulation trace 7;' can be mapped to trace-cycles Ty,
of N changes each. Comparing a trace-cycle’s logged F'C' to the simulated N
values’ generated F'C' is a parity check of 7 = 7;; i.e. the simulation values
matches the actual values, providing a safeguard for the assumption about the
simulation’s correctness. It can also help amending discrepancies between simu-
lation and actual traces if they existed; but only when the difference’s root-cause
can be speculated (i.e. correcting functional simulation trace/scenario to match
the reality from a set of possibilities that can be tried by the designer until the
logged F'C matches the values checked in the simulation trace).
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After applying this mapping, we have an M-Cycles-Accurate reconstructed
trace 7™, where ¢, denotes that the timing accuracy is within M clock cycles.
This mapping does not need to be done separately for every trace-cycle. Instead,
the number of changes N can be added all along the execution, until reaching the
suspected trace-cycles. The simulation of long executions can also be projected
into repeating periodic patterns. Still, obtaining the exact change clock-cycles,
for a complete cycle accurate reconstructed trace is not trivial.

2.5 Cycle Accurate Trace Reconstruction Algorithm (CATRA)

To reach single-cycle-accuracy, the on-chip timing information of particular trace-
cycles is reconstructed from the collected timing-part of the footprint T’C'F'. This
is done only for trace-cycles that are suspected to be of special interest and
require cycle-accurate (i.e. timed) reconstructed trace-cycles 72" . This allows
designers to pick any arbitrary trace cycle to inspect without having to process
the whole execution log to get the exact cycle accurate data of a particular part.

In the Trace-Cycle mapping, it is possible that discrepancies in the values
could go undetected if the suggested parity-check based functional check F'C
cannot detect it. For example, if the footprint was generated from the signal S
from Fig.1 and the FC was generated using the suggested XOR-aggregation,
as shown in Fig. 3 below, the two identical values S, 1 and S, 13 would cancel
each other out. If S;, , | = S}, 3 on chip were both different from the simulation’s
Sy 11 =S, 3, the footprint’s F'C' would not indicate any problem.

n
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Fig. 3. Example of Footprint Generation

Fig. 3 shows a set of time-stamps that are aggregated (here using XOR)
into the temporal cyclic footprint parts TCF. If a given trace cycle should be
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analyzed, all possible combinations that could lead to this specific TC'F are
obtained, with the actual combination that was calculated on-chip being among
them. The number of possibilities may be large, though: for the example, when
time-stamps of width wrg = 8 are used (as indicated in the Fig. 3), there are
256 possible combinations of T'Ss that could have led to this logged TC'F. Of
these 256, only five?> combinations contain 5 changes, which is the number N
in our trace-cycle. In this case, the exact cycle accurate reconstruction is one of
these five combinations. Notice that having more than one possible result makes
determining which one exactly is what happened on hardware probabilistic (as
the designer can assign probabilities to the obtained solutions).

Reconstruction using Formal Methods. The footprints contain a set of
constraints describing characteristics of on-chip execution. From them, searching
for solutions using established formal methods to deduce the actual on-chip
trace is a viable approach. The TCF is created by merging all relevant time
step signatures into a single footprint; now this process needs to be reversed. In
order to quickly retrieve all possible combinations of time steps that result in
a given footprint, the relation between footprint and time steps is formulated
as a problem for (established) satisfiability solvers. The reconstruction of M
cycles from an w-bits-wide signature (footprint) can be formulated as a simple
Satisfiability Modulo Theory (SMT) problem as shown in Algorithm 1. The
algorithm first initializes the value of the footprint TCFy to po (which is user
defined in reset -for the first trace-cycle- and the previously logged footprint
afterwards) in line 1. It then builds a set of M consecutive if-then-else (ite)
statements to be given to the solver in lines 3 and 4 that instruct the solver how to
build the footprint: if the i*" bit in the Temporal Check T'C[i] indicates a change,
the corresponding time-stamp TS is XORed. The solver is then constrained to
finding a solution that matches one that has been retrieved from the hardware
(loggedT'CF) in line 6, thus giving a possible solution to when the signal was
altered in line 7.

The SMT solver Boolector[7] was used to solve Algorithm 1, reconstructing
TC in times shown in Table 1. In the case of smaller time-stamps bit-width
wrg, Algorithm 1 is used incrementally. In accordance to the number of possible
solutions, the amount of time needed to compute all possible reconstructions
of T'C grows exponentially, which can be seen in the columns of Table 1, with
different wrg.

Improving Results using Available Information. To improve the scala-
bility, the fact that the number of solutions can be reduced by N (which is the

3 in the original published paper only "one” combination was reported —instead of 5
here— because of a bug in our counting script; which we discovered only when we
compared the number of solutions to the one we get with our new SAT reduction,
presented in our next paper. It is worth mentioning that we can have less combina-
tions if we used different set of timestamps. For example, using the set of timestamps
used in our next paper, only 3 combinations contain 5 changes.
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Algorithm 1: TC Reconstruction from Temporal Cyclic Footprints
Data: po, T'S, loggedTCF

1 TOFO = pPo
2 bitvector[M] TC /* where M is the width of the bit vector variable
TC */

3 foreach i in 1 — M do
4 TCF, = ite(TC[i], TCF,_y ® TS:, TCFi_1)
/* where T'C[i] is the ith bit of T'C */
5 end
6 AddConstraint(TCFy = loggedTCF)
7 Solve_SAT = TC

Table 1. Average run-time in Seconds of Alg.1 for different M and w = wrcr

M w=M w=4 w=8 w=16 w=32
8  Direct mapping 0.02 - - -
16 Direct mapping 0.3 1.9 - -
32 Direct mapping 1.05 1.7 13.9 -
512 Direct mapping - - - 3576

number of changes in the given trace-cycle) can be utilized to exclude all solu-
tions containing number of changes that does not equal N during the solving
process itself. NV is required to map the functional trace vector’s elements to the
trace-cycles (and thus is logged anyway), so utilizing it to improve reconstruction
performance does not cause any additional overhead. Excluding the solutions ob-
tained by Algorithm 1 that do not match the given amount of changes N reduces
the number of possible solutions but not the time required to obtain them. So
in Algorithm 2 below, N is used as input to the solver.

Algorithm 2 uses N to reduce the amount of possible solutions and the time
required to obtain them as follows. The algorithm relies on solving for a list
of N indices, each indicating the time (inside the trace cycle) where a change
occurred instead of a list of bits T'C, where each indicates whether a change
happened at the given index or not. Table 2 shows the average run times of
the modified algorithm. Reductions in computation time are significant if few
changes occur within a trace-cycle. It still needs to be applied iteratively to
locate all possible (ambiguous) solutions. This algorithm relies on a list of indices,
stored in the change_index bitvector that is declared in line 2. This set references
the timestamps that should be used to calculate the resulting footprint. Table 2
shows the average run times of Algorithm 2 for different N and M. The reduction
in computation time by algorithm 2 is remarkably significant in the two extreme
cases: where there are very few and (as explained next) too much changes in a
trace-cycle.

For signals that change frequently, the logged footprint may be first XORed
with an all-time-stamps-XOR value, hence resulting in a new footprint that car-
ries only the XOR of the remaining instances that were not XORed in the logged
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Algorithm 2: Bounded to N Changes (No-changes) Trace Reconstruction
Data: po, TS, N
1 FP() = pPo
2 bitvector[N][[log(M)]] change_index
3 AddConstraint(TCFy = loggedT'CF')
4 foreach j in 1 — 2M %77 do
/* where M is the trace length after which we log the footprint;

and wrcy is the footprint’s bit-width */
5 foreach i in 1 — N do
6 TCF; = TCF;—1 @ TS[change_index[i]] /* change_index[i] is index
of the clock-cycle in which the ith change happened */
7 end

8 Solve_SAT = change_index;

9 if UNSAT break
10 AddConstraint(change_index # change_index;)
11 end

footprint; then the algorithm is used to locate those M — N time-stamps that
indicate the instances of no change. This reduces the reconstruction complexity
for larger N, allowing the algorithm to have an upper worst case for the recon-
struction algorithm, which is N = % So the algorithm shall be reconstructing
either (changing or stagnating) change instances.

Table 2. Algorithm bounded by N, average run-time in m minutes and s seconds,
for different trace lengths M and number of changes N. For N=1, it’s just a direct
mapping, i.e. the TCF' is the single change’s time-stamp.

M\N|1 2 3 4 5 6
8 0 ~0 ~0 ~0 ~0~0
16 0 ~0 0.1s 0.2s 0.3s 0.4s
32 0 ~0 0.5s 1.6s 2.1s 5.4s
512 0 Iml16s 7ml10s 43m65s - -
1024 |0 6m42s 37m4d6s - - -

This bounded by N-changes algorithm can result in only one solution if the
time-stamps are designed to provide unique TCF for each different combination
of N aggregated time-stamps. As the time-stamps are set prior to the execution,
they may be generated to specifically satisfy this criterion.This is particularly
useful, if a given N is assumed to be problematic. For only one change (N = 1),
the uniqueness of time-stamps is enough for cycle-accurate trace reconstruction;
as a logged time-stamp can then be directly mapped to its respective instance.
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For N = 2 and using XOR gates to merge the time-stamps, the condition is:

ﬂ[TSZ (&) TS] 75 TS, & TS[],

where

O0<i,jk,I<M)Ni£jNk#I
Ni=k=7#1) N (J=l=i#k)
Ni=l=j#k N (G=k=i#l)

Similar conditions can be derived for higher N.

In summary, using a combination of on-chip traced footprints, off-chip func-
tional simulation data, and the reconstruction and mapping of this information,
a cycle accurate reconstruction of on-chip behavior is possible. The next section
illustrates the applicability of the method in practice, showing how the reduc-
tion in the amount of logged data allows the approach to be used in continuous
logging. This in turn allows the designer to efficiently capture timing related
sporadic faults and assists in finding their root-causes.

3 Experiments

As a case study, the presented methodology was used to continuously capture
the temporal behavior of a toy software, which contains an integrated safe-zone
calculation module for mobile robots from the SAMS project*. In the given
design, the current angle of the moving robot is updated via an interrupt service
routine (ISR), which checks for differences from the previous value Af as shown
in Fig. 4. If the difference is below an accepted limit 61, it continues the previously
executed task. Otherwise it restarts the safety zone calculation algorithm with
the new values if there is enough time to finish it before the deadline. If restarting
the algorithm will result in missing the deadline, the ISR checks whether the
difference is less than another value 65 where 65 > 6. If it is, it adds a margin
to the current calculation. The value to be added depends on the time difference
between the last two time readings. If the difference A8 > 65, it activates a worst
case algorithm with the updated values. The maximum interrupt rate is 100ms.
The generated software image was run on a LEON3 processor implemented using
Xilinx zync7020 FPGA. The same software image was run on SoCRocket, a
LEONS3 SystemC TLM simulator to get the functional execution traces.

A trace-cycle with M = 1023 clock cycles, given the 83 MHz (12 nSec) input
clock of the Zynq FPGA, would make 12.276 uSec duration of each trace-cycle;
during which no interrupt can occur twice (the quickest is the timer interrupt
with periodicity 10ms). Including the watchdog interrupt, the maximum num-
ber of interrupts we can have in one trace-cycle is three corresponding to the 3

4 www.sams-project.org, the module is certified for use in safety systems up to SIL-3
according to IEC EN 61508.
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Fig. 4. Interrupt-service-routine

interrupts occurring at the same trace-cycle. The signals chosen for tracing were
the program counter (PC, w,=32 bits) and two interrupts lines (IRQ 11 2, ws=2
bits). One of those 2 bits of TRQ_ is our ISR’s IRQ line and the other is timer
interrupt line. So, here IRQ_I.F'C is not only a check, but it also indicates which
interrupts occur; for TRQ_I.N, we took 3 interrupt lines as shall be seen later.
At which clock cycle exactly an interrupt that has occurred starts to be served is
not usually known because of the pipeline mechanics and interrupt masking (if
used). In our case, there is no masking, no critical sections where interrupts are
disabled and the different interrupts are allowed to be nested according to their
priorities. So within a trace-cycle at which the interrupt line’s footprint indi-
cates an interrupt request, the exact instance of interrupt occurrence is obtained
using CATRA and the exact instance where the interrupt starts executing lies
within the maximum detailed architectural delay (cache miss, pipeline, interrupt
priority ...etc).

A hardware module (implementing the hardware-box in Fig. 2 containing the
generators and counter) was implemented on-chip to generate and log F'C, TC'F'
and N for both PC and TR(Q separately every trace-cycle (for M = 511 and
M = 1023 as in Table. 3 below). Our implementation does not cause any system
slow-down, as we used continuous EXORing with previous F'C and TCF'. So the
changes at the borders between trace-cycles do not require any special handling.

Additionally, the values of those two signals (PC and IRQ.) are logged
during the SoCRocket simulation and buffered to eliminate consecutive similar
values. SoCRocket enables injecting interrupts via timers and given certain delay
from the start time. The exact time when interrupts occurred can be obtained
from applying CATRA to the interrupt line footprint. Still during simulation,
the actual time in which the interrupt occurs may be not exactly the time the
interrupt was fired in the simulation (because the model is not cycle accurate).

The direct way to map changes to their respective trace-cycles is to start from
reset where the initial values of both simulation and hardware are similar. Each
trace-cycle, the logged PC.N is used to pick N values from the simulation trace
and assigning them to a trace-cycle. Then the generated F'C for these values is
compared to the logged footprint’s F'C' as a check. It is possible to skip this step
(when there is high confidence in the functional simulation results) and jump
to the suspected trace-cycle (K thtrace — cycle, where more than one interrupt
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occur), get the sum of all previous changes (Ngym = EfgolNi) and then get the
start of the traced signal from the simulated trace 7 values as the N value.

Within a specific trace-cycle, if there was an interrupt, how many among the
N changes in the trace-cycle belong to the interrupt and how many belong to
the interrupted segment are initially unknown. We start by assuming that the
actual interrupt occurrence instance obtained from the logged IRQ_I footprint
via CATRA is the exact instance in which the PC' value has switched to the
interrupt segment; then from the PC.TCF via CATRA as well, we determine
the first change instance appearing at or after actual interrupt occurrence in-
stance. We then assume PC' values before this instance belong to the interrupted
segment, and from the instance on belong to the interrupt. Then we calculate
the FC by EXORing these PC simulation trace values and check if it matches
the logged footprint’s F'C. We increment the PC-switch-to-interrupt instance
to the next possibility by considering one more PC' value from the interrupted
segment and one less from the interrupt. We repeat this to consider the range of
possible maximum architectural delay. As a result, candidate traces that match
the logged F'C' for further investigation are collected. If no F'C' matches were
found, then the previous assumption leading to the start value obtained from
the simulation is probably wrong, hence earlier trace-cycles are investigated.

Two scenarios in which we used the above mechanism to debug sporadic
faults that did not appear consistently are shown in Table. 4. In both cases we
started our analysis from the last trace-cycles that had more than one interrupt
before the fault becomes visible. Then the above described flow was used to get
when exactly (after which instruction) the interrupts were executed and arrived
to the conclusions in Table. 4 about the faults’ root-causes. °

Table 3. The number of bits logged every trace cycle, and the required bit-rate for
logging, in the implementation wrc = 32 + 2 and wrcr = 32 for both PC and IRQ

Trace-cycle Naive Required TC,FC Required TCF,FC, N Required
length logging bit-rate (1 bit per clk) Dbit-rate (+CATRA) bit-rate
M= 511 17374 2.92Gbps 1056 171.81 Mbps 109 17.73Mbps
M= 1023 34782 2.92Gbps 2080 169.37Mbps 110 8.95Mbps

Using naive logging, M * (ws(PC) + ws(IRQ.1)) bits are logged per trace-
cycle, i.e. 34782 bits for M = 1023. Using the proposed logging scheme and
CATRA, only: ws pc(PC) |32 +ws. re(IRQ) |2 +ws ror(PC) |32

+wsror(IRQ) |32 +ws n(PC) |10 +ws.ny(IRQ)) |2 bits are logged, i.e. 110
bits for the same setup. Table. 3 shows the reduction in the required logging
bit-rate. So, instead of logging the signal every clock cycle, a set of footprints

5 Note that using interrupts to alter the execution is not recommended for safety criti-
cal software in general. However, it could be unavoidable to fulfill a hard requirement
of responding to external changes instantaneously not via pulling.
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are logged periodically. Using the proposed approach cycle-accurate details of
the exact on-chip execution trace are captured.

Table 4. Scenarios that encountered sporadic faults and their symptoms in the second
column, root-cause analysis and its computation effort in the 3rd and 4th columns

# Scenario Symptoms Root-cause Analysis

160 <A <fyand ISR sams task It was found that ISR interrupted the timer
comes at an instance is restarted, interrupt after it started execution, but be-
where there is barely but didn’t fore the exact instruction in which it up-
enough time to restart finish  be- dates the time value. So the ISR used the
the sams task to finish  fore its  old time value thinking there is enough time
before its deadline. deadline. to restart sams so it finishes.

2 01 < Af < 03 and ISR Wrong The ISR interrupted the timer twice in
runs at its maximum value of the row, making the margin calculations inside
rate, requesting a mar-  safe-zone that interrupt routine being performed us-
gin increase each time. output. ing older, non-updated values of the time.

4 Related Work

While formal design based approaches like Backspace [8] and Magellan [6] use
the design itself, the presented approach instead relies on a simulated abstract
functional execution trace. This hugely reduces the computational requirements
and limits the tracing to specific trace-cycles. While other approaches that rely
on higher level abstract functional matching may only start from the initial
state (as in [6]) or the final state (as in [8]), the presented approach limits the
matching process to short time frames (the trace-cycles) within the given traces.
Periodic logging is used to check the on-chip computed signatures in [22], where
the usage of parity-checks decrease the number of debugging sessions. However,
requiring frequent rerunning, scan-chains and run-stop mechanism keeps such
methods from detecting inconsistent faults. For circuits implemented on FPGAs,
commercial tools like [1] rely on the continuous tracing of values at the operating
frequency, which results in log-size issues. For microprocessors, manufacturers
provide propriety solutions for temporal accurate logging [2,4]. Their closed
nature and reliance on compiler-generated meta-data means that conceptually,
these approaches cannot be applied e.g. to ASICs. Recently, NuVA [12] verified
high speed on-chip transactions, but in turn caused the overall chip performance
to drop slightly. In contrast, the methodology proposed here does not affect the
chip’s performance, uses very simple logic and is applicable to any signal.

5 Conclusion and Future Work

Temporally accurate logging using today’s methods is impractical, although it
could be the shortest way for capturing and debugging post-silicon timing related
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bugs. We proposed a novel non-intrusive logging scheme and a reconstruction
approach CATRA to provide accurate information about the on-chip execution.
This allows for the first time, to capture and analyze timing-related sporadic
errors.

We are currently developing methods for efficient times-tamps auto-generation
for less solutions of CATRA under-specific conditions and shorter computation
time. Also the computational complexity of using the functional-check part of
the footprints in traces alignment is under analysis.
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