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Abstract—The identification of power-risky test patterns is a
crucial task in the design phase of digital circuits. Excessive
test power could lead to test failures due to IR-drop, noise,
etc. This has to be avoided to prevent yield loss and chip
damages. However, the accurate power simulation of all test
patterns to identify power-risky patterns as well as to find
critical areas within each pattern is not possible due to run
time and resource constraints. An important task is therefore
the selection of a subset of potentially power-risky patterns,
which will be simulated in an accurate manner. In this paper,
we propose an independent test pattern analysis methodology
for the integration into an existing industrial design flow. The
proposed test pattern analysis technique is a lightweight method
based on the cell’s Transient Power Activity (TPA) to identify
potentially power-risky patterns. The method uses layout and
power information to identify critical power activity areas using
machine learning techniques. Experiments were performed on
opensource benchmarks as well as on an industrial design. The
results were correlated with commercial power and IR-drop
simulation tools. The proposed methodology was found to be
effective in terms of speed and localization of the critical areas
for unsafe patterns.

I. INTRODUCTION

Power safe testing has become very important in the de-
velopment and manufacturing of state-of-the-art circuits. The
high density and reduced feature sizes in integrated circuits
make testing of manufactured IC’s more difficult. Tools for
Automatic Test Pattern Generation (ATPG) generate high
quality test patterns in terms of test coverage, test data volume
and testing time. However, the generated test patterns can have
a larger amount of transitions as compared to the functional
mode. This may result in damaged devices or false testing
results, which, in turn, reduces the yield. Typically, ATPG
tools use the Weighted Switching Activity (WSA) metric to
approximate the power consumption of test patterns. Basically,
the WSA metric sums up all toggles on signals and branches.
The ATPG tool usually does not consider any technologi-
cal information during test generation due to the increase
in complexity and the ATPG run time. Some of the high
quality test generation methods consider the WSA as criteria
for low power pattern generation, peak power drop and IR-
drop estimation [15], [18]. Other test generation techniques
also consider probabilistic information and constraint based
approaches for low power test generation [2], [17]. The WSA
is mostly indicated in term of numbers, rating the patterns and
some commercial tools provide this information in terms of
percentage of the maximum WSA value.

The WSA metric is highly approximate and is insufficient
for power estimation and IR-drop analysis. The analysis has
to be done separately in the design flow and is a very
important signoff stage in the industrial tool flow to find unsafe
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and power-risky patterns. However, there are the following
problems, which are addressed in this paper:

e An accurate test power analysis is highly time-
consuming. The power as well as IR-drop analysis tools
perform rigorous calculations with the help of cell and
technology libraries. In practice, this accurate simulation
is only possible for a few test patterns due to run time
constraints in the later development stage.

o The pre-selection for test patterns, which are to be accu-
rately power-simulated is mainly based on approximate
metrics such as WSA or even done randomly. However,
the existing approximation metrics are not dependable
enough. Therefore, there is a need for a more effective
and dependable as well as a fast metric for pattern pre-
selection.

« Besides the general global switching activity, the identifi-
cation and incorporation of localized peak power estima-
tion becomes more and more important within the pattern.
The power critical areas or concentrated switching activ-
ity areas on the layout need to be identified dynamically
on the layout.

In this paper, we propose a lightweight method to grade
the generated test patterns based on the cell library power
information for the rise and fall transitions separately. These
factors play an important role during the calculation of the
proposed Transient Power Activity (TPA) value for each gate
as well as for each pattern. The different number of rise
transitions and fall transitions, thereby affects the calculation
of the TPA value. Other approximation metrics such as WSA
consider typically only the toggling information on the gate’s
output and (sometimes) weights it with the load capacitance or
power-rail information [17]. The WSA calculation neglects the
input transitions of the gate and the gate’s internal switching.

The proposed method uses also the toggling number (as
WSA) but is also input-dependent and, by this, reflects more
the internal switching of the gate by using technology in-
formation. This method can therefore be used to pre-select
potentially unsafe patterns for accurate simulation. Another
important aspect to consider is the locality of the power
consumption. The proposed approach uses layout information
to correlate the determined TPA values to the actual circuit
layout. Machine learning techniques, i.e. unsupervised clus-
tering techniques, are used to dynamically determine regions
of high-power consumption for each pattern. This enables a
more reliable pattern pre-selection.

Section II discusses related work done in this field. Sec-
tion III presents the proposed TPA metric, while Section IV
shows the dynamic clustering results. The experimental re-
sults are given in Section V and conclusions are drawn in
Section VI.



II. RELATED WORK AND BACKGROUND

Previous approaches for power estimation of test patterns
were mainly based on fanout-based switching activity and
probabilistic measures, which is highly approximate. The
dominant approximation metric is WSA. The WSA of a test
pattern can be calculated in the following way. Each signal in
the circuit is associated to a WSA value. The WSA value
of a node is the number of signal changes multiplied by
(c+ N), where N is the number of fanouts and c is either 1
or represents the load capacitance of the signal. The WSA
value of the circuit is the sum of all WSA of all nodes
for one test. The higher the WSA value of a test, the more
switching is supposed to occur. However, the WSA value is
highly approximate since cell technology information is not
incorporated.

The technique proposed in [13] identifies areas where IR-
drop likely occurs, but it is based on the probability of switch-
ing activity at gate level and does not take the test patterns
into account. The approaches [1], [5], [7]-[10] partition the
circuit pattern-independently in static regions. This uniform
partitioning is disadvantageous because it may not detect the
high power activity areas at borders between the partitions,
e.g. when a high power-consuming region is spread over more
than one static partition. Hence, there is a need to introduce a
dynamic partitioning approach, which clusters the high power
activity areas depending on neighboring instances.

Another approach [19] identifies the peak current to deter-
mine the power-safe patterns. But this approach also partitions
the layout in equal sizes and uses WSA to relate it to
current limits and the WSA threshold. A similar approach
was proposed in [11] to identify the power unsafe patterns
and, afterwards, regenerate safe patterns. However, this method
is based on the WSA metric. A further method for pattern
grading based on WSA for critical paths is used in [12].

In industrial practice, the VCD based power and IR-drop
simulation is performed for various scenarios for functional
as well as test mode. But such kind of simulations are not
feasible for all test patterns because of the required run time
in a late design phase. Hence, a pre-selection of the worst and
potentially risky test patterns is required.

III. TRANSIENT POWER ACTICITY

This section introduces the TPA metric to assess the power
dissipation of a test pattern. During IC development, cell
libraries and technological data are used for the analysis
of the design. These data contain information about timing,
power, functionality, area, drive strength etc. The information
is extensibly used for the design automation and analysis
process by various EDA tools, but typically not for WSA
calculation. The goal is to correlate this information to a
switching activity based metric which takes the cell’s internal
switching into account. This makes it more accurate, but it
still can be calculated very fast.

The cell power analysis boils down to the basic concept of
power dissipation in digital circuits [14]. The total power is
a combination of static power and dynamic power. The static
power is small and mostly technology-dependent, while the
dynamic power is dependent on the transitions in the cell
and may vary according to the technology used and shown
in Equation 1: )
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TABLE I: Comparison of Switching Power, TPA and WSA

Design unit | Instances | Toggles | WSA Power TPA
NAND2X1 8 4 32 2749E-08 | 38.2694
NAND8X4 2 4 32 0.986E-08 | 12.3197

The TPA value involves the power factor calculation for
the rise and fall transitions for each pin of each cell from the
technology library to account for the cell internal switching.
For each cell ¢ and each pin p., the Rise transition Power
Factor (RPF,,) as well as the Fall transition Power Factor
(FPF,,) are extracted.

Each and every design unit instantiated in the design has
its reference to the base cell and technology library for which
these factors are calculated. These calculated power factors
are used along with the number of rise and fall transitions
occurring at each pin of each cell in the design to calculate
the TPA value of the instantiated design unit. Therefore, logic
simulation has to be carried out for each test ¢ to record the
number of rising transitions (R, ) as well as falling transitions
(F'tp,) on each pin p, which can be done using ATPG tools
or with an accurate simulator considering timing information
to account for glitches. The TPA value TPA; for a test ¢ is
calculated for each shift cycle as well as for the capture cycle.

TPA; = Y Y (RPF, x Rt,)+ (FPF,, x Ft,) (2)

Instance Pin

This calculation gives more accurate information related to
transient power activity in each cell for each test pattern as
compared to WSA, which is based on the fanout number and
toggles at the gate’s output. Example values for a D flipflop
cell are illustrated in Figure 1. The standard D flipflop is shown
in the figure along with the rise and fall time variations in
voltage, which results in different power consumption during
rise and falling edges. The (rise and fall) power factors are
calculated based upon these different behaviors. In contrast
to this, WSA does not distinguish between rise and fall
toggles which makes it more inaccurate. Furthermore, the
power factors have a quadratic function similar to the power
consumption, while the WSA calculation uses a linear function
based on the fanout.

As a further example, a comparison between WSA and
TPA calculation is made for two gates cells, i.e. NAND2X1
and NAND8X4, which have a driving strength of 1 and 4,
respectively. Assume that the first cell occurs 8 times and the
second cell occurs 2 times, respectively. Further assume that



Fig. 2: Proposed methodology and flow

one test pattern produces 2 rise as well as 2 fall transitions on
the outputs, i.e. 4 toggles. As a result, the WSA of both is 32
and exactly the same. But the switching power consumed by
them is different since the technology data is different. This is
accounted for using TPA. As a result, the TPA metric is more
accurate than WSA.

Figure 2 shows the major blocks of the proposed TPA
analysis and the incorporation into an existing design flow. The
upper part shows the input of the proposed analysis, e.g. the
design files, reports and libraries. All information is processed
together to estimate the worst pattern and power critical areas.
The lower part shows the integration of the proposed analysis
in the design flow. It can be applied after the ATPG step, when
the test patterns have been generated. For localizing critical
areas, layout information has to be available. In summary, the
following procedure is used to calculate the TPA values of a
test set for pattern selection.

1) Extract the power factors for each cell and pin from the
process technology data. Store them in a look-up table.

2) Simulate the generated test set with a circuit simulator
(shift cycles and capture cycle). Record the number of
rise and fall transitions for each instance and pin for
each pattern. This can be further extended by using SDF
timing information.

3) Calculate the TPA value for each pin of each instance
using the RPF and FPF of the corresponding cell.

4) Sum up the TPA values for each pattern and cycle and
rank the pattern based on these results.

The difference between TPA and WSA ranking is further
illustrated by an example circuit. Consider the example design
$27 shown in Figure 3, which includes one scan chain with
3 scan flipflops and 16 other gates. In total, 9 patterns were
generated for 150 stuck-at faults. These patterns were analyzed
and rated using the TPA metric as well as the WSA metric.
The difference in the TPA and WSA ranked patterns can be
seen in Table II. For instance pattern3 is ranked highest in
the TPA ranking, but ranked very low in the WSA ranking.
This is especially important since the ranking is crucial for the
pre-selection for an accurate power analysis. The validation of
the TPA ranking will be given in Section V.

TABLE II: Pattern ranking for s27 design

Pattern TPA WSA | TPA_rank | WSA_rank
pattern0 | 7.786393 14 8 9
pattern] 7.993566 29 7 5
pattern2 | 10.707233 35 2 4
pattern3 | 10.891229 25 1 6
patternd | 10.577063 36 3 2
pattern5 8.702493 23 6 7
pattern6 | 6.767385 15 9 8
pattern7 | 9.273815 36 5 3
pattern8 | 9.445467 40 4 1

IV. MACHINE LEARNING BASED CLUSTERING

A ranking of the test patterns for pre-selection based on the
global activity is not always sufficient. Local hot spots have to
be considered, too. Although a test pattern could have a low
or medium global TPA value, there can be regions with high
concentrated power dissipation. Previous approaches account
for this issue by partitioning the circuit layout in static regions.
For each region, the power can be estimated separately, e.g.
using the WSA metric. This cause problems since the regions
have to be determined a priori and are pattern-independent.
The different clustering techniques have been compared in [6].

In this paper, we propose to dynamically divide the layout
depending on the power activity of each pattern using clus-
tering. Layout information is used to assign the cell area and
the corresponding x and y coordinates to each cell instance.
The goal is to cluster all m instances x; = (x1,...2,,) in the
design into k partitions/clusters (k is a parameter given by
the user) such that the function for the centroids or means
mi, Ma, ..., My 1S kept minimum or within cluster sum of
square for dimensions dj.

K
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The centroid is defined as the mean TPA density value of
the clustered instances. The TPA density is defined as the TPA
value divided by the area.

For clustering of the instances depending on their corre-
sponding TPA, we used machine learning based unsupervised
clustering technique, i.e. the k-means clustering algorithm [6],
which is also often applied in image processing [3], [4], [16].
The input data of the algorithm is

o the design netlist and library files for power factors and

the calculated TPA values for the instances

o the X and Y coordinates from the def file of each instance

along with other necessary data from the corresponding
lef file of the design unit

« other algorithm-specific settings like fixed cluster number,

optimal cluster number, distance etc.

The k-means clustering algorithm partitions the layout into
different clusters by aggregating the instances having sim-
ilar TPA density values and are close to each other. The
euclidean distance parameter is considered here for keeping
the function minimum. The TPA density is calculated based
on the TPA value of the instances and their corresponding
area. The outcome of the algorithm is that instances, which
have a similar TPA density and are close to each other
are clustered in one partition. An arbitrary clustering is not
possible because the maximum number of clusters is limited.
The algorithm therefore optimizes the clusters according to
the given objective.

The algorithm assigns the mean value of the TPA density
to each cluster during the computation and gives the values
as a result along with the mean X and Y coordinates of all
instances in the cluster. These values are considered as centroid



Fig. 3: Schematic of s27 design
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Fig. 4: TPA based clusters of Ethernet design

parameters and characterizes each cluster. This technique
overcomes the drawback caused by static partitioning of the
layout in equal blocks. Another advantage is that the border
between clusters are formed such that instances of similar
TPA values belong to the same partition, which is not the
case when manual partitioning is applied. Figure 4 shows an
example clustering for the application of one test pattern of
the OpenCore Ethernet design. Since the TPA density of each
cluster is assigned, critical areas can easily be identified.

V. EXPERIMENTAL RESULTS

The experiments were performed on benchmarks circuits,
i.e. OpenCores. We also verified the results on an industrial
design using commercial tools within the design flow. The test
patterns are generated and simulated using commercial tools.
The power and IR-drop simulation were also performed in
the industrial environment for the physical netlist using 40nm
technology. For the OpenCores designs, a 180nm open source
library was used. The clustering was done using Python.

TABLE III: Results for open source Ethernet design

Pattern TPA WSA

pattern14 | 16865210.3625013 | 5907618
pattern8 16768852.6945524 | 6162904
pattern20 | 16682560.0135287 | 5704496
pattern38 | 16588545.5000258 | 5548111
pattern19 | 16518086.7604578 | 5006614
patternlT | 16482947.6841785 | 4661280
pattern30 | 16467017.7488741 | 5030147
pattern36 | 16459723.6733557 | 4954547
pattern34 | 16421653.9829964 | 4787670
patternd4d | 16354071.8754795 | 4401100

Table III shows experimental results for the OpenCore
design Ethernet which has 10544 scan cells arranged in 19

scan chains. The table shows both values of TPA and WSA
for the top-ranked patterns. It can be seen that both procedures
rank the test patterns differently. Especially the highest ranked
pattern is different. Experiments on other benchmark circuits
(not given here due to page limitation) confirm the differences
of both rankings.

In order to validate the TPA ranking, we applied the
proposed approach to an industrial design. Figure 5 shows
the variation of the calculated TPA and WSA for the industrial
design, which has 13114 scan cells arranged in 34 scan chains
and total 176230 gates. The test patterns are ordered according
to the TPA value. The yellow line shows the TPA value,
while the blue line gives the WSA value of the capture cycle.
The peaks of the blue line indicate the differences in both
pattern ranking schemes. Even in an industrial environment,
the accurate simulation of all patterns is not feasible. The run
time for a single pattern can last a few days or even a week.
The TPA as well as WSA values have been calculated for
all generated test patterns. Then, the highest ranked TPA and
WSA patterns have been selected for an accurate analysis, i.e.
dynamic power and IR-drop analysis.

The capture power cycle of the test patterns has been
analyzed in detail using a commercial tool. This took around
1 hour per test pattern depending of the time frame accuracy
and step size. The run time of the TPA-based analysis took
only about one minute for each test pattern considering all shift
cycles and the capture cycle. Therefore, the proposed approach
is significantly faster and able to analyze all patterns which
makes it suitable for pattern pre-selection.

The results are given in Table IV and V in which patterns
are rated according to TPA and WSA. Column Pattern gives
the pattern id, while columns Switch_power, TPA, WSA give
the results of the corresponding analysis method and columns
SPR, TPAR, WSAR gives the position in the ranking of the
corresponding power metric, i.e. switching power, TPA and
WSA. The switching power is the power determined by the
accurate commercial tool. The TPA ranking can be better cor-
related with dynamic switching power than the WSA ranking.
It can be seen that the ten highest TPA ranked patterns cover
eight of the ten highest switching power patterns. In contrast,
the ten highest WSA ranked patterns cover only four of the
ten highest switching power patterns.

The results also show that the highest rated WSA pattern,
i.e. P_75, actually consumes less power as compared to the
highest TPA rated pattern, i.e. P_40. This is similar for
other patterns, which are higher ranked but actually consume
less power compared to other patterns. Some patterns are
equally ranked, e.g. P_4. However, the TPA ranking is also
not completely accurate due to its approximation nature, e.g.
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TABLE IV: TPA rated patterns __TABLE V: WSA rated patterns
Pattern | Switch_power TPA WSA | SPR | TPAR | WSAR Pattern | Switch_power TPA WSA [ SPR | TPAR | WSAR
P_40 6.1675E-04 | 431049 | 64,775 | 9 I 4 P_75 5.6223E-04 | 4180.03 [ 70,899 | 15 a4 1
P 387 6ATTTE-04 | 4299.67 | 69348 | 3 ) 3 P_46 3.6001E-04 | 4185.89 | 70,121 | 16 37 7
P_86 6.4580E-04 | 4287.05 | 59,834 | 2 3 61 P_87 6.4177E-04 | 4299.67 | 69,348 | 3 2 3
P_81 5.7924E-04 | 427538 | 65,333 | 14 g 13 P6 6.0450E-04 | 4173.86 | 68,772 | 10 46 1
P_90 58136E-04 | 427321 | 60,427 | 12 3 36 P_5 5.8046E-04 | 424838 | 68,573 | 13 12 5
P 45 6.6046E-04 | 427056 | 65,788 | 1 6 0 P_74 5.9245E-04 | 420791 | 68,191 | 11 24 6
P 1 6.2845E-04 4269.62 | 64,139 6 7 19 P_94 5.4139E-04 4157.30 | 67,440 17 58 7
P4 6.3555E-04 | 4269.19 | 66,501 | 4 3 g P 4 6.3555E-04 | 4269.19 | 66,501 | 4 8 8
P_44 6.3483E-04 | 425417 | 62,850 | 5 Y 30 pP_3 6.2827E-04 | 4241.87 | 65,821 7 4 9
P_36 6.2203E-04 | 4252.88 | 61,183 | 8 10 19 p_45 6.6946E-04 | 4270.56 | 65,788 | 1 6 10

leakage power is not considered during the calculations.

In a further experiment, the localization of concentrated
power dissipation is analyzed. We analyzed the capture cycle
of pattern P_25 using a commercial tool for IR-drop analysis.
Figure 6 shows the IR-drop contour of the layout of the
industrial design as a result, while Figure 7 shows the TPA
cluster map for the same pattern and same cycle. A detailed
analysis of the TPA-based clustering has shown that the
clusters with the high TPA values correlates with the regions
where IR-drop occurs according to the accurate analysis.

Typically, a design-specific threshold (filter) is defined to
identify power-critical areas of the design. More than 67%
of the instances predicted from the TPA-based clustering
approach have been correctly categorized according to the
filter. Figure 8 shows the instance based power density map
for P_25 obtained from the commercial tool, whereas Figure 9
shows the cluster-based TPA density instances. A detailed
analysis of the underlying data has shown that same area and
instances are highlighted in both figures, which indicates the
similarity of the obtained results.

The experimental results have shown that the method cor-
relates well with the accurate simulation data and is therefore
well suited for pattern pre-selection.

VI. CONCLUSION AND FUTURE WORK

The accurate power simulation of test patterns is crucial for
the sign-off stage of modern circuits. However, the accurate
simulation of all patterns is not possible due to excessive run
time. Therefore, there is a need for a method to pre-select tests
for accurate simulation. We have proposed the Transient Power
Activity (TPA) metric which takes technology data into account
and is used to rank the patterns approximately due to their
power dissipation. This method is much faster and, therefore,
well suited for a depdendable pattern pre-selection. Since the
identification of power-critical areas becomes more and more
important, the approach is combined with a machine learning

based clustering approach. Here, dynamic clusters of instances
with concentrated high switching activity can be identified.
Experiments on benchmark circuits and an industrial circuit
showed that the proposed metric correlates well with the
accurate simulation results of commercial tools. Future work
is to consider STA and SPEF information to increase the
accuracy. Also the power-grid has to be taken into account.
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