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Abstract—The application domains of electronic systems range
from consumer devices to safety-critical systems. Of course, for
systems of the latter areas a thorough verification is required.
However, due to increasing complexity, verification is still the
major bottleneck. Hence, new approaches are required.

In this paper the state-of-the-art on verification is reported.
Furthermore, recent developments are listed and finally the most
pressing challenges for industry and academia are identified.

I. INTRODUCTION

Modern electronic systems are all around us: telecommu-
nication, home automation, personal computers, automobiles,
avionics and satellites, to name just a few. Since several
decades a strong increase in complexity has been observed.
With the advances in computation and communication new
trends such as Internet of Things and Industry 4.0 emerged
as well as new opportunities in “old” domains, see for in-
stance Artificial Intelligence (Al) with self-driving cars or self-
learning systems. On top of all these developments security is
of major importance.

Concerning verification, which is inevitable for safety-
critical systems, it is well known that classical simulation-
based approaches are not sufficient since they cannot prove
the absence of errors and often miss corner-case bugs. In
contrast, formal verification allows for proving the functional
correctness in a mathematical sense. Formal verification has
been around for 30 years now. However, formal verification
is not always easy-to-use and complexity issues still limit its
application. In summary, verification remains highly relevant,
but new approaches are needed that improve the state-of-the-
art by several orders of magnitude.

In this paper, first the state-of-the-art on hardware verifica-
tion is reported. Then, recent developments are listed, formal
verification at high-level of abstraction and self-verification is
discussed, and finally the most pressing challenges for industry
and academia are identified.

II. STATE OF THE ART VERIFICATION TECHNIQUES

In order to check whether complex systems are free of
functional errors, verification methods are applied which check
whether the system meets its specified requirements. Current
industry practice applies the following verification techniques
in the design flow:

o Simulation: Based on a model of the circuit, the inputs

are explicitly assigned, propagated through the circuit,
and the outputs are compared to the expected values.

o Emulation: Emulation realizes simulation directly in
hardware thereby achieving an acceleration of some or-
ders of magnitudes.

e Formal verification: Formal verification considers the
problem mathematically and proves that the behavior of
the circuit is correct.

From this we can conclude that the best possible quality
can be achieved using formal verification. Therefore, we
provide some more details in this direction. In particular, we
focus on Model Checking (MC) also called Property Checking
(PC). In PC a temporal property and a circuit are given and
it is checked whether this property holds or fails for the
circuit. If the property fails, a counter-example is generated.
To capture this problem formally Boolean techniques are
used. The most prominent are Binary Decision Diagrams
(BDDs) and Boolean Satisfiability (SAT). In Symbolic Model
Checking [1]], [2] the system (and the already traversed state-
space) are represented symbolically using BDDs. However, for
larger circuits the generated BDDs become too large. Hence,
as an alternative Bounded Model Checking (BMC) [3] has
been proposed. Essentially, BMC uses SAT on the unrolled
circuit plus logic for the property, and then checks whether
the property holds for all behaviors up to a specified bound.
BMC is very successful for industrial designs, see for in-
stance [4)]. With temporal induction BMC can be used for
proving safety properties [S], [6]. Furthermore, based on the
concept of incremental induction, which can be viewed as
an over-approximation of the reachable state space, further
improvements in terms of scalability can be achieved. Such
techniques have been proposed recently as IC3/PDR in [7],
[8]].

Besides the just described fully automatic MC techniques,
an alternative is Theorem Proving. Theorem proving makes
uses of higher order logic and constructs a formal axiomatic
proof of correctness. While theorem proving is more expres-
sive, it is highly interactive, i.e. a lot of user interaction is
required.

For more information on the basics on formal verification
we refer the reader to [9]].

The ever increasing design complexity dramatically
widened the verification gap. Therefore different approaches
and methodologies have been proposed to attack this problem.
In the next section we briefly review two approaches.



III. RECENT VERIFICATION APPROACHES

Raising the level of abstraction for developing circuits
and systems has become a major approach for attacking the
increasing complexity [10]. In the first subsection we consider
formal verification at high-level of abstraction. After that, we
consider an orthogonal approach to allow for verification even
after shipping of the system.

A. Formal Verification at High-Level of Abstraction

SystemC-based virtual prototyping has become an estab-
lished standard for modeling systems at high-level of abstrac-
tion. In this so called Electronic System Level (ESL) design
flow, the SystemC-based Virtual Prototype (VP) serves as
an executable specification for subsequent development steps
in the design flow. Therefore, ensuring the correctness of
high-level SystemC designs is crucial as undetected errors
will propagate and become very costly. However, formal
verification of SystemC is very challenging due to its object
oriented nature and event-driven simulation semantics [11]].
The challenge in developing a SystemC verifier is threefold:

1) First, it must obviously consider all possible inputs of
the Design-Under-Verification (DUV).

2) Second, a typical high-level SystemC DUV consists of
multiple asynchronous processes, whose different orders
of execution (also referred to as schedules) can lead to
different behaviors, these must also be considered to the
full extent by the verifier.

3) Third, the verifier is required to deal with the full
complexity of C++ to extract a suitable formal model.

The Intermediate Verification Language (IVL) for SystemC
has been proposed to address the third challenge [12], by
separating the development of a SystemC verifier into two
components: a front-end to translate a DUV into IVL and a
back-end to verify this IVL description. The IVL is compact
and easily manageable but at the same time powerful enough
to model the behavior of SystemC designs. As part of an
ongoing effort to develop a fully automatic C++/SystemC
verification frontend, the IVL is iteratively extended to bridge
the VP modeling gap, e.g. recently, OOP support has been
added [13]]. Consequently, one can focus on addressing the
first two challenges to increase the scalability and efficiency
of the back-end in handling large state spaces.

Symbolic simulation [14], [15], [12], which is basically
a combination of symbolic execution [16] with complete
exploration of all possible process schedules, proved very
effective in handling large state spaces. In [15], [12], symbolic
simulation is further combined with Partial Order Reduction
(POR) [L7], [18] to significantly increase scalability by avoid-
ing visiting redundant schedules. Recently, Compiled Symbolic
Simulation (CSS) has been proposed to further boost scalabil-
ity [19]], [20]. CSS is a major enhancement that augments the
DUV to integrate the symbolic execution engine and the POR
based scheduler. Then, a standard C++ compiler is used to
generate a native binary, whose execution performs exhaustive
verification of the DUV. The whole state space of a DUV,

which consists of all possible inputs and process schedules,
can thus be exhaustively and efficiently explored.

Cyclic state space support for symbolic simulation, which
allows to prove safety properties, has been provided in [21].
This stateful symbolic simulation approach for SystemC ap-
plies symbolic subsumption checking for efficient detection of
revisited symbolic states.

B. Self-Verification

An alternative approach to deal with the verification prob-
lem is considered in this section. The general idea of self-
verification is to realize a system which is capable of complet-
ing all the verification tasks that could not be finished during
development time.

While the principle concept of self-verification may be
realized in different fashions and scenarios, in general the
considered system must be enabled to perform the following
three core verification tasks:

1) Monitoring: observing the control and data flow which
allows the system to keep track of the performed compu-
tations in terms of particular patterns or used scenarios.
This allows for the recognition of what functionality is
usually triggered and what outputs are generated by it.

2) Verifying: checking the correctness of parts of a system,
the validity of properties, the completeness of coverage
of a verification result, etc.

3) Controlling: deciding which verification task should be
considered next based on an analysis scheme that takes
previously obtained information into account, such as
properties still left to be verified, frequently occurring
patterns, or application scenarios of the system.

The concept of self-verification as well as some results based
on this concept have been presented in [22], [23], [24], [25].

IV. CHALLENGES

This section provides a list of challenges in the context
of formal verification. The list is not complete in the sense
that all difficulties are covered, but many pressing ones have
been identified. By this, a better understanding of the current
problems in verification of the next generation electronic
systems becomes possible and directions for future research
are suggested.

Complexity: Even though an end of Moores Law is coming
close, the complexity of systems is steadily increas-
ing. Hence, new abstraction levels and techniques are
needed. In addition, if formal approaches reach their
limits alternatives need to be devised which give better
verification quality than classical simulation.

Further reading: [26], [27], [28], [29], [30], [31]

Formal verification at ESL: Formal verification at the Elec-
tronic System Level (ESL) is inevitable since virtual
prototyping has become industrial practice today. De-
spite the substantial progress on formal VP verification
as discussed in Section the existing techniques



still need further improvements to scale to full VP
systems.

Further reading: [32], [14], 1330, [12], [21], [34], [L3],
(191, 1200, 351

Coverage metrics: Strong coverage metrics for formal ver-
ification at the Register Transfer Level (RTL) have
been proposed. However, coverage at higher levels of
abstraction is still very challenging.

Further reading: [36l, [37], [38], [39], [40l, [41], [42]

Arithmetic: BDD and SAT/SMT techniques suffer from lim-
itations when applied to complex arithmetic, e.g. mul-
tipliers. Recently, algebraic methods based on Grébner
bases and Ideal membership testing received renewed
interest, since they have been successfully applied to
different circuits including very complex arithmetic.
Further reading: [43]], [44], [45], [46], [47]

Analog Mixed Signal: To separate the system in analog and
digital parts is not sufficient anymore. New integrated
languages as well as verification solutions are neces-
sary in particular due to increasing sensor information
available in Internet-of-Things (I0T) or Cyber-Physical
Systems (CPS).

Further reading: [48]], [49], [S0], [511], [52]

Learning systems, especially self-adapting and -learning:
Driven by the enormous advances in computing power,
learning for instance in the form of neural networks,
machine learning etc. can now be integrated into these
systems. While new intelligent systems become reality
now, the verification of such systems is much more
challenging compared to classical systems.

Further reading: [53]], [54]

Security: Due to the increasing amount of sensitive informa-
tion and personal data being stored in embedded de-
vices, increasing connectivity to other systems as well
as the security-critical functions they perform, security
has become a major requirement. Along with proofs of
correctness, security should not become an afterthought
and new respective security verification techniques for
hardware and software have to be developed.

Further reading: [55], [56], [S71, [S8], [S9]

V. CONCLUSION

In this paper formal verification of the next generation
electronic systems has been addressed. After briefly reporting
the state-of-the-art from a circuit perspective, two verification
approaches have been reviewed, i.e. formal verification at a
high-level of abstraction and self-verification.

Finally, a list of major challenges has been provided to
stimulate research.
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