
Error Bounded Exact BDD Minimization in
Approximate Computing
Saman Froehlich1, Daniel Große1,2, Rolf Drechsler1,2

1Cyber-Physical Systems, DFKI GmbH, Bremen, Germany
2Group of Computer Architecture, University of Bremen, Bremen, Germany

{froehlich,grosse,drechsle}@cs.uni-bremen.de

Abstract—The Error Bounded Exact BDD Minimization
(EBEBM) problem arises in approximate computing when one
is trying to find a functional approximation with a minimal
representation in terms of BDD size for a single output function
with respect to a given error bound.
In this paper we present an exact algorithm for EBEBM. This
algorithm constructs a BDD representing all functions, which
meet the restrictions induced by the given error bound. From
this BDD we can derive an optimal solution.
We compute the exact solutions for all functions with up to
4 variables and varying error bounds. Based on the results
we demonstrate the benefit of our approach for evaluating the
quality of heuristic approximation algorithms.

I. INTRODUCTION

Approximate computing refers to a class of problems,
which relax the requirements between the specification and its
implementation [1]. The practical motivation for approximate
computing arises due to the growing number of applications
being inherently error resilient, such as media processing,
recognition, and data mining. These applications usually don’t
require exact results, either due to limitations of human senses,
because a golden solution does not exist (such as web search,
etc.) or because an approximate solution is good enough [2],
[3].

There are different approaches to design approximate cir-
cuits. One approach is to make use of voltage over-scaling
or over-clocking which induces timing errors (see [4], [5]
as examples). Another approach is to approximate a given
function by substituting the function with a similar other
function, which is more cost effective in the number of gates or
the critical path length. Examples can be found in [6], [7], [8],
[1], [9]. This paper focuses on the latter approach of functional
approximation.

Binary Decision Diagrams (BDDs) have become a widely
used data structure for the representation of Boolean functions
since Bryant introduced efficient algorithms for their con-
struction and manipulation [10]. Among many different areas
BDDs have also been studied in logic synthesis, since they
allow to combine aspects of circuit synthesis and technology
mapping. There has been a renewed interest in multiplexor-
based design styles (e.g., [11]), since multiplexor nodes can
often be realized at very low cost (e.g., Pass Transistor Logic
(PTL)). In addition, layout aspects can be considered during

the synthesis step which allows to guarantee high design
quality (see e.g. [12], [13]). In this context, circuits derived
from BDDs often result in smaller netlists. Recently, the
application of BDDs for approximate computing has been
investigated in [6], [8], but with the focus on exact error metric
computation.

The size of the BDD representation of a Boolean function
can be directly mapped to the complexity of its hardware
implementation (see for example [14], [15], [16]). Since the
BDD representation is canonical [10], there are no degrees of
freedom left to reduce the size of the corresponding BDD,
once the function and the variable ordering of the BDD are
fixed.

In this paper we relax the “exact requirements” for a
Boolean function during the BDD construction in such a way,
that we allow a given number e of output bits to differ from the
given function specification f . In doing so we aim to find the
smallest BDD representing f with at most e output deviations.
We call this problem Error Bounded Exact BDD Minimization
(EBEBM). We present an exact algorithm to solve EBEBM
in this paper. Solving EBEBM for a given function f allows
us to substitute f by another function f̂ with a (potentially
much) smaller BDD representation. As a consequence a more
compact circuit can be created using f̂ instead of f .

Since EBEBM determines the smallest BDD and exact BDD
minimization for the classical case is know to be NP-complete,
one can not expect an algorithm which scales to large func-
tions. However, computing exact results allows to evaluate the
quality of heuristic synthesis algorithms. Besides the exact
algorithm devised, we demonstrate this in the experimental
results of this paper.

In summary, the main contributions of this paper are:
1) Definition of the EBEBM problem
2) Presentation of a BDD-based exact algorithm for

EBEBM
3) Demonstration of the effectiveness of the exact algo-

rithm by comparing it to a naive enumeration approach
4) Quality evaluation for heuristics using exact results
The remainder of the paper is structured as follows: At first

the related work concerning BDDs and approximate comput-
ing is discussed in Section II. We present the preliminaries
on BDDs in Section III and give some brief basic definitions

applicable in approximate computing. Section IV includes the
definition of the EBEBM problem and the BDD-based algo-
rithm to find an exact solution. The experimental results are
presented in Section V. This section includes the comparison
to the naive approach as well as the quality evaluation for
heuristics. Finally, Section VI concludes the paper.

II. RELATED WORK

From a general perspective most closely related to the
considered problem of this paper is the minimization of
incompletely specified functions. The idea is that for some
values x one does not care whether f(x) = 1 or f(x) = 0.
Incompletely specified functions can be represented by a
Boolean function f and a Boolean function g, called the don’t
care set, such that f(x) is a don’t care value if g(x) = 0.
The minimization problem is to find a function f̂ , called
cover, whose BDD representation has a small number of
nodes, referred to as B(f̂), such that f(x) ∧ g(x) ≤ f̂(x) ≤
f(x) ∨ ḡ(x)for all x. Putting simply, f̂(x) must agree with
f(x) whenever x satisfies g(x) = 1, but we don’t care what
value f̂(x) assumes when g(x) = 0.

The associated decision problem is called Exact BDD
Minimization (EBM) and asks for a given function f , a don’t
care set g, and a size bound b, whether there exists a function f̂
as in the above equation such that B(f̂) ≤ b. EBM has been
thoroughly examined in many papers. The authors of [17] have
proven the NP-completeness. Different approaches have been
proposed to solve it. The authors of [18] proposed an implicit
approach to find an exact solution. An example for one of the
existing heuristics can be found in [19].

In the context of approximate computing different (general)
synthesis approaches have been proposed. The methodology
of [20] maps the problem of approximate synthesis into a
classical logic synthesis problem. Consequently, the capa-
bilities of existing synthesis tools can be fully utilized for
approximate logic synthesis. In [21] a two-level synthesis
approach is described which aims at minimizing circuit area
for a given error rate threshold. The approach has been
extended for multi-level synthesis in [22]. Both approaches
aim at minimizing circuit area by respecting a given rate
significance threshold, which is a composite metric based on
worst-case error and error rate. The core algorithm is based
on automatic test pattern generation methods and relaxes the
definition of a redundant fault to minimize circuit area. The
authors of [23] have proposed an algorithm for safe over- and
underapproximation in the context of verification. The exact
problem has not been addressed.

As mentioned in the introduction already, recently two
approaches using BDDs in approximate computing have been
proposed. In [8] BDDs have been utilized to analyze the exact
error rate of imprecise adders. The authors of [6] employed
BDDs to solve the Approximate BDD Minimization (ABM)
problem, which aims at finding a cover with respect to a
given error metric and a given BDD size bound. They have
also introduced how to compute several error metrics for
multi output functions using BDDs. However, neither the

exact minimization problem nor an exact algorithm has been
considered.

III. PRELIMINARIES

A. Binary Decision Diagrams

Since Bryant introduced efficient algorithms for the con-
struction and manipulation of BDDs in [10], they have be-
come a state-of-the-art data structure in verification and logic
synthesis.

A BDD is a graph-based canonical representation of a
Boolean function f : Bn → B that is based on the Shannon
decomposition f = xifxi

+xifxi (1 ≤ i ≤ n). Applying this
decomposition recursively allows dividing the function into
many smaller sub-functions. Solid and dashed lines in BDDs
refer to the high and low successor of a node respectively.
BDDs are ordered in a sense that the Shannon decomposition
is applied with respect to a given variable ordering.

The size of the BDD depends on the variable ordering and
many heuristics have been proposed for its optimization. We
will only consider a fixed variable ordering throughout this
paper and we assume that this is the natural one x1 < x2 <
. . . < xn unless specified otherwise. Recall, we denote the
size of the BDD of a function f by B(f).

B. Error Metrics in Approximate Computing

Before we can define the considered error metric, we
provide some basic definitions. We define the ON - and the
OFF -set of a function f as follows: The ON-set ON(f)
denotes the set of all input-vectors x for which f(x) = 1.
The OFF-set OFF (f) denotes the set of all input-vectors x
for which f(x) = 0. By |ON(f)| we mean the size of the
ON-set of f and by |OFF (f)| the size of the corresponding
OFF-set.

The error-rate of an approximation f̂ for a given function
f is defined as

er
(
f, f̂
)

=

∑
x∈Bn

[
f̂(x) 6= f(x)

]
2n

.

i.e. the ratio of the errors observed in the output value
as a result of approximation to the total number of input
combinations.

Please note in literature also other error metrics are con-
sidered (for instance worst-case error, average-case error).
However, these metrics are not in the focus of this paper.

IV. ERROR BOUNDED EXACT BDD MINIMIZATION

In this section we formulate the EBEBM problem and
introduce an algorithm for finding an exact solution. The core
idea of the proposed exact algorithm is to reduce the EBEBM
problem itself to the construction of a BDD from which we
can extract the exact solution.

A. EBEBM Problem Formulation

Error Bounded Exact BDD Minimization (EBEBM) aims
at finding a Boolean function f̂ , called cover, for a given
Boolean single output function f : Bn → B and an error
bound e, such that B(f̂) is minimal and there exist at most k
input combinations Xij , j = 1 . . . k, ij ∈ {1, . . . , 2n}, k ≤ e

for which f̂(Xij) 6= f(Xij).
A necessary condition for a function f̂ to be a solution to

the EBEBM problem is to fulfill the equation

er
(
f, f̂
)
≤ e

2n
, (1)

where n is the number of inputs for f .
The problem is trivial, if e ≥ |ON(f)| or e ≥ |OFF (f)|.

In this case the result is the constant zero- or one-function
respectively. We will only consider the non trivial case from
here on. We handle it as follows:

Let f : Bn → B. There are 2n possible input combinations
to f . Let Xi ∈ Bn, i = 1 . . . 2n denote a possible input
combination. Let Y ∈ B2n and yi be the ith entry of Y .
We can then define a function φ : B2n × Bn → B for a fixed
Y as

φ(Y ;Xi) =


f(Xi), yi = 0

f(Xi), yi = 1
, i = 1 . . . 2n. (2)

The circuit representing φ is depicted in Fig. 1. One can
see, that yi encodes whether φ(Y ;Xi) equals f(Xi) or the
inversion of f(Xi). Thus the number of input combinations
for which φ 6= f is equal to the number of ones in Y .

This leads to the additional condition
2n∑
i=1

yi ≤ e. (3)

Input vectors Y for which Eq. 3 holds will be called valid.
It is important to note that whenever an input vector Y

fulfills Eq. 3, φ also fulfills Eq. 1. This is caused by the fact
that

2n∑
i=1

yi =

2n∑
i=1

[φ(Y ;Xi) 6= f(Xi)] , (4)

since

yi = 1⇔ φ(Y ;Xi) 6= f(Xi), ∀i

due to the definition of φ (see Eq. 2). Substituting the left hand
term of Eq. 3 by the right hand term of Eq. 4 and dividing it
by 2n leads to the proposition.

In the next section we describe how to reduce this general
problem formulation itself to a BDD problem, i.e. we use a
BDD to represent valid solutions to φ for a concrete given
function f and an error bound e. Note that this BDD represents
all possible approximations f̂ for f with at most e output
deviations. The best one can be extracted from it.

y1

y2
...
y2n

X1

X2

X2n

...

...

...

...

f (X1)

f (X2)

f (X2n)

φ (Y ;X1)

φ (Y ;X2)

...

φ (Y ;X2n)

0
1

0
1

0
1

f

f

f

Fig. 1. Circuit representing φ

B. EBEBM as BDD
We can now define how to create a BDD representing Eq. 2

with respect to Eq. 3. Setting (y1, . . . , y2n , x1, . . . , xn) =: σ,
we define a function F (σ):

F (σ) =

{
φ(Y ;x), Y is valid

0, otherwise .

The BDD of F (σ) contains the BDDs of φ(y;x) with all
valid combinations of Y as sub-graphs (according to Eq. 3).
Due to the chosen variable order where the variables Y , which
control the output deviations, are the top-variables, we can
extract the BDD of φ with a valid combination of Y by simply
traversing the BDD of F for 2n levels downwards while
taking no more than e high-branches. This limits the maximum
number of input combinations for which the resulting function
φ differs from f to at most e. The remaining sub-graph is the
BDD, which represents φ with a valid combination of Y .

We can easily find the BDD for a minimal cover f̂ , by
comparing all sub-graphs and picking one with the smallest
size.

An example is depicted in Fig. 2. Fig. 2(a) shows the BDD
of f(x) = x1 · x2 + x1 · x2.

Fig. 2(b) shows F (σ) for e = 1. We give a description of
several paths shown in this figure for clarity:
y1 = 1→ y2 = 1→ 0

This path leads directly to zero, because Eq. 3 is
violated. e is set to 1. Since y1 and y2 both are set
to 1 by taking the first two high-branches, the sum of
all yi is at least 2. But this means at least 2 changes
would be set which contradicts e = 1. Hence, the
resulting function φ is not valid and we get 0 in the
BDD.

y1 = 0→ y2 = 0→ y3 = 0→ y4 = 0→ φ(0, 0, 0, 0;x)
This path leads to the BDD of the function

f(x)

x2

0 1

x2

x1

(a) f(x) = x1 ·x2+x1 ·x2

x2

x1x1 x1x1

y2

y1

y3

x2

x1

0 1

y4 y4

y3y3

y2

y4y4

F (σ)

(b) F (σ), e = 1

φ(1, 0, 0, 0;x)

0 1

x1

x2

(c) f̂(x) = φ(1, 0, 0, 0;x)

Fig. 2. Example for finding f̂

φ(0, 0, 0, 0;x). Since all elements in Y are set to
0, this function equals the original function f .

y1 = 1→ y2 = 0→ y3 = 0→ y4 = 0→ φ(1, 0, 0, 0;x)
This path leads to the BDD of the function
φ(1, 0, 0, 0;x). This BDD is smaller than the BDD
of f and is valid, since we only take one high-branch.

One result of our exact algorithm f̂(x) = x1 · x2 can be seen
in Fig. 2(c). Note that the result is not unique. For instance the
function f̂2(x) = x1 · x2 would have also been a valid result,
since its BDD has the same size as that of f̂ and it differs
from f only for the input vector X = (1, 1).

In the following section we present the experimental results.

V. EXPERIMENTAL RESULTS

All experiments have been carried out on an Intel R© Xeon R©

CPU E5-2630 v3 @ 2.40GHz with 64GB memory running
Linux (Fedora release 22). We’ve implemented all approaches
in C++ using the CUDD 3.0.0 package [24].

A. Comparison to the Naive Approach

In order to evaluate our approach, we have implemented a
naive approach for comparison. This naive approach enumer-
ates all possible don’t care sets, enumerates all possible truth
tables for each don’t care set and creates the corresponding
BDDs. Finally, the smallest BDD is returned.

We have executed both algorithms for all 256 functions with
3 variables and all 65536 functions with 4 variables, using the
error bounds e = 1 . . . 3 and e = 1 . . . 7, respectively. All
problems become trivial for higher values of e.

The obtained results can be found in the Tables I and II.
The total computation time, the average computation time at
and the worst case computation time wt for each value of e
can be found in the respective columns. The term worst case
computation time refers to the longest time needed to calculate
the result for a single function. The term average computation
time refers to the total time needed to calculate the results of
all functions divided by the number of functions.

Due to the rising number of trivial cases, the average
computation time is significantly smaller than the worst case
computation time for higher values of e.

Because of the fact that the naive approach would check the
same function more then once, if implied by different don’t
care sets, our approach scales much better for large values of
e. This results in smaller average and worst case computation
times. We reach an improvement of one order of magnitude
in computation time for 4 variables at around e = 5.

The naive approach is faster, when it comes to smaller
values for e. This is caused by the additionally introduced
variables in our algorithm. While there are not many functions,
which are checked twice in the naive approach if e is small, our
algorithm builds a much larger BDD. This increase in runtime
is usually negligible, since the main purpose of the proposed
approach is to generate benchmarks with exact results to
evaluate the quality of approximation heuristics using a small
number of variables. When the number of variables is small
and the value for e is small, then the runtime is fast enough
using either the naive approach or the proposed BDD method.

To further investigate the influence of the value of e, we
have chosen the function pope with 6 variables from the
benchmark-suite ESPRESSO [25], [26] and compared the
runtime of the algorithms for different values of e. The
ESPRESSO-suite, is a well known two-level minimizer. We
use the first bit of the results as output. The results can be
seen in Table IV. The first column denotes the values for e.
The second and the third column give the runtime for the
naive and the BDD approach, respectively. The fourth column
denotes the ratio of the runtimes of both approaches. The BDD
approach is slower if we set e to 1 or 2. As soon as e reaches
3, the BDD-based approach turns out to be faster as has been
observed already in the previous experiments. It is already
more than twice as fast for e set to 5.

B. Evaluation of the Quality of Heuristic Approximation Ap-
proaches

We’ve developed the exact algorithm to be able to evalu-
ate the quality of heuristics to solve the EBEBM problem.

TABLE I
COMPARISON OF NAIVE APPROACH AND BDD-SOLVER FOR FUNCTIONS WITH 3 VARIABLES

e total naive [s] total BDD [s] at naive [s] at BDD [s] wt naive [s] wt BDD [s]
1 0.007013 0.018062 0.00003 0.00007 0.00004 0.00012
2 0.025687 0.030604 0.00010 0.00012 0.00017 0.00018
3 0.039645 0.021506 0.00015 0.00008 0.00062 0.00032

TABLE II
COMPARISON OF NAIVE APPROACH AND BDD-SOLVER FOR FUNCTIONS WITH 4 VARIABLES

e total naive [s] total BDD [s] at naive [s] at BDD [s] wt naive [s] wt BDD [s]
1 7.67 21.28 0.00012 0.00032 0.00029 0.00102
2 98.94 100.07 0.00151 0.00153 0.00230 0.00260
3 917.69 444.73 0.01400 0.00679 0.02800 0.01300
4 5,663.40 1,289.70 0.08642 0.01968 0.15000 0.03000
5 23,330.00 2,798.10 0.35599 0.04270 0.80000 0.10200
6 59,119.00 3,948.30 0.90208 0.06025 2.00000 0.15000
7 60,612.00 2,392.00 0.92486 0.03650 5.10000 0.22000

TABLE III
COMPARISON OF APPROACH FOR ABM FOUND IN [6] AND BDD-SOLVER FOR FUNCTIONS FROM THE ESPRESSO-SUITE [25].

Example original # inputs e CPU time size size size size
BDD size BDD [s] BDD rounding down rounding up rounding

con1 11 7 4 timeout - - -
dc1 8 4 5 0.053 2 4 5 3
dc2 11 8 2 106.899 9 9 10 9
dist 32 8 2 122.768 25 25 - -
ex5 4 8 1 timeout - - -
exps 39 8 2 91.897 34 - - -
f51m 21 8 2 142.224 19 - - -
inc 12 7 4 timeout - - -
lin 39 7 3 506.834 35 - - -
m1 2 6 5 timeout - - -
m2 4 8 3 timeout - - -
m3 2 8 3 timeout - - -
m4 6 8 3 timeout - - -
misex1 7 8 3 timeout - - -
newcpla2 23 7 3 494.588 15 - - -
newcwp 8 4 5 0.100 4 6 5 6
newtag 10 8 2 189.125 7 9 7 7
newill 19 8 2 178.562 15 18 - -
pope 14 6 4 233.978 9 - - -
risc 11 8 2 83.258 8 10 9 9
root 9 8 2 94.929 5 8 5 5
sqn 25 7 3 515.105 21 - - -
sqr6 6 6 3 9.323 3 3 5 3
tms 15 8 2 81.731 10 14 - -
Z5xp1 8 7 3 465.217 5 5 6 5

As benchmarks we have chosen various problems from the
benchmark-suite ESPRESSO. The heuristics for functional
approximation proposed in [6] are used for approximation and
compared to the exact algorithm. Again, we only use the first
bit of the results as output. We discard the problems with
incompletely specified functions, because we don’t need a
don’t care set and only use the subset of functions with 8
inputs or less and no don’t cares in the first output bit. We
choose e to be at most 2 for functions with 8 variables, 3 for
functions with 7 variables, 4 for functions with 6 variables, 5
for functions with 5 variables and up to 7 for functions with 4
variables, unless the problem becomes trivial or no reduction
is possible.

If no reduction was possible, we increase e until either a
reduction takes place, we reach the time limit or the problem
becomes trivial. If the problem is trivial in the first place, we

reduce e until the problem is non-trivial.
We use our algorithm to calculate the exact result for each

problem and report the size of the BDD and the runtime.
As approximation heuristics we use the algorithms proposed
in [6], i.e. we apply the rounding down, the rounding up and
the rounding operators to the problem set. For each operator
we increase the number of rounding levels until Eq. 1 is
violated and use the result with the highest number of rounding
levels not violating Eq. 1 as an approximate result. The time
limit has been set to 3, 600 seconds.

Table III contains the results. The first column denotes the
name of the used circuit. The second and third column give
the original size of the corresponding BDD and the number of
inputs. The fourth column denotes the used value for e. The
next two columns give the results for our proposed exact BDD-
algorithm: The CPU time needed and the size of the BDD for

TABLE IV
COMPARISON OF RUNTIME FOR DIFFERENT VALUES OF e FOR

BENCHMARK pope FROM THE ESPRESSO-SUITE [25].

e runtime naive [s] runtime BDD [s] ratio BDD
naive

1 0.01 0.05 5.00
2 0.39 0.63 1.62
3 10.92 9.12 0.84
4 330.03 233.63 0.71
5 8,089.07 3,626.30 0.45

the resulting function. The remaining three columns provide
the BDD sizes for the mentioned heuristic approximation
operators. If a heuristic was not able to find a function with a
smaller BDD than the original function with respect to e, then
the entry for the corresponding result is -. The runtimes for
the heuristics are not shown, since it is below 0.01 seconds
for every problem. The results of the best heuristics in terms
of BDD size for each problem are in given in bold.

It can be seen, that the heuristic algorithms failed to find a
function with the smallest possible BDD representation with
respect to e for the majority of problems. Here we would
like to stress the importance of an exact algorithm: It is not
guaranteed that a reduction in terms of BDD size is possible,
if e is not large enough. Only the optimal results obtained by
our approach allows to judge the quality of the heuristic. In
particular in cases where the heuristic was not able to find
a reduction we know based on the optimal results if a better
solutions exists or no reduction is possible at all.

From the table it can be seen that the operator rounding
down succeeded to reduce the BDD size for more problems
than the other two operators, but the best results in terms of
BDD size were determined by the rounding operator.

VI. CONCLUSIONS

In this paper we have introduced the Error Bounded Exact
BDD Minimization (EBEBM) problem and presented an exact
algorithm to solve it. The algorithm reduces the problem itself
to the construction of a BDD which contains all possible
approximations for the considered function for a given error
bound. An optimal solution can be easily extracted.

The evaluation of the experiments has shown, that our
approach is more effective than the naive approach. It scales
better for larger error bounds, since unlike the naive approach,
it does only check every possible solution exactly once and
makes use of efficient BDD reduction techniques. Further-
more, we have demonstrated the benefits of optimal solu-
tions when evaluating the quality of functional approximation
heuristics.

In future work we plan to consider various heuristics to
solve the EBEBM problem. The quality of these heuristics can
be measured using the algorithm presented in this paper. We
also want to investigate the more general problem, where the
variable ordering for the given function is not fixed, and extend
it from Boolean to multivalued functions to further increase
its applicability. First tests have shown that the size of F (σ)
can be greatly reduced using dynamic variable ordering.

Acknowledgments. This work was supported in part by the
German Research Foundation (DFG) within the project MANIAC
(DR 287/29-1), the Reinhart Koselleck project DR 287/23-1 and by
the University of Bremen’s graduate school SyDe, funded by the
German Excellence Initiative.

REFERENCES

[1] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan, “MACACO:
modeling and analysis of circuits for approximate computing,” in IC-
CAD, Nov. 2011, pp. 667–673.

[2] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Analysis
and characterization of inherent application resilience for approximate
computing,” in DAC, 2013, pp. 113:1–113:9.

[3] S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan,
“Approximate computing and the quest for computing efficiency,” in
DAC, 2015, pp. 120:1–120:6.

[4] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner, and T. Mudge, “Razor: A low-power
pipeline based on circuit-level timing speculation,” in International
Symposium on Microarchitecture, 2003, pp. 7–18.

[5] A. B. Kahng, S. Kang, R. Kumar, and J. Sartori, “Designing a processor
from the ground up to allow voltage/reliability tradeoffs,” in HPCA,
2010, pp. 1–11.

[6] M. Soeken, D. Große, A. Chandrasekharan, and R. Drechsler, “BDD
minimization for approximate computing,” in ASP-DAC, 2016, pp. 474–
479.

[7] N. Zhu, W. L. Goh, and K. S. Ye, “An enhanced low-power high-speed
adder for error-tolerant application,” in ISIC, 2009, pp. 69–72.

[8] C. Yu and M. Ciesielski, “Analyzing imprecise adders using BDDs - a
case study,” in ISVLSI, 2016, pp. 152–157.

[9] C.-H. Lin and I.-C. Lin, “High accuracy approximate multiplier with
error correction.” in ICCD, 2013, pp. 33–38.

[10] R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” TC, 1986.

[11] R. Wille and R. Drechsler, “BDD-based synthesis of reversible logic for
large functions,” in DAC, 2009, pp. 270–275.

[12] L. Macchiarulo, L. Benini, and E. Macii, “On-the-fly layout generation
for ptl macrocells,” in DATE, 2001, pp. 546–551.

[13] A. Mukherjee and M. Marek-Sadowska, “Wave steering to integrate
logic and physical syntheses,” TVLSI, vol. 11, no. 1, pp. 105–120, 2003.

[14] C. Scholl and B. Becker, “On the generation of multiplexer circuits for
pass transistor logic,” in DATE, 2000, pp. 372–379.

[15] S. B. Akers, “Binary decision diagrams,” TC, vol. 27, no. 6, pp. 509–
516, Jun. 1978.

[16] R. Drechsler, M. Kerttu, P. Lindgren, and M. Thornton, “Low power
optimization techniques for BDD mapped circuits using temporal cor-
relation,” Canadian Journal of Electrical and Computer Engineering,
vol. 27, no. 4, 2002.

[17] M. Sauerhoff and I. Wegener, “On the complexity of minimizing the
obdd size for incompletely specified functions,” TCAD, vol. 15, pp.
1435–1437, 1996.

[18] A. L. Oliveira, L. P. Carloni, T. Villa, and A. L. Sangiovanni-Vincentelli,
“An implicit formulation for exact BDD minimization of incompletely
specified functions,” in VLSI: Integrated Systems on Silicon, L. C.
R Reis, Ed. Springer US, 1997, pp. 315–326.

[19] T. R. Shiple, R. Hojati, A. L. Sangiovanni-Vincentelli, and R. K.
Brayton, “Heuristic minimization of bdds using don’t cares,” in Proc.
of DAC, 1994, pp. 225–231.

[20] S. Venkataramani, A. Sabne, V. J. Kozhikkottu, K. Roy, and A. Raghu-
nathan, “SALSA: systematic logic synthesis of approximate circuits,” in
DAC, 2012, pp. 796–801.

[21] D. Shin and S. K. Gupta, “Approximate logic synthesis for error tolerant
applications,” in DAC, 2010, pp. 957–960.

[22] ——, “A new circuit simplification method for error tolerant applica-
tions,” in DATE, 2011, pp. 1566–1571.

[23] K. Ravi, K. L. McMillan, T. R. Shipple, and F. Somenzi, “Approximation
and decomposition of binary decision diagrams,” in DAC, 1998.

[24] F. Somenzi, “CUDD: CU Decision Diagram package-release 3.0.0,”
University of Colorado at Boulder, 2015.

[25] T. R. of the University of California, “Espresso,” https://embedded.eecs.
berkeley.edu/pubs/downloads/espresso/index.htm.

[26] R. K. Brayton, A. L. Sangiovanni-Vincentelli, C. T. McMullen, and
G. D. Hachtel, Logic Minimization Algorithms for VLSI Synthesis.
Norwell, MA, USA: Kluwer Academic Publishers, 1984.

https://embedded.eecs.berkeley.edu/pubs/downloads/espresso/index.htm
https://embedded.eecs.berkeley.edu/pubs/downloads/espresso/index.htm

