Verifying Next Generation Electronic Systems

(Invited Paper)

Rolf Drechsler

Daniel GroBe

Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
{drechsle, grosse}@informatik.uni-bremen.de

Abstract—The application domains of electronic systems range
from consumer devices to safety-critical systems. Of course, for
systems of the latter areas a thorough verification is required.
However, due to increasing complexity, verification is still the
major bottleneck. Hence, new approaches are required.

In this paper the state-of-the-art on verification is reported.
Furthermore, recent developments are listed and finally the most
pressing challenges for industry and academia are identified.

I. INTRODUCTION

Modern electronic systems are all around us: telecommu-
nication, home automation, personal computers, automobiles,
avionics and satellites, to name just a few. Since several
decades a strong increase in complexity has been observed.
With the advances in computation and communication new
trends such as Internet of Things and Industry 4.0 emerged
as well as new opportunities in “old” domains, see for in-
stance Artificial Intelligence (Al) with self-driving cars or self-
learning systems. On top of all these developments security is
of major importance.

Concerning verification, which is inevitable for safety-
critical systems, it is well known that classical simulation-
based approaches are not sufficient since they cannot prove
the absence of errors and often miss corner-case bugs. In
contrast, formal verification allows for proving the functional
correctness in a mathematical sense. Formal verification has
been around for 30 years now. However, formal verification
is not always easy-to-use and complexity issues still limit its
application. In summary, verification remains highly relevant,
but new approaches are needed that improve the state-of-the-
art by several orders of magnitude.

In this paper, first the state-of-the-art on hardware verifica-
tion is reported. Then, recent developments are listed, formal
verification at high-level of abstraction and self-verification is
discussed, and finally the most pressing challenges for industry
and academia are identified.

II. STATE OF THE ART VERIFICATION TECHNIQUES

In order to check whether complex systems are free of
functional errors, verification methods are applied which check
whether the system meets its specified requirements. Current
industry practice applies the following verification techniques
in the design flow:

o Simulation: Based on a model of the circuit, the inputs

are explicitly assigned, propagated through the circuit,
and the outputs are compared to the expected values.

o Emulation: Emulation realizes simulation directly in
hardware thereby achieving an acceleration of some or-
ders of magnitudes.

e Formal verification: Formal verification considers the
problem mathematically and proves that the behavior of
the circuit is correct.

From this we can conclude that the best possible quality
can be achieved using formal verification. Therefore, we
provide some more details in this direction. In particular, we
focus on Model Checking (MC) also called Property Checking
(PC). In PC a temporal property and a circuit are given and
it is checked whether this property holds or fails for the
circuit. If the property fails, a counter-example is generated.
To capture this problem formally Boolean techniques are
used. The most prominent are Binary Decision Diagrams
(BDDs) and Boolean Satisfiability (SAT). In Symbolic Model
Checking [1]], [2] the system (and the already traversed state-
space) are represented symbolically using BDDs. However, for
larger circuits the generated BDDs become too large. Hence,
as an alternative Bounded Model Checking (BMC) [3] has
been proposed. Essentially, BMC uses SAT on the unrolled
circuit plus logic for the property, and then checks whether
the property holds for all behaviors up to a specified bound.
BMC is very successful for industrial designs, see for in-
stance [4)]. With temporal induction BMC can be used for
proving safety properties [S], [6]. Furthermore, based on the
concept of incremental induction, which can be viewed as
an over-approximation of the reachable state space, further
improvements in terms of scalability can be achieved. Such
techniques have been proposed recently as IC3/PDR in [7],
[8]].

Besides the just described fully automatic MC techniques,
an alternative is Theorem Proving. Theorem proving makes
uses of higher order logic and constructs a formal axiomatic
proof of correctness. While theorem proving is more expres-
sive, it is highly interactive, i.e. a lot of user interaction is
required.

For more information on the basics on formal verification
we refer the reader to [9]].

The ever increasing design complexity dramatically
widened the verification gap. Therefore different approaches
and methodologies have been proposed to attack this problem.
In the next section we briefly review two approaches.



III. RECENT VERIFICATION APPROACHES

Raising the level of abstraction for developing circuits
and systems has become a major approach for attacking the
increasing complexity [10]. In the first subsection we consider
formal verification at high-level of abstraction. After that, we
consider an orthogonal approach to allow for verification even
after shipping of the system.

A. Formal Verification at High-Level of Abstraction

SystemC-based virtual prototyping has become an estab-
lished standard for modeling systems at high-level of abstrac-
tion. In this so called Electronic System Level (ESL) design
flow, the SystemC-based Virtual Prototype (VP) serves as
an executable specification for subsequent development steps
in the design flow. Therefore, ensuring the correctness of
high-level SystemC designs is crucial as undetected errors
will propagate and become very costly. However, formal
verification of SystemC is very challenging due to its object
oriented nature and event-driven simulation semantics [11]].
The challenge in developing a SystemC verifier is threefold:

1) First, it must obviously consider all possible inputs of
the Design-Under-Verification (DUV).

2) Second, a typical high-level SystemC DUV consists of
multiple asynchronous processes, whose different orders
of execution (also referred to as schedules) can lead to
different behaviors, these must also be considered to the
full extent by the verifier.

3) Third, the verifier is required to deal with the full
complexity of C++ to extract a suitable formal model.

The Intermediate Verification Language (IVL) for SystemC
has been proposed to address the third challenge [12], by
separating the development of a SystemC verifier into two
components: a front-end to translate a DUV into IVL and a
back-end to verify this IVL description. The IVL is compact
and easily manageable but at the same time powerful enough
to model the behavior of SystemC designs. As part of an
ongoing effort to develop a fully automatic C++/SystemC
verification frontend, the IVL is iteratively extended to bridge
the VP modeling gap, e.g. recently, OOP support has been
added [13]]. Consequently, one can focus on addressing the
first two challenges to increase the scalability and efficiency
of the back-end in handling large state spaces.

Symbolic simulation [14], [15], [12], which is basically
a combination of symbolic execution [16] with complete
exploration of all possible process schedules, proved very
effective in handling large state spaces. In [15], [12], symbolic
simulation is further combined with Partial Order Reduction
(POR) [L7], [18] to significantly increase scalability by avoid-
ing visiting redundant schedules. Recently, Compiled Symbolic
Simulation (CSS) has been proposed to further boost scalabil-
ity [19]], [20]. CSS is a major enhancement that augments the
DUV to integrate the symbolic execution engine and the POR
based scheduler. Then, a standard C++ compiler is used to
generate a native binary, whose execution performs exhaustive
verification of the DUV. The whole state space of a DUV,

which consists of all possible inputs and process schedules,
can thus be exhaustively and efficiently explored.

Cyclic state space support for symbolic simulation, which
allows to prove safety properties, has been provided in [21].
This stateful symbolic simulation approach for SystemC ap-
plies symbolic subsumption checking for efficient detection of
revisited symbolic states.

B. Self-Verification

An alternative approach to deal with the verification prob-
lem is considered in this section. The general idea of self-
verification is to realize a system which is capable of complet-
ing all the verification tasks that could not be finished during
development time.

While the principle concept of self-verification may be
realized in different fashions and scenarios, in general the
considered system must be enabled to perform the following
three core verification tasks:

1) Monitoring: observing the control and data flow which
allows the system to keep track of the performed compu-
tations in terms of particular patterns or used scenarios.
This allows for the recognition of what functionality is
usually triggered and what outputs are generated by it.

2) Verifying: checking the correctness of parts of a system,
the validity of properties, the completeness of coverage
of a verification result, etc.

3) Controlling: deciding which verification task should be
considered next based on an analysis scheme that takes
previously obtained information into account, such as
properties still left to be verified, frequently occurring
patterns, or application scenarios of the system.

The concept of self-verification as well as some results based
on this concept have been presented in [22], [23], [24], [25].

IV. CHALLENGES

This section provides a list of challenges in the context
of formal verification. The list is not complete in the sense
that all difficulties are covered, but many pressing ones have
been identified. By this, a better understanding of the current
problems in verification of the next generation electronic
systems becomes possible and directions for future research
are suggested.

Complexity: Even though an end of Moores Law is coming
close, the complexity of systems is steadily increas-
ing. Hence, new abstraction levels and techniques are
needed. In addition, if formal approaches reach their
limits alternatives need to be devised which give better
verification quality than classical simulation.

Further reading: [26], [27], [28], [29], [30], [31]

Formal verification at ESL: Formal verification at the Elec-
tronic System Level (ESL) is inevitable since virtual
prototyping has become industrial practice today. De-
spite the substantial progress on formal VP verification
as discussed in Section the existing techniques



still need further improvements to scale to full VP
systems.

Further reading: [32], [14], 1330, [12], [21], [34], [L3],
(191, 1200, 351

Coverage metrics: Strong coverage metrics for formal ver-
ification at the Register Transfer Level (RTL) have
been proposed. However, coverage at higher levels of
abstraction is still very challenging.

Further reading: [36l, [37], [38], [39], [40l, [41], [42]

Arithmetic: BDD and SAT/SMT techniques suffer from lim-
itations when applied to complex arithmetic, e.g. mul-
tipliers. Recently, algebraic methods based on Grébner
bases and Ideal membership testing received renewed
interest, since they have been successfully applied to
different circuits including very complex arithmetic.
Further reading: [43]], [44], [45], [46], [47]

Analog Mixed Signal: To separate the system in analog and
digital parts is not sufficient anymore. New integrated
languages as well as verification solutions are neces-
sary in particular due to increasing sensor information
available in Internet-of-Things (I0T) or Cyber-Physical
Systems (CPS).

Further reading: [48]], [49], [S0], [511], [52]

Learning systems, especially self-adapting and -learning:
Driven by the enormous advances in computing power,
learning for instance in the form of neural networks,
machine learning etc. can now be integrated into these
systems. While new intelligent systems become reality
now, the verification of such systems is much more
challenging compared to classical systems.

Further reading: [53]], [54]

Security: Due to the increasing amount of sensitive informa-
tion and personal data being stored in embedded de-
vices, increasing connectivity to other systems as well
as the security-critical functions they perform, security
has become a major requirement. Along with proofs of
correctness, security should not become an afterthought
and new respective security verification techniques for
hardware and software have to be developed.

Further reading: [55], [56], [S71, [S8], [S9]

V. CONCLUSION

In this paper formal verification of the next generation
electronic systems has been addressed. After briefly reporting
the state-of-the-art from a circuit perspective, two verification
approaches have been reviewed, i.e. formal verification at a
high-level of abstraction and self-verification.

Finally, a list of major challenges has been provided to
stimulate research.

ACKNOWLEDGMENTS

The work has (partially) been supported by the German
Research Foundation (DFG) within the Reinhart Koselleck
project DR 287/23-1, by the German Federal Ministry of Edu-
cation and Research (BMBF) within the project EffektiV under
contract no. 01IS13022E, within the BMBF project SELFIE
under grant no. 01IW 16001, within the BMBF project CON-
FIRM under contract no. 16ES0565, within the BMBF project
CONVERS under contract no. 16ES0656, the DFG, as part
of Collaborative Research Center (Sonderforschungsbereich)
1320 EASE - Everyday Activity Science and Engineering,
University of Bremen (http://www.ease-crc.org/; the research
was conducted in subproject PO4) and by the University
of Bremen’s graduate school SyDe, funded by the German
Excellence Initiative.

REFERENCES

[1] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang,
“Symbolic model checking: 1020 states and beyond,” Information and
Computation, vol. 98(2), pp. 142-170, 1992.

[2] K. L. McMillan, Symbolic Model Checking.
lisher, 1993.

[3] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic model
checking without BDDs,” in Tools and Algorithms for the Construction
and Analysis of Systems, 1999, pp. 193-207.

[4] M. Ganai and A. Gupta, SAT-Based Scalable Formal Verification Solu-
tions (Series on Integrated Circuits and Systems). Springer, 2007.

[5] M. Sheeran, S. Singh, and G. Stalmarck, “Checking safety properties
using induction and a SAT-solver,” in Int’l Conf. on Formal Methods in
CAD, 2000, pp. 108-125.

[6] P. Bjesse and K. Claessen, “SAT-based verification without state space
traversal,” in Int’l Conf. on Formal Methods in CAD, 2000, pp. 372-389.

[71 A. R. Bradley, “SAT-based model checking without unrolling,” in
International Conference on Verification, Model Checking, and Abstract
Interpretation, 2011, pp. 70-87.

[8] N. Een, A. Mishchenko, and R. Brayton, “Efficient implementation of
property directed reachability,” in Int’l Conf. on Formal Methods in
CAD, 2011, pp. 125-134.

[9] T. Kropf, Introduction to Formal Hardware Verification. Springer, 1999.

[10] R. Drechsler, Ed., Formal System Verification. ~Springer, 2017.

[11] M. Y. Vardi, “Formal techniques for SystemC verification,” in Design
Automation Conf., 2007, pp. 188-192.

H. M. Le, D. Grofe, V. Herdt, and R. Drechsler, “Verifying SystemC
using an intermediate verification language and symbolic simulation,”
in Design Automation Conf., 2013, pp. 116:1-116:6.

H. M. Le, V. Herdt, D. GroB3e, and R. Drechsler, “Towards formal
verification of real-world SystemC TLM peripheral models — a case
study,” in Design, Automation and Test in Europe, 2016, pp. 1160-1163.
C.-N. Chou, Y.-S. Ho, C. Hsieh, and C.-Y. Huang, “Symbolic model
checking on SystemC designs,” in Design Automation Conf., 2012, pp.
327-333.

C.-N. Chou, C.-K. Chu, and C.-Y. R. Huang, “Conquering the scheduling
alternative explosion problem of SystemC symbolic simulation,” in
International Conference on Computer-Aided Design, 2013, pp. 685—
690.

J. C. King, “Symbolic execution and program testing,” Commun. ACM,
vol. 19, no. 7, pp. 385-394, Jul. 1976.

P. Godefroid, Partial-Order Methods for the Verification of Concurrent
Systems: An Approach to the State-Explosion Problem. Springer, 1996.
C. Flanagan and P. Godefroid, “Dynamic partial-order reduction for
model checking software,” in Symposium on Principles of Programming
Languages, 2005, pp. 110-121.

V. Herdt, H. M. Le, D. GroBe, and R. Drechsler, “ParCoSS: efficient
parallelized compiled symbolic simulation,” in Computer Aided Verifi-
cation, 2016, pp. 177-183.

, “Compiled symbolic simulation for SystemC,” in International
Conference on Computer-Aided Design, 2016, pp. 52:1-52:8.

Kluwer Academic Pub-

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]



[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

V. Herdt, H. M. Le, and R. Drechsler, “Verifying SystemC using stateful
symbolic simulation,” in Design Automation Conf., 2015, pp. 49:1-49:6.
R. Drechsler, H. M. Le, and M. Soeken, “Self-verification as the key
technology for next generation electronic systems,” in Symposium on
Integrated Circuits and System Design, 2014, invited Talk.

R. Drechsler, M. Frinzle, and R. Wille, “Envisioning self-verification of
electronic systems,” in Int’l Symp. on Reconfigurable Communication-
centric Systems-on-Chip, 2015.

C. Liith, M. Ring, and R. Drechsler, “Towards a methodology for
self-verification,” in International Conference on Reliability, Infocom
Technologies and Optimization, 2017.

F. Bornebusch, R. Wille, and R. Drechsler, “Towards lightweight sat-
isfiability solvers for self-verification,” in International Symposium on
Embedded Computing and System Design, 2017.

M. Soeken and R. Drechsler, Formal Specification Level - Concepts,
Methods, and Algorithms. Springer, 2015.

D. GroBle, H. M. Le, M. Hassan, and R. Drechsler, “Guided lightweight
software test qualification for IP integration using virtual prototypes,” in
Int’l Conf. on Comp. Design, 2016, pp. 606-613.

M. Hassan, V. Herdt, H. M. Le, M. Chen, D. Gro3e, and R. Drechsler,
“Data flow testing for virtual prototypes,” in Design, Automation and
Test in Europe, 2017, pp. 380-385.

P. G. de Aledo, N. Przigoda, R. Wille, R. Drechsler, and P. S. Es-
peso, “Towards a verification flow across abstraction levels verifying
implementations against their formal specification,” IEEE Transactions
on Computer Aided Design of Circuits and Systems, vol. 36, no. 3, pp.
475-488, 2017.

F. Haedicke, H. M. Le, D. GroBe, and R. Drechsler, “CRAVE: An
advanced constrained random verification environment for SystemC,”
in International Symposium on System-on-Chip, 2012, pp. 1-7.

M. E S. Oliveira, C. Kuznik, W. Miiller, F. Haedicke, H. M. Le,
D. GroBle, R. Drechsler, W. Ecker, and V. Esen, “The system verifica-
tion methodology for advanced TLM verification,” in IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System
Synthesis, 2012, pp. 313-322.

D. GroBe, H. M. Le, and R. Drechsler, “Proving transaction and system-
level properties of untimed SystemC TLM designs,” in ACM & IEEE
International Conference on Formal Methods and Models for Codesign,
2010, pp. 113-122.

A. Cimatti, I. Narasamdya, and M. Roveri, “Software model checking
SystemC,” IEEE Transactions on Computer Aided Design of Circuits
and Systems, vol. 32, no. 5, pp. 774-787, 2013.

V. Herdt, H. M. Le, D. Grole, and R. Drechsler, “Boosting
sequentialization-based verification of multi-threaded C programs via
symbolic pruning of redundant schedules,” in Automated Technology
for Verification and Analysis, 2015, pp. 228-233.

——, “Towards fully automated TLM-to-RTL property refinement,” in
Design, Automation and Test in Europe, 2018.

K. Claessen, “A coverage analysis for safety property lists,” in Int’l Conf.
on Formal Methods in CAD, 2007, pp. 139-145.

D. GroBe, U. Kiihne, and R. Drechsler, “Estimating functional coverage
in bounded model checking,” in Design, Automation and Test in Europe,
2007, pp. 1176-1181.

J. Bormann, S. Beyer, A. Maggiore, M. Siegel, S. Skalberg, T. Black-
more, and F. Bruno, “Complete formal verification of Tricore2 and other
processors,” in Design and Verification Conference, 2007.

D. Grof3e, U. Kiihne, and R. Drechsler, “Analyzing functional coverage
in bounded model checking,” IEEE Transactions on Computer Aided
Design of Circuits and Systems, vol. 27, no. 7, pp. 1305-1314, 2008.
H. M. Le, D. GroBle, and R. Drechsler, “Towards analyzing functional
coverage in SystemC TLM property checking,” in IEEE International
High Level Design Validation and Test Workshop, 2010, pp. 67-74.

F. Haedicke, D. GroBe, and R. Drechsler, “A guiding coverage metric for
formal verification,” in Design, Automation and Test in Europe, 2012,
pp. 617-622.

R. Drechsler, M. Diepenbeck, D. Grofe, U. Kiihne, H. M. Le, J. Seiter,
M. Soeken, and R. Wille, “Completeness-driven development,” in Inter-
national Conference on Graph Transformation, 2012, pp. 38-50.

J. Ly, P. Kalla, and F. Enescu, “Efficient Grébner basis reductions for for-
mal verification of Galois field arithmetic circuits,” IEEE Transactions
on Computer Aided Design of Circuits and Systems, vol. 32, no. 9, pp.
1409-1420, Sept 2013.

F. Farahmandi and B. Alizadeh, “Grobner basis based formal verification
of large arithmetic circuits using gaussian elimination and cone-based

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

(591

polynomial extraction,” Microprocessors and Microsystems, vol. 39,
no. 2, pp. 83-96, 2015.

A. Sayed-Ahmed, D. Grofe, U. Kiihne, M. Soeken, and R. Drechsler,
“Formal verification of integer multipliers by combining Grobner basis
with logic reduction,” in Design, Automation and Test in Europe, 2016,
pp. 1048-1053, (Best paper candidate).

A. Sayed-Ahmed, D. GroBle, M. Soeken, and R. Drechsler, “Equivalence
checking using Grobner bases,” in Int’l Conf. on Formal Methods in
CAD, 2016, pp. 169-176.

D. Ritirc, A. Biere, and M. Kauers, “Column-wise verification of
multipliers using computer algebra,” in Int’l Conf. on Formal Methods
in CAD, 2017.

S. Steinhorst and L. Hedrich, “Trajectory-directed discrete state space
modeling for formal verification of nonlinear analog circuits,” in Inter-
national Conference on Computer-Aided Design, 2012, pp. 202-209.
C. Radojicic, C. Grimm, F. Schupfer, and M. Rathmair, “Verification of
mixed-signal systems with affine arithmetic assertions,” VLSI Design,
vol. 2013, pp. 239 064:1-239 064:14, 2013.

M. Barnasconi, M. Dietrich, K. Einwich, T. Vortler, J. Chaput,
M. Louérat, F. Pécheux, Z. Wang, P. Cuenot, I. Neumann, T. Nguyen,
R. Lucas, and E. Vaumorin, “UVM-SystemC-AMS framework for
system-level verification and validation of automotive use cases,” IEEE
Design & Test, vol. 32, no. 6, pp. 76-86, 2015.

IEEE SystemC AMS standard, IEEE Std. 1666.1-2016, 2016.

M. Hassan, D. GroBle, H. M. Le, T. Vortler, K. Einwich, and R. Drech-
sler, “Testbench qualification for SystemC-AMS timed data flow mod-
els,” in Design, Automation and Test in Europe, 2018.

X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, “Safety verification
of deep neural networks,” in Computer Aided Verification, 2017, pp.
3-29.

G. Katz, C. W. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer,
“Reluplex: An efficient SMT solver for verifying deep neural networks,”
in Computer Aided Verification, 2017, pp. 97-117.

W. Hu, J. Oberg, A. Irturk, M. Tiwari, T. Sherwood, D. Mu, and
R. Kastner, “Theoretical fundamentals of gate level information flow
tracking,” IEEE Transactions on Computer Aided Design of Circuits
and Systems, vol. 30, no. 8, pp. 1128-1140, Aug 2011.

P. Schaumont, M. O’Neill, and T. Giineysu, “Introduction for embedded
platforms for cryptography in the coming decade,” ACM Trans. Embed-
ded Comput. Syst., vol. 14, no. 3, pp. 40:1-40:3, 2015.

P. Subramanyan, S. Malik, H. Khattri, A. Maiti, and J. Fung, “Verifying
information flow properties of firmware using symbolic execution,” in
Design, Automation and Test in Europe, 2016, pp. 337-342.

A. Ardeshiricham, W. Hu, J. Marxen, and R. Kastner, “Register transfer
level information flow tracking for provably secure hardware design,”
in Design, Automation and Test in Europe, 2017, pp. 1691-1696.

M. Hassan, V. Herdt, H. M. Le, D. Grofle, and R. Drechsler, “Early
SoC security validation by VP-based static information flow analysis,”
in International Conference on Computer-Aided Design, 2017, pp. 400—
407.



