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ABSTRACT
In this paper we introduce the novel framework Yise for repre-

senting logic. Unlike the conventional approaches, Yise uses a Y-
Inverter Graph (YIG) to represent the Boolean network at hand.

Such a YIG represents Y-functions, which are single output, six

input Boolean functions composed of three majority functions con-

nected in a triangular (Y) fashion. We show that YIGs are a super

set of the well-known and very successful logic representation

data-structures AND/OR/Majority/Inverter Graphs which include

AIGs and MIGs. Our results on a wide range of benchmarks show

very compact representations of the logic without compromising

system requirements. Up to 33% reduction in the node count can

be achieved compared to AIGs without increasing the number of

logic levels.
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1 INTRODUCTION
Logic synthesis is a crucial step for the design of today’s and future

VLSI systems. Hence, the performance of the implemented design

in terms of area, power and timing, highly depends on the quality

of the logic synthesis step. In order to achieve this, the synthe-

sis tool requires a compact representation of the Boolean network.
Throughout the history of Electronic Design Automation (EDA),

several forms of Boolean networks have been used such as Sum-of-
Products (SOP), Binary Decision Diagrams (BDD) [5], And Inverter
Graphs (AIGs) [11], and recentlyMajorty-Inverter Graphs (MIGs) [1].

However, the circuit sizes and the complexity of the designs con-

tinue to increase in accordance with the Moore’s law, and this puts

a high demand on the EDA tools to improve.

Another challenge for EDA is to cope up with the emerging tech-

nologies of the future. These are the novel devices and fabrication
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technologies that are expected to be mainstream once the beyond
CMOS era starts. Examples for such technologies are quantum dot

based logic [16], spintronics logic devices [17], DNA based logic [9],

resistive RAM devices [12] etc. Several of these technologies depend

on median algebra since the fundamental device is best described as

amajority voter, rather than a digital switch. Even though there is a

considerable amount of research in this field, EDA tools developed

for these technologies are still in infancy.

In this paper we propose to use Y-Inverter Graphs (YIGs) for rep-
resenting logic. A YIG is a Directed Acyclic Graph (DAG). A node in

the YIG, called Y-gate, represents a single output, six input Boolean

Y-function with optional inversions at the inputs and the output.

A Y-function consists of three majority functions connected in a

triangular (Y) fashion. As a proof-of-concept we have implemented

the YIG framework Yise1. We show that YIGs compactly represent

Boolean networks by comparing them to the state-of-the-art data

structures.

The remainder of this paper is structured as follows. In Section 2,

the necessary background for this work is discussed. The details

about YIGs and the developed framework Yise are provided in

Section 3. In Section 4 the experimental results are given. The

concluding remarks are provided in the final section.

2 BACKGROUND
A Boolean network is a DAG where nodes (vertices) represent logic

gates or Primary Inputs/Primary Outputs (PIs/POs), and edges rep-

resent wires that form the interconnection among the gates. Note

that in a general Boolean network representation edges and nodes

can have polarity showing inversion. An And-Inverter Graph (AIG)

is special Boolean network where each node is an AND gate with

two inputs and one output [11]. For AIGs the number of nodes corre-

spond to the area of the technology independent synthesized circuit

and the maximum level of the AIG correspond to the delay of the

same. Note that the maximum level is alternately called the longest
path or height of the AIG. This number represents the maximum

distance in terms of number of nodes from any primary input to

any primary output. AIG is the state-of-the-art logic representation

choice for several synthesis tools [6, 11].

Another special type of DAG which is popular in EDA tools is

Binary Decision Diagram (BDD) [5]. BDDs are formed by apply-

ing Shannon decomposition for the considered Boolean function.

Reduced Ordered Binary Decision Diagram (ROBDD) are the canoni-
cal version of BDDs where no sub-BDD is represented more than

1Yise package is publicly available at: https://gitlab.com/arunc/yise

https://doi.org/10.1145/3127041.3127065
https://doi.org/10.1145/3127041.3127065


MEMOCODE ’17, September 29-October 2, 2017, Vienna, Austria Arun Chandrasekharan, Daniel Große and Rolf Drechsler

once. For the remainder of this paper, “BDD“ stands for ROBDD.

BDDs are unique to a given input variable order. Hence, the logical

equivalence of two designs can be easily determined by comparing

the BDDs of both functions for a fixed variable order. Note that in

contrast an AIG is fundamentally non-canonical.

3 Y-INVERTER GRAPH AND YISE
As mentioned before we introduce a new class of Boolean network

called Y-inverter graph (YIG) based on majority logic. We study and

compare the results obtained with YIG with other forms such as

AIG and BDD. The Y-inverter graph and its properties are explained

in the this section, followed by the details on our framework Yise.
The experimental results and the comparison with other DAGs are

provided separately in Section 4 after this.

3.1 Y-Inverter Graph
A Y-inverter graph is a homogeneous Boolean network with 6-

inputs and 1-output where each node represent a Y-function. If we

represent the majority function of variables a, b and c using the

notation

⟨a,b, c⟩ := ab + bc + ca, (1)

a Y-function from the 6 input variables a, b, c, d, e, f is given by the

formulation

y(a,b, c,d, e, f ) = ⟨⟨a,b, c⟩, ⟨b,d, e⟩, ⟨c, e, f ⟩⟩ (2)

Figure 1: Y-gate visual repre-
sentation

i.e., Y-function is formed

using the majority of three

majority functions. We fol-

low the notation used

in [8] for majority and

Y-functions. The inter-connections

of the edges a,b, c,d, e and
f can be easily visualized

with the help of Fig 1. The

three majority gates con-

sisting of ⟨a,b, c⟩, ⟨b,d, e⟩
and ⟨c, e, f ⟩ form the three

triangles shown in shaded

color. Each of these smaller

triangles form a 3-input

majority function with in-

puts at the vertex of the tri-

angle. The output of these three majority gates are further given

as input to a next level of majority gate to form the final output. A

Y-gate is formed with Y-function as the node and optional inver-

sions in the inputs and outputs. The Y-inverter graph is composed

of only Y-gates. We now consider some properties of YIGs.

A YIG can represent several other Boolean networks such as

Majority-Inverter Graph (MIG), And/Or-Inverter Graph (AOIG) and

And-Inverter Graph (AIG). This is formally stated as follows:

Theorem 1. YIG ⊃ MIG ⊃ AOIG ⊃ AIG

We provide the proof for the first part of Theorem 1 here, i.e.,

YIG ⊃ MIG. We refer to [8] for the remaining part of the theorem.

Proof. From the definition of YIG in Equation 2,

y(a,b, c,d, e, f ) = ⟨⟨a,b, c⟩, ⟨b,d, e⟩, ⟨c, e, f ⟩⟩

Now, assign d = c , e = a and f = b:
y(a,b, c, c,a,b) = ⟨⟨a,b, c⟩, ⟨b, c,a⟩, ⟨c,a,b⟩⟩ = ⟨a,b, c⟩

□

In other words we have shown that a YIG node can contain

any 3-input majority gate (MIG). An MIG node contains an AOIG

node and is an universal representation [8]. Hence, together with

Theorem 1 we get the following

Corollary 1. YIG is a universal representation form.

Therefore, a YIG is sufficient to implement any Boolean function.

Besides, a single Y-gate (node) can compactly represent several

popular Boolean functions such as any 3-input majority gate or any

3 (or 2) input and-or-inverter gates
2
. Note that a basic primitive in

MIG, AOIG or AIG cannot contain a YIG primitive. Furthermore, the

three input form of the AND and OR logic gate cannot be contained

in a single MIG node, but only in a single YIG node.

There are several other interesting properties of Y-functions:

A Boolean function f is self-dual when it satisfies the property

f (x1,x2,x3, ...,xn ) = f (x1,x2,x3, ...,xn ). Y-functions are self-dual [8].

This property is important in technologies such as quantum-dot

cellular automata where the cost of the inverter is significant [10].

It allows to reduce the inverter count significantly by transferring

the inversions from the input side to the output side or vice-versa.

A Boolean function f is positive (negative) unate in x if and only if

there exists a normal form of the function in which x does not ap-

pear complemented (uncomplemented) [15]. Y-functions are unate

in all of its arguments. Furthermore, Y-functions have strong error

correction properties. As an example, from the Equation 2, when a
= d and c = e, any error in the input f does not affect the output of

the Y-gate. However, in comparison with a BDD, a representation

based on YIG is not canonical.

The number of nodes in the YIG corresponds to the area of the

technology independent synthesized circuit and the maximum level

of the YIG corresponds to the delay of the circuit
3
.

3.2 Yise
Yise is a YIG framework built entirely using Y-functions. Yise has
been developed in C++. Currently Yise can read in a circuit, con-

vert it into an equivalent YIG representation and write out the

synthesized results in Verilog format. We also provide a textual

representation of the YIG. The textual format follows the recom-

mendations in [14].

Yise uses a Boolean matching algorithm to convert the input

design specification to a YIG. This approach is illustrated in Algo-

rithm 1. The algorithm uses a pre-computed look-up table
4
com-

prising of the functions (in terms of truth-table) for all the input

variable combinations of the Y-function. Each of these functions

is mapped to an optimal representation of Y-gates in the look-up

table. Note that this mapping is computed offline and stored in

Yise as a hash table. This Y-function map is shown in Algorithm 1

as Y_FunctionTable yt, and is an input to the algorithm. The de-

sign is parsed and the corresponding DAG is formed (Line 3 in

2
i.e., both 2-input and 3-input AND, NAND, OR, NOR gates.

3
In this work, we restrict ourselves to CMOS technologies that follow Boolean logic.

Other post CMOS devices are left for future work.

4
We use NPN-classification [4] to generate the look-up table.
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Algorithm 1). Further 6-input sub-graphs (cut-set of the DAG) are
enumerated in the design in the reverse topological order starting

from the primary outputs and ending at the primary inputs. The

local function of each of these sub-graphs is computed and matched

with the stored Y-function hash table (Lines 4, 5 and 6). The best

Y-gate representation is selected from this hash table correspond-

ing to a given local function and the YIG is constructed from these

Y-gates (Lines 7 and 8). Finally the algorithm returns the complete

YIG representation of the input design.

Algorithm 1 Yise YIG construction

1: function create_yig ( Design f , Y_FunctionTable yt )
2: set yiд← initialize ()

3: set daд← parse_design ( f )

4: set cuts ← enumerate_six_input_cuts ( daд )

5: for each C ∈ cuts do
6: set l ← local_function ( C )

7: set y ← select_best_graph ( l ,yt )
8: set yiд← add_to_yig ( y )

9: end for
10: return yiд
11: end function

We explain next the experimental results obtained using Yise.

4 EXPERIMENTAL RESULTS
We have used a wide range of standard benchmark circuits to eval-

uate Yise. The evaluation is carried out in the number of nodes, the

maximum level of the YIG graph and the time taken to synthesize

a given circuit. The experiments have been carried out on a laptop

computer running Ubuntu 16.04 edition Linux with Intel Core-i5

CPU. We have taken five different standard benchmarks from the

EPFL circuits [2], ISCAS-85 [7], LGSynth-91 [18], arithmetic circuits

from [3] and the circuits distributed as part of [14]. All the results

obtained using Yise are formally verified to be equivalent with the

initial circuit specification.

4.1 YIG Comparison with AIG
In this section we compare the results obtained using Yise with
ABC [11], which heavily uses AIGs. These results are summarized

in Table 1. The general structure of Table 1 is as follows. The first

three columns give the circuit details such as the name of the circuit

and the number of primary inputs/outputs. The next two columns

provide the number of nodes and the maximum level of the AIG

graph. After this the corresponding numbers for the YIG obtained

using Yise is provided, followed by the relative reduction in the

number of nodes. Recall that the number of nodes represent the

area of the technology independent circuit and the maximum level

corresponds to the delay.

The number of nodes and the maximum level for YIG is same

or better than AIG in all the circuits reported. For several arith-

metic circuits such as adders and multipliers the reduction is more

pronounced (see for e.g., results from set:4 in the Table 1). The

multipliers (Array, Wallace and Dadda) in set:4 have a reduction in

the node count of more than 30%. This has to be expected since an

important section of the logic in these circuits consists of majority

function which are represented very compactly using YIG.

4.2 YIG Comparison with BDD
A comparison of YIG generated using Yise package and BDD bench-

marks taken from [13] is given in Table 2. The first three columns

of the Table 2 are circuit name, number of primary inputs, outputs.

The next column is the BDD node count followed by the YIG node

count. It can be easily seen that YIG outperforms BDD. There is

a significant difference in the number of nodes between YIG and

BDD. However, note that as mentioned before BDDs have a very

important property of canonicity, which YIG lacks. The Table 2 is

sufficient to show the general trend. Hence, further evaluation is

omitted due to lack of space.

4.3 Scalability and Run Time
Yise takes about 1 sec CPU time to read in and write out the results

for most of the circuits in Table 1. Note that the EPFL benchmarks

(set:1) are among the biggest combinational benchmarks publicly

available. Furthermore, the arithmetic circuits given in set:4 in-

cludes large multipliers such as 128-bit array multiplier. The biggest

circuit evaluated with Yise is the hypotenuse from EPFL (set:1, 4
th

entry on the right side of Table 1). This circuit with a node count

over 200K Y-gates is synthesized under 2 sec.

5 CONCLUDING REMARKS
The results confirm the potential of the introduced Yise package.
Yise can generate a compact representations of logic using YIGs in

very short run times.

There are several directions of future work. One main aspect

is to extend the Yise framework with a technology mapper and

optimization techniques. Using Yise for novel technologies such as

quantum dot is also another important direction.
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Table 1: Comparison of YIG vs AIG
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