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Abstract—The engineering expertise has been continuously
increased within the decades such that very complex constructions
are feasible, hence, high-performance structural materials are
strictly required, which fulfill challenging performance profiles.
Conventional material evaluation techniques have reached their
performance limit such that new evolutionary approaches become
increasingly important: A high-throughput screening approach
has been proposed, which mainly operates on micro samples
and applies multiple novel screening techniques to determine
various characteristic values, which both leads to high volume
of multidimensional data. This high volume allows to investigate
many times more new candidates compared to conventional
material development techniques. It is expected that the char-
acteristic values reflect resulting material properties, which are
not directly measurable due to chemical and physical limitations.
Furthermore, the fact that no direct regularities between these
characteristic values and resulting material properties are known,
further increases the complexity of the data processing.

This work proposes a framework, which applies a state-of-the-
art big data processing technique implementing a predictive
function between characteristic values (determined on micro
level) and material properties on macro level. In particular, a
predictive function is implemented by orchestrating a kernel-
based recursive least-squares algorithm, which processes micro
hardness measurement (nano indentation) of micro samples to
predict properties concerning the hardness as well as the yield
strength, yielding to one elementary component of the high-
throughput screening approach.

I. INTRODUCTION

The steady enhancement in engineering expertise has en-
abled constructions with a significantly increased complexity,
which affects nearly all fields of everyday life. Powerful
structural materials are required to realize such complex
constructions to ensure a long durability even in detrimental
applications, e.g., in automotive or in aerospace systems. This
means that the involved structural materials have to fulfill
certain performance profiles, i.e., the material has to exhibit
a set of specific material properties like the hardness, the
elongation or the yield strength. In fact, some of these material
properties are known to correlate with each other, e.g., a linear
relationship between hardness and strength as shown in [1],
[2]. Standard screening techniques to determine the hardness
and the strength differ in testing time and complexity. Thus,

finding relationships between material properties and swapping
screening techniques can significantly reduce the testing effort.
Furthermore, the specimen complexity, as required for tensile
tests, can be avoided when using hardness measurements tech-
niques, e.g. the instrumented nano indentation. Thus, using this
kind of screening data to identify a suitable structural material
with improved properties, forms an important objective.

Within the last decades, different alloys have been iden-
tified and have proven themselves for certain applications. In
particular in combination with suitable heat treatments, those
alloys obtain improved material properties. Adding further
chemical additives to the conventional alloying constituents is
one possible and commonly used technique to further improve
the performance of the resulting material. For instance, the role
of anion additives in the well-known nickel-cobalt system is
investigated in [3]. These technical alloys allow to enhance
specific properties, however, the high number of different
alloying elements and, consequently, the reciprocal influences
between these elements are not completely understood. Thus,
this fact leads to unpredictable side effects, e.g., an increased
tendency towards fatigue crack initiation and propagation [4].

A more promising strategy to improve the resulting prop-
erties aims to avoid any chemical additives but focuses on
the primary alloy elements by varying the mass fraction (of
an individual alloy element) as well as changing the manu-
facturing and treatment parameters, respectively. For instance,
a naive approach can start from a known alloy system and
adjust the phase transition while manufacturing and induce
certain properties by postponed heat treatments. However,
using such a conventional approach leads rather to slightly
improvements than to significant breakthroughs. This is due
to the low number of investigated influencing parameters,
compared to the enormous imaginable search space, i.e., the
huge number of possible different combinations of parameter
sets. The identification of beneficial parameter sets is a time-
as well as resource-intensive task.

To meet these challenges, a high-throughput screening
technique is proposed in [5], which aims at exploring new
structural materials fulfilling challenging performance profiles.
In particular, a high-throughput flow, which operates at the
micro level is established, which includes the manufacturing,



the post-processing and the screening of micro samples. These
micro samples only enable the high-throughput character as
well as the cost-effectiveness. More precisely, in [5] micro
samples are manufactured and, subsequently, thermally and
mechanically treated in a certain way, which is both specified
by the process parameters. At the end, a set of process
parameters is pursued, that can be used to fabricate a structural
material with the desired performance profile.

By following the proposed scheme, a set of revolutionary
screening techniques is applied on these micro samples, in
which novel mechanical as well as electrochemical character-
istic values, e.g., the conductivity or the X-ray diffraction, are
measured. It is assumed that these characteristic values deter-
mined on micro level reflect certain macro-material properties,
whose direct measurement is not possible on micro level and –
so far– no correlation from material-scientific point of view is
known. Thus, advanced data processing techniques must be
applied to (1) project these screening data to the resulting
material properties, (2) evaluate the current material properties
against the desired performance profile and, especially, (3)
in case of high deviation, identify a set of most promising
process parameters, which leads to structural materials ful-
filling the given performance profile. Invoking this proposed
scheme leads to a significant amount of multidimensional data,
which is due to the high-throughput character and the multiple
measurements being applied within the screening process. In
particular, processing this high volume of multidimensional
data is one of the most crucial steps as outlined in [6].

This work proposes an approach to reveal unknown nexuses
between screening data of micro samples and resulting material
properties on macro level, which are not directly measurable.
More precisely, experimental data from hardness measure-
ments on micro as well as macro level [7] are exemplarily
investigated to, finally, realize a predictive function that allows
to project these characteristic values (experimental data) to
hardness and elastic macro-material properties. This predictive
function is one important step towards the evolutionary high-
throughput approach [5] leading to superior structural material,
as depicted in [6].

The structure of this work is as follows: Section II
briefly introduces the high-throughput approach. Section III
describes the basic principle of the investigated screening type,
the instrumented nano indentation method and the invoked
regression-based algorithm. An abstract overview of the pro-
posed data processing frame is presented in Section IV. The
experimental evaluation is presented in Section V. Finally, in
Section VI some conclusions are drawn and an outlook on the
further proceeding is given.

II. HIGH-THROUGHPUT APPROACH

This section describes the high-throughput screening ap-
proach [5], that aims to explore superior structural materials,
which exhibit certain material properties such that a chal-
lenging performance profile is fulfilled, enabling new highly
complex constructions.

In particular, the high-throughput approach identifies unin-
vestigated process parameter sets, i.e., chemical compositions
in combination with specific parameters for the thermal and

mechanical treatment, which potentially lead to a structural
material with enhanced material properties. These promising
process parameters are determined by a data-driven algorithmic
flow, which invokes a clever orchestration of different tech-
niques within a feedback system.

This basic principle of this system is shown in Fig. 1 and
consists of the following steps:

1) A set of process parameters forms the basis for the
synthesis as well as the thermal and mechanical treatment
of newly generated micro samples.

2) Different screening techniques are applied on the newly
synthesized micro samples to determine characteristic
values, which are fed into the predictive function to
determine the expected material properties.

3) The predicted material properties are evaluated with re-
spect to the desired performance profile by invoking
certain relational operators.

4) If these properties deviate significantly from the per-
formance profile, new process parameters are calculated
by an optimization-based search engine. Otherwise, the
process parameters are used to synthesize the superior
structural material on macro level.

5) The output of the optimization-based search engine is
coupled with a state-of-the-art experimental design proce-
dure such that any prevalent inaccuracy as well as process
variation (due to the fabrication) are addressed. This step
determines a new promising set of process parameters,
who controls the fabrication of further micro samples [cf.
1)], i.e., the feedback is approached.

Fig. 1: High-throughput screening approach [5], [6]

Besides the stated Steps 1) to 5), the predictive capabilities
are continuously evaluated and, if necessary, new correlated
experimental data on macro level are conducted. These data
provide new grid points in the function that increases the pre-
diction quality. These new grid points are deliberately proposed
by a postponed algorithmic flow [6], [8]. As presented in [6],
it is planned that various screening techniques besides nano
indentation are utilized to determine the characteristic values,
for instance, impact tests, dilatometry, (cyclic) micro compres-
sion, micro magnetic and machining and X-ray diffraction.
Furthermore, it is assumed that these characteristic values
reflect important material properties concerning the hardness,
the yield strength, the tensile strength, the fatigue strength, the
elongation, the Young’s modulus as well as the density of the
resulting structural material.

One central and challenging aspect of this flow is to
implement the predictive function, which has to cope with a



high volume of multidimensional data. Furthermore, a compre-
hensive analysis is required to identify nexuses between the
characteristic values and predicted material properties. This
is due to the fact that, so far, neither chemical nor physical
relationships are known.

III. BASIC PRINCIPLES

This section presents some brief information about the
utilized screening technique, namely the instrumented nano
indentation. Furthermore, the basic principle of the regression-
based algorithmic basis is described.

A. Nano Indentation Screening

The hardness of a material is defined as resistance against
penetration. In comparison to standard hardness testing, micro
hardness testing, e.g., the instrumented nano indentation, is ap-
plicable to very small or thin samples. The used testing device
for the instrumented nano indentation, the Fischerscope R©
H100C [9], utilizes a Vickers pyramid made of diamond as
an indenter [cf. Fig. 2(a)]. On top of that, the instrumented
nano indentation offers the possibility to not only investigate
the plastic but also the elastic material behavior while con-
stantly measuring the penetration depth h at the given load
F [cf. Fig. 2(b)]. The measured Martens hardness HM , the
characteristic value of the nano indentation testing, is calcu-
lated by dividing the maximum load in the indentation curve by
the contact surface, determined from the maximum penetration
depth. The actual indenter’s tip geometry (measured in SEM )
is taken into account by using an additional shape correction.

Only small insecurities in the analysis of results exist in the
instrumented indentation testing method, which is due to the
fact that no optical measurement of the remaining indentation
is required. With the available optical device, several samples
can be located in advance and are automatically approached
and tested with regard to a high-throughput experiment.

B. Regression-based Technique

The proposed framework focuses on experimental data,
which have been generated by nano indentation experiments,
i.e., by micro hardness measurements. On basis of these
processed data, the following material properties are predicted:

• the hardness values HV following the Vickers
method [10],
• the yield strength Re, which is a characteristic value for

the elastic-plastic behavior of a material determined out
of tensile tests.

This framework provides a basis for further extensions,
e.g., the support of further screening types or enhanced predic-
tion capabilities of other material properties as intended in [6].

Definition 1. Let S be the set of different screening techniques,
which are applied on the micro samples, then the archetype
of Ψ holds #S dimensions spanning and let be P the set
of investigated material properties, then the image holds #P
dimensions. Here, the different screening techniques can be
interpreted as the available features, hence, the given dimen-
sionality spans the feature space.

Then, the predictive function Ψ is defined as Ψ : R#S →
R#P . Furthermore, a complete measurement of all screening
techniques leads to a feature vector vs ∈ R#S and vp ∈ R#P

describes the material profile, i.e., a set of exhibited material
properties.

The core of this framework consists of the predictive func-
tion Ψ, which is formally stated in Definition 1: Ψ identifies
nexuses between the screening data and the resulting material
properties, which enables the actual prediction. Due to the
fact that no exact relationships are known from a material-
scientific point of view, an approximation of a given feature
vector relating to the resulting material profile is required.
In particular, Ψ implements a state-of-the-art regression-based
technique, which invokes a derivative of the frequently used
Least-Squares algorithm, more precisely, a Recursive Least-
Square (RLS) algorithm. This class of algorithms are known to
work well in case of continuous data generation, for instance,
in the field of communication or signal processing [11], which
are both comparable to the data generation of the intended
high-throughput approach [5].

The huge resulting feature space with #S > 40 is a further
aspect, which has to be considered. To meet this challenging
computation, kernel-based approaches have been introduced by
Vapnik in [12], who has shown that the computational problem
is easier when the number of dimensions is increased even
more. However, these initially proposed approaches are not
suitable for continuously data processing. Such a continuity is
given by the high-throughput approach, for instance, by the
continuously evaluation of Ψ and the increasing number of
grid points. This would lead to a complete re-computation of
the kernel-function in a conventional approach [12], which is
not feasible in reasonable time due to the high data volume.

For coping with this challenge of continuous data streams,
the authors in [13] have proposed an online Kernel-based
Recursive Least-Squares (KRLS) algorithm, which extends
the conventional RLS algorithm by utilizing a Mercer’s Ker-
nel [14]. For instance, prominent candidates are polynomial
as well as Gaussian kernel-functions. Thus, such a KRLS al-
gorithm fulfills completely the requirements for implementing
the regression.

IV. IMPLEMENTATION

This section presents some technical implementation de-
tails of the developed data processing framework. As already
stated in Paragraph III-B, the framework bases on a KRLS
algorithm, i.e., a kernel-function is built by processing exper-
imental data corresponding hardness measurements on micro
and macro level.

In [6] an outlook is given on the intended dimensionality of
the screening data as well as the material properties, although
it is necessary that the algorithmic base covers the following
scenarios:

• At least some spare material-scientific nexuses are known
and have to be considered, e.g., a relationship between
specific characteristic values and certain macro-material
properties.



(a) Testing device Fischerscope R© H100C (b) Force-penetration depth diagram in the micro section of a standardized
bearing ball, 1mm (bearing steel SAE52100 (German grade 100Cr6))

Fig. 2: Instrumented nano indentation

• Multiple screening techniques provide potentially con-
tradictory information related to a single macro-material
property.
• An external data analysis leads to hypotheses, which have

to be considered or evaluated, respectively.
• The level of confidence is not equally distributed between

different screening techniques.

To tackle these requirements, it is necessary that screening
data from different screening techniques can be evaluated
individually. This means that the influence, relating to macro-
material properties, of a subset of features being Si ⊂ S has to
be adjustable. Consequently, the proposed framework utilizes
not just a single kernel-function K but allows to set up n
kernel-functions K1, . . . ,Kn. Each Ki is defined by a pair
(Si,Pi) with Si a subset of features (as stated above) and
Pi ⊂ P of macro-material properties.

Such an exemplary kernel-function mapping is visualized
in Fig. 3: The upper box represents the possible screening
techniques (feature space), including the single instrumented
screening techniques (features), for instance, the micro ma-
chining, which provides different characteristic values (sub-
features). The box at the bottom represents the macro-material
properties, e.g., the hardness or the yield strength, which
should be predicted. The central box represents the kernel-
function database, which is the important algorithmic part for
the actual prediction. This database stores two exemplary func-
tions: The left one processes two characteristic values – one
measured by the nano indentation test and one by the impact
test – and predicts macro-material properties concerning the
yield strength and the hardness. Analogously, the right one
processes one characteristic value from the impact test as well
and one from the X-ray diffraction measurement and predicts
properties relating to the hardness, the tensile strength as well
as to the Young’s modulus.

All kernel-functions are aimed to be stored in a serialized
way, e.g., within a database. In fact, this separation can also
take place on basis of single characteristic values of a single
screening technique if necessary. Besides, the framework also
provides to set up two kernel-functions K1, K2, which are
both defined by the same Si as well as Pi. For instance,
this is required in the case that screening data for micro

Fig. 3: Kernel-function mapping

sample, which have been manufactured by completely different
alloying system, should be evaluated separately.

The complete data flow of the proposed framework, which
is shown in Fig. 4, is as follows:

1) A user starts the main program to predict resulting macro-
material properties.

2) If required, for instance, the kernel-function database is
still empty, the data parser is invoked to parse the macro
data once.

3) After the control unit has been configured as determined
by the user-defined configuration,

4) these macro data are used to built up the kernel-functions,
which have been already prepared by the control unit.

5) The data parser processes the screening data and, subse-
quently, these data are used for prediction.

6) The prediction engine loads the specific kernel-functions
from the kernel-function database and invokes them on
the given data.

7) Finally, the predicted macro-material properties are re-
turned.



Fig. 4: Prediction Framework

V. EXPERIMENTAL RESULTS

This section describes the experimental evaluation of the
proposed data processing framework, which identifies nexuses
between screening data and resulting material properties. In
particular, this framework allows to predict resulting hardness,
strength as well as elastic properties of structural materials by
analyzing nano indentation screening data.

All experiments were executed on an Intel Xeon E3-1270v3
3.5 GHz processor with 32 GB system memory. The proposed
framework is written in C++ and includes the dlib [15] library.
The nano indentation (cf. Paragraph III-A) data were measured
by a Fischerscope R© H100C [9] device.1 Different sets of
process parameters, which define a chemical composition and
a specific heat treatment, were used to fabricate the micro
samples.

Three different classes of micro samples were considered:

1) Embedded, standardized bearing balls [16], [17],
2) Embedded, spherical micro samples with a diameter from

300µm up to 1000µm,
3) Micro samples fabricated by an additive, laser-based

technique [18].

Samples 1) and 2) are both manufactured by using a
100Cr6/1.3505 alloying system. The heat treatment for 1) was
executed by standardized parameters, i.e., according to the
literature, and for 2) slightly varying heat treatment parameters
were used. For generating samples 3), a C15/1.0401 base
material is used and mixed by selective laser melting with a
powdered iron-based master alloy (components according to
Table I) in order to reach a material composition like 100Cr6.
However, the generated composition is different from the target
material 100Cr6 due to the powder components, e.g., the
micro samples’ nickel content is still higher than intended.
Additionally, varying process parameters during the selective
laser melting method, such as laser power, lead to different
heat treatments for samples 3).

1Hereby, the measured HM value is considered as the characteristic value.

TABLE I: Chemical alloy components [19]

C Mo Ni Si Mn Cr P S Fe
% % % % % % % % %

0.012 2.27 13.1 0.56 0.31 16.5 0.017 0.007 Balance

Due to incomplete screening data of macro level measure-
ments, which have not been conducted so far, reference values
from the literature [20], [21] are used to complete the data
set for samples 1) and 2). Furthermore, the validity of these
literature values is also assumed for samples 3), although, the
chemical composition still differs due to instability within the
laser melting process. Within the evaluation all three classes
of micro samples have been investigated, i.e., the screening
data of the instrumented nano indentation (cf. Paragraph III-A)
were fed into the prediction framework. More precisely, the
measured Martens hardness HM as well as the maximal
penetration depth h.

Table II presents the final evaluation results while measur-
ing the following data:

HV Hardness following Vickers in HV ,
Re yield strength in MPa and
t overall run-time in sec.

In general, two different kinds of values are measured:
At first, statistical value for actual prediction (the predicted
macro-material property) and, secondly, statistical error data
about the prediction itself. The error data have been measured
by validating the predicted value with respect to the literature
data concerning the material properties of the 100Cr6 alloying
system. More precisely, the following values are calculated:

mean mean value of the predicted property,
med median value of predicted property,
dev deviation of the predicted property,
me mean error value of the prediction,
de default error value of the prediction and
rms root mean square error value of the prediction.

As clearly visible, the prediction for samples 1) works best.
This is due to the fact that these samples were manufactured
and heat treated accordingly to the reference values from the
literature [20], [21]. Thus, both the HV as well as Re value
converges to the expected literature values for 100Cr6 with
HV = 800HV and Re = 2030MPa, respectively. In addition
to this, the mean error value for both predicted properties is
negligible with 3.0 and 8.0.

In comparison to that, the prediction for samples 2)
achieves a well approximated hardness prediction (in sense of
the error values). However, while predicting elastic properties,
the error values strongly increase. This potentially indicates
that the significant different heat treatment between 1) and 2)
has changed the elastic character much stronger compared to
the hardness.

As expected, the prediction for samples from 3) holds a
higher mean error value of 17.0 (HV ) and 60.0 (Re) and,
furthermore, even a higher default error compared to 1). This is



TABLE II: Evaluation: Prediction of macro-material properties

Class of sample HV [HV ] Re [MPa] t [s]

mean med dev me de rms mean med dev me de rms

1) 799.0 799.2 44.7 3.0 485.5 58.7 2041.0 2126.5 366.9 8.0 247.7 58.7 < 1
2) 799.0 799.2 0.16 61.0 1123.8 108.5 1647.0 2065.3 772.4 52.0 1220.4 107.7 < 1
3) 692.0 699.4 176.9 17.0 531.7 58.5 1567.0 2100.5 850.1 60.0 1531.3 112.43 < 1

due to the fact, that the reference values are taken from the lit-
erature and do not fit completely to the additive manufactured
samples 3) as already mentioned above. Additionally, only
one single grid point per material property could be used for
building the predictive-function. Consequently, the prediction
quality has to be further improved, particularly while varying
the heat treatment. This can be achieved by conducting more
experimental data, which consist of correlated micro and macro
hardness experiments.

In general, for both prediction types in all conducted
experiments, it can be noted that the default error value is quite
high, which indicates that the set of processed data must be
further enhanced [22]. In fact, due to this exemplary character,
the amount of processed data was limited, although, the root
mean square error value indicates already that this prediction
framework works.

VI. CONCLUSIONS & FUTURE WORK

This paper proposed a data processing framework, which is
capable to predict resulting material properties concerning the
hardness as well as the yield strength of structural materials.
In particular, experimental data are processed, that have been
conducted by micro and macro hardness measurements. The
conducted experiments prove that the concept of this prediction
framework works and, by processing more data, it is expected
that the prediction quality can be further improved. The
proposed framework strongly contributes to the proposed high-
throughput approach for structural material development [5]
and provides an algorithmic structure, which can be easily ex-
tended for further screening techniques and material properties,
as required in this context [6].

Future work aims to increase the number of input as
well as output dimensions of the predictive function, i.e., an
increased number of screening techniques will be supported
and, furthermore, additional material properties will be also
taken into consideration. Additionally, it has to be stated that
feature vectors are potentially incomplete, for instance, it is not
possible to apply two different destructive screening types on
a single sample. Thus, the predictive function has to process
incomplete feature vectors as well without causing any adverse
impact on the kernel-function.
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