
BioViz: An Interactive Visualization Engine
for the Design of Digital Microfluidic Biochips

Jannis Stoppe1,2, Oliver Keszöcze1,2, Maximilian Luenert1, Robert Wille3, Rolf Drechsler1,2
1Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany

2Group of Computer Architecture, University of Bremen, 28359 Bremen, Germany
3Institute for Integrated Circuits, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria

Abstract—In order to shorten the required time for the analysis
of medical substances, Digital Microfluidic Biochips (DMFBs)
have been suggested. They allow for handling small amounts of
samples and reagents on a circuit board and, thus, automatically
execute medical experiments that are usually conducted manually
in laboratories. However, there are various challenges in the
design of DMFBs. Issues such as routing and layouting are
complex and currently being investigated by various researchers
and engineers. Although first automatic solutions assist them,
the obtained results are usually provided in a complex and
non-intuitive fashion. This makes the utilization and evaluation
of existing approaches for DMFB design a tedious task. In this
paper, we present a solution for this problem by proposing a
visualization scheme for DMFBs that explicitly addresses these
problems. To this end, a grammar is proposed which allows
the description of resulting designs and their properties. The
contributions of this work allow for a design methodology which
is easy to use and provides a hassle-free environment for the
involved researchers and engineers.

I. INTRODUCTION

Clinical experiments and diagnostic assays can take ex-
traordinary amounts of time. Especially repetitive, tedious
tasks are still largely conducted by manual labor. Processes
require all kinds of different steps which usually are performed
in dedicated machines: fluids (e.g. samples or reagents) are
mixed, heated up, analyzed, separated etc., according to de-
tailed instructions that are executed often hundreds of times
to counter statistical outliers [1].

Digital Microfluidic Biochips (DMFBs or biochips, for
short) are one approach to increase the automation for certain
laboratory tasks. A grid of electrically actuatable cells is used
to move small droplets of the required fluids across a small
area – providing certain functionalities in particular areas (such
as cells that can be heated or that can analyze the fluids).

This allows technologies from the EDA industry (which
are cheap when mass-produced) to be used in a context
that would greatly benefit from the according automation –
making biochips an emerging technology that promises to be
a key driver in the automation of diagnostics and biological
experiments in general. However, several problems still need
to be solved. Designing the experiment in order for it to be
run on a DMFB is a core issue, including steps such as routing
(see e.g. [2], [3]) and placement (see e.g. [4], [5], [6]).

Developing automatic solutions (i.e. algorithms) for these
design steps requires engineers to test different setups, com-
pare the results and debug their algorithms. Solutions, while
being technically correct, can still observe negative aspects
such as the following:

• Unnecessary movements: A droplet moves around, e.g.
in circles, instead of waiting on a single cell until it is
needed again.

• Unnecessary cell usage: Cells are used often, leading to
degradation due to aging effects, even though different
routes for droplets could have been chosen using the same
amount of time steps.

• Unnecessarily complex control logic: The choice of a
route leads to a complex control logic to drive the droplet
while a different route taking the same amount of time
steps may allow for a simpler logic.

These aspects are difficult to spot without being able to
visually inspect the design.

In this work, we present a dedicated biochip visualization
solution that helps designers to explore DMFB designs and
supports scientists in evaluating algorithms for certain design
aspects such as routing. To assist the storage and exchange
of biochip designs (e.g. droplet movements, layouts), we
additionally present a simple file format. The tool’s benefits are
illustrated using representative case studies. BioViz is available
online at at http://www.informatik.uni-bremen.de/agra/bioviz/.

II. BACKGROUND

Digital microfluidic biochips have been proposed to auto-
mate laboratory procedures. Many experiments in domains
such as biochemistry or molecular biology are conducted man-
ually – relying on both, expensive equipment and manpower to
be conducted. Many of these experiments can be performed
not only automatically but also using much less space and
potentially less expensive equipment using DMFBs.

A. The Structure of DMFBs
DMFBs consist of two-dimensional electrical grids which

are controlled by electrodes and their electrical actuations.
These generate an electric field that allows the actuated grid
element(s) or cells to attract and hold droplets, i.e. discrete
portions of liquids. When the electrodes are turned on and
off over time on neighboring cells, droplets can be moved
across the grid (this principle is called electrowetting-on-
dielectric [7]). This results in a platform that can be used
to expose laboratory liquids such as blood or urine to several
operations such as mixing, analyzing or heating. Using these
structures, laboratory experiments can be carried out automat-
ically on the grid instead of manually on traditional laboratory
equipment.

The available operations are realized using modules that
may correspond to both, elements that are physically built
into the system and ones that are realized virtually via droplet
movement. There are several types of physical modules.

http://www.informatik.uni-bremen.de/agra/bioviz/

Fig. 1: A microfluidic biochip as presented in [8].

• Dispensers are providing a way to add new droplets to
the grid. Liquids that are used in the experiments need
to be stored in reservoirs next to the grid. The cells that
connect these reservoirs to the grid are the ones where the
droplets first “appear” before they are moved to the next
destinations. Each type of liquid (such as blood, water or
urine) needs to be stored separately.

• Sinks are the dispensers’ counterpart for the disposal of
droplets – allowing them to be removed from the grid.
This may be needed to e.g. regain free space on the grid
for more droplets. Unlike dispensers, sinks do not need
to be separated by the types of liquid they handle, as
any liquids being processed by them are being discarded
anyway.

• Heaters allow droplets to be heated for experiments.
By adding heating elements below certain cells, droplets
placed on these can be heated up, allowing the DMFB
to be used for experiments that require the liquids to be
heated.

• Detectors are used to examine the results of a given
experiment. These include all kinds of sensor devices
which are usually placed below certain cells. These
sensors can be used to e.g. measure the color, volume
or other attributes of a droplet that is placed on a given
cell.

Virtual modules on the other hand do not require physical
characteristics to be added onto the chip. Instead, they can
be realized implicitly via the droplets’ movement – allowing
them to be set up as needed during the system’s operation.
These virtual modules can also be of various types.

• Mixers provide a way to mix liquids. By routing the
respective droplets to adjacent cells, they automatically
merge into a single, larger droplet.

• Splitters on the other hand can split up droplets. If
e.g. a droplet becomes too big due to mixing operations,
activating cells on opposing sides of a droplet will split
it in two parts.

Generally, these modules allow operations known from
laboratory workflows to be executed on a DMFB. These
modules may be implemented in various ways, e.g. concerning
the amount of cells they require on a given grid and the time
they need to perform a given operation. The resulting, physical
chips are small and can be mass-manufactured inexpensively.
Fig. 1 illustrates the size of a DMFB.

Note that the given list of modules is far from being
complete. Depending on the experiments to be carried out, a
large variety of physical and virtual modules may be developed
or taken from module libraries to be used in DMFB design.
While this paper focuses on the modules given here, the
proposed grammar and visualization are easily extensible, so
other modules can be added as required.

Also note that this paper considers a DMFB’s behavior to
be described in discrete time steps. While droplets are moving
across the grid in an analogue fashion, we consider the time
it takes for any given droplet to be moved to a neighboring
cell to be a single, indivisible step in time.

B. Design Challenges

Generally, determining the droplets’ routes is a hard prob-
lem. Droplets usually need to find short routes to their respec-
tive destinations to keep the processing time low. However,
not only the determination of the cell actuations (which move
droplets across the grid) is crucial, but also how to connect
these cells to the respective controller. To keep the costs low,
a design goal is to drive multiple cells by a single pin. Such
a pin assignment has to allow for conducting the desired
routing while, ideally, not restricting any other movements (see
e.g. [2], [9]).

Closely related to the routing is the question of the design’s
layout: how are the cells supposed to be placed to come up
with a device that handles various tasks well? Being able to
see and thus directly grasp how certain layouts perform in
combination with particular routing algorithms is a crucial
requirement for the design process.

As different scenarios require different approaches, there are
not only large numbers of routing algorithms available (see
e.g. [2], [3], [9]), but they also differ greatly concerning their
approaches. In order to create a well-designed appliance, a
comparison between these algorithms for the according target
designs is a necessity.

However, tools that support the designer in analyzing the
obtained results are rare. Biochips are usually debugged using
the software they are being simulated with – often with
basic (e.g. console) outputs only. The comparison of routing
and layouting approaches also is usually done by crunching
numbers, as designers lack a specific tool to easily and quickly
compare different layouts and routing solutions for DMFBs.
Additionally, a crucial part of any design process is commu-
nicating the current state and approach e.g. to colleagues or
stakeholders, for which lengthy console outputs are far from
ideal.

This obvious shortcoming for the development of design
methods for biochips is the major motivating factor for this
work which focuses on a tool to assist developers in the tasks
discussed above. We therefore propose a visualization engine
for the design of DMFBs. This encompasses the routing of
droplets on a chip, the layout of a chip and the analysis of
various properties of the design such as the activation of cells
or potential proximity issues during droplet movement.

Note that this visualization explicitly targets algorithmic
challenges. Problems that arise from the usage of particular
materials, physical realization or other properties are not the
focus of this work. Instead, the resulting visualization engine
is supposed to assist designers in interpreting their simulation
traces.

In order to have an open and coherent interface for such a
visualization, a common file exchange format is needed as
well. This paper therefore not only details the work on a
visualization engine, it also proposes an exchange format in the
form of a grammar that can be used as a common foundation
for the storage of data about biochip structures and behavioural
logs.

III. BIOGRAM – A DEDICATED
GRAMMAR FOR DMFB DESIGNS

Even though many researchers work in the field of DMFBs,
relatively few publications have the storage format or input
languages as a central theme.

Currently, the state-of-the-art method of describing proto-
cols still is the use of notebooks. In 2010, an early attempt
of formalizing experiments has been done in [10] where the
BioCoder language for describing experiments on biochips
was proposed. The language’s goal is to supply researchers
with a means to easily describe their experiments. The lan-
guage is implemented on top of C++ and can not be used for
visualization.1

The Digital Microfluidic Biochip Static Synthesis Simulator
tool [4] uses a plain text format both for input and output and
comes with a visualization for the synthesized experiments. In
principle, it is possible to use this tool to visualize results not
obtained by the tool itself. Still, the language is very specific
(i.e. hard to extend) and the visualization not as responsive as
desired – in order to quickly analyze and debug results e.g. of
routing algorithms or different layouts, a more user-friendly
approach is desired.

Hence, we propose a language to describe synthesis and
routing solutions for microfluidic biochips that is both, ex-
tendable and easy to use. This resulted in a language whose
grammar is shown in Backus Naur form in Fig. 2. It was
implemented as an ANTLR [11] grammar and embedded into
the proposed visualization tool. In general, the design of this
language follows the following principles:

Simplicity and Readability: The language is human-
readable. This prevents the use of binary files. Furthermore, the
language is easy to understand and learn. In fact, the content
of a file is completely comprehensible without having to look
at the documentation.

Tool agnosticism: We believe that a good language is
easily usable by many researchers without focusing on specific
approaches. In the design process, we took great care to cover
as many use cases without adding anything too specific. The
use cases we support contain grids of different layouts (i.e.
also non-rectangular grids as in [12]), temporal blockages
(used in e.g., [3]), pin assignments and pin actuations (used
in many works on routing on biochips, see e.g. [2]), as well
as the placement of modules (as needed in synthesis, see e.g.
[4], [5], [6]).

Extendability: While the language supports a fixed set of
issues, it can easily be extended by simply defining new
blocks. This is possible due to the fact that very few aspects of
biochips are encoded in nested structures. The design follows
the concept of enclosing lists of certain aspects (i.e. droplet
movement) by an opening keyword and a closing keyword.
Furthermore, issues such as timing can easily be re-used when
adding new descriptions to the language.

Example 1: Consider the routing solution provided in
BioGram syntax as shown in Fig. 3a. The resulting visual-
ization is provided in Fig. 3b.

In order to illustrate the extendability of the language,
we consider a new type of biochip recently propsed that
is referred to as Micro-Electrode-Dot-Array (MEDA); see
e.g. [13]. Unlike conventional DMFBs, the MEDA architecture
is based on the concept of a sea-of-micro-electrodes with an
array of identical basic microfluidic unit components called
microelectrode cells. The idea is that droplets and cells do not

grammar ::= 〈grid〉 | 〈blockages〉 | 〈nets〉 | 〈routes〉 | 〈meda nets〉
| 〈meda routes〉 | 〈modules〉 | 〈droplets〉 | 〈fluids〉 |
〈pin related〉

grid ::= ‘grid’ { 〈position〉 〈position〉 } ‘end’
blockages ::= ‘blockages’ { 〈position〉 〈position〉 [〈timing〉] }

‘end’
nets ::= ‘nets’ { 〈source〉 { ‘,’ 〈source〉 } ‘->’ 〈target〉 } ‘end’

source ::= 〈DropletID〉 〈position〉
target ::= 〈position〉
routes ::= ‘routes’ { 〈DropletID〉 [〈start time〉] 〈position〉 }

‘end’
pin related ::= 〈pin ass〉 | 〈pin acts〉 | 〈cell acts〉

pin ass ::= ‘pin assignments’ { 〈position〉 〈PinID〉 } ‘end’
pin acts ::= ‘pin actuations’ { 〈PinID〉 ‘:’ { 〈actuation〉 } } ‘end’
cell acts ::= ‘cell actuations’ {〈position〉 ‘:’ {〈actuation〉} } ‘end’
actuation ::= ‘1’ | ‘0’ | ‘X’
modules ::= 〈mixers〉 | 〈detectors〉 | 〈dispensers〉 | 〈sinks〉

mixers ::= ‘mixers’ { 〈DropletID〉 〈time range〉 〈position〉
〈position〉 } ‘end’

time range ::= ‘[’ 〈Int〉 ‘-’ 〈Int〉 ‘]’
detectors ::= ‘detectors’ { 〈position〉 [〈spec〉] } ‘end’

spec ::= 〈Duration〉 [〈FluidID〉]
sinks ::= ‘sinks’ { 〈ioport〉 } ‘end’

dispensers ::= ‘dispensers’ { [〈FluidID〉] 〈ioport〉 } ‘end’
ioport ::= 〈position〉 〈Direction〉

droplets ::= ‘droplets’ { 〈DropletID〉 〈FluidID〉 } ‘end’
fluids ::= ‘fluids’ { 〈FluidID〉 〈Description〉 } ‘end’

position ::= ‘(’ 〈Int〉 ‘,’ 〈Int〉 ‘)’
timing ::= ‘(’ 〈Int〉 ‘,’ (〈Int〉 | ‘*’) ‘)’

Fig. 2: Extended Backus Naur Form for the BioGram grammar

grid blockages
(1,1) (4,4) (1,2) (1,4)
(3,5) (3,5) (3,1) (4,3)

end end

routes
1 (1,1) (2,1) (2,2) (2,3) (2,4) (3,4) (4,4)

end

(a) Example routing solution provided in BioGram

(b) Solution from Fig. 3a visualized
in BioViz

Fig. 3: Example grammar and corresponding visualization.

1. BioCoder does provide the users with a textual representation for the
experiment that consists of a combination of strings the user can annotate to
every single operation.

grid
(1,1) (5,5)
end
meda routes
1 ((1,2), (3,4)) ((2,2), (4,3)) ((3,2), (5,3))
end

(a) Example MEDA description in BioGram

(b) Visualization of the distinct states from the description given in Fig. 4a

Fig. 4: Extension to MEDA biochips.

have a one-to-one relationship any more. A droplet may cover
multiple cells, change its size and even move diagonally. Bi-
oGram supports MEDA biochips by simply adding a ‘meda’ in
front of the nets and routes and replacing the positions within
the nets/routes by location ::= ‘(’ 〈position〉 ‘,’ 〈position〉 ‘)’.
This has been left out in Fig. 2 to increase the readability.

Example 2: Consider the MEDA droplet shape changing and
movement provided in BioGram syntax as shown in Fig. 4a.
The resulting visualization is provided in Fig. 4b.

The character ‘#’ begins a comment that ends at the end of
the line. These comments are for users reading the BioGram
file itself. A comment starting with ‘#!’ is treated as an
annotation that will be displayed by the BioViz tool that is
introduced in the next section.

IV. AN INTERACTIVE
VISUALIZATION ENGINE

When designing biochips, both structural and behavioral
attributes need to be addressed. The structural features are
provided by the hardware: the cells that are responsible for
moving the droplets, the pins that activate these cells, the
available dispensers, detectors and other features all describe
the structure of the biochip. The behavior of the chip on the
other hand is defined by how the system’s attributes change
over time, such as the movement of the droplets across the
hardware or the activation and deactivation of certain areas on
the board, such as scanning cells or similar attributes.

A visualization that illustrates these attributes should in-
crease the designer’s ability to inspect a system’s behavior.
While the structural features (such as the cell layout) can easily
be illustrated using static images, the behavioral attributes
require a more dynamic approach. While classic hardware
visualization tools have traditionally used static illustration
methods even for timed features (such as waveforms for sig-
nals that can be drawn and printed), the multi-dimensionality
of the behavior of these systems prohibits such an approach.
Even the simple case of a single droplet that moves across a
two-dimensional field needs more dimensions to be displayed
as its coordinates already require two dimensions to be il-
lustrated – time thus cannot simply be used as one of the
coordinates (like e.g. done for waveforms) without resorting
to drawing three-dimensionally (as done in [4]). We decided

Fig. 5: Visualization of a simple biochip. User interface ele-
ments show visualization controls on the left, the visualization
itself at the center, statistics on the right and open files on the
top of the window.

against this approach in order to keep the user experience
simple.

The core idea is therefore to provide a dynamic visualization
that lets the designer to

• easily scroll through time in order to quickly see a
particular state of the design or to

• aggregate different states in a single, comprehensive view
if such an overview is required.

This means that a core requirement of a visualization system
for biochips is interactiveness. Designers should be able to
quickly browse through different aspects of their design and
to easily draw connections between different views.

Fig. 5 shows the visualization application with an example
system that consists of a 5 × 5 square grid, two dispensers,
two droplets and a single sink on the right below one of the
dispensers. The user controls on the left of the window show
two important sliders (highlighted in red). The lower one lets
the system advance through time in a simple step-through
manner. Fig. 6 illustrates this behavior, showing consecutive
states of the chip as they would appear to the designer. In
addition to the ability to show particular states, an arbitrary
amount of previous and consecutive states can be aggregated
as well using the upper slider. Fig. 7 shows this mode
of operation, taking the second timestep of the simulation
and overlaying the previous and consecutive positions of the
droplets by adding arrows to the display.

Fig. 8 illustrates how the cells’ actuations are displayed us-
ing the same paradigm. The visualization can switch between
showing distinct states of the design or aggregating several of
them to enable designers to quickly see an overview of certain
properties.

For the grid, several different cell types are currently em-
bedded into the visualization: blockage, detector, source, sink,
start and target (see Fig. 9). More types could easily be added,
but as these are the types that are used in current benchmarks,
they form a valid base for the visualization to support most
use cases.

Another important feature when dealing with designs that
change certain properties over time is to enable designers to
see how elements behave. When simply displaying discrete
states, it may be hard to correctly see how the elements map
over time. We therefore provide smooth transitions between

Fig. 6: The designer can step through the discrete timesteps of the design, allowing him to quickly see routing properties and
check what happens at which state of the simulation.

Fig. 7: Routes can be overlaid in addition to displaying
particular state of the design.

Fig. 8: Left: Information can be shown for the current state
– droplets are hidden to emphasize actuation, indicated via
yellow-marked cells. Right: Aggregated information – amount
of cell actuation on a color scale from black to white.

these states, allowing designers to better understand how the
transitions between these states work. Fig. 10 illustrates this
transition for droplet movement. However, the same principle
applies to e.g. cell colors and viewport shifts. Thus, the
designer is constantly being aware of how the states of the
design change.

As the designer may freely move and zoom around the chip,
he may move the virtual camera far away to get a broad
overview of the circuit. In order to still provide a usable
representation of the system, the visualization switches to a
lower level of detail once the parts otherwise become too
small to recognize properly [14]. Fig. 11 illustrates how, at
a certain zoom level, the individual elements are reduced to
simple square boxes that merely hold the color information.
This provides the designer with data from the simulation traces
while at the same time avoiding display issues down to the
point where individual parts are merely one pixel in size.

Fig. 9: Currently supported cell types: default, blockage,
detector, source, sink, start, target

Fig. 10: States are smoothly transitioned to better illustrate the
transitions from one system state to the next

BioViz further supports directly editing the loaded file and
showing its provided annotations. To simplify debugging, it
may show potential warnings (e.g. droplet paths that are not
physically realizable) and parsing errors. The statistics panel
on the right can be turned off.

As biochips are currently an emerging technology and still
subject to fundamental research, designers still need to com-
municate the properties of their design in printed form. While
this, by definition, does not allow any animated properties to
illustrate the design properties, it still is an important factor
in the development of a given circuit. The implementation
supports exporting the current state as an .svg file, i.e. as a
vector graphics file that can be easily embedded into websites
or converted to pdf for e.g. LaTeX documents, as seen in
Fig. 12.

The visualization prototype was built using OpenGL. In-
stead of providing static illustrations of the system, the core
requirement of a responsive, dynamic visualization makes the
utilization of such a graphics framework an obvious choice
to be able to implement a more dynamic view that can be
used to smoothly view changes over time and switch between
different views.

As a core framework, the libgdx library was used as a
wrapper. The remaining logic was implemented using Java,
allowing the visualization tool to be used on all major oper-
ating systems.

The visualization was tested with examples from [15], [16],
[17] as well as several new designs. It can handle large layouts
and still provide a smooth user experience – allowing designers
to interactively inspect their simulation traces and easily see
if their algorithms behave as expected.

Fig. 11: Detail is omitted when zooming out to provide a better
overview

Fig. 12: The visualization state may be exported as an SVG
file, allowing easy processing for e.g. print media (such as
turning the outcome black and white).

V. SUMMARY

We have presented an easily usable, smooth, interactive
visualization engine for microfluidic biochips and a grammar
to interface with it.

The grammar is both, easy to use and extend – allowing de-
signers to not only use a common foundation when developing
in the biochip domain but also expand the given representation
in whatever way they need it. As the grammar was developed
with its application in mind, translating it to automated parsers
is an easy task – as shown by the implementation in ANTLR,
which is currently providing the visualization engine with a
parser to read the underlying files. The given grammar could
thus be used as a foundation for other works as well, providing
a standardized way to store and exchange data about a DMFB
design.

Several results of routing algorithms and both, existing and
new layouts and have been translated into this grammar –
illustrating that it supports the features that are currently being
used in the design of biochips.

The visualization itself is a cross-platform application that
provides designers with a smooth, interactive view on their
systems – something that has not been done before. Running
on Java and OpenGL, it does not depend on third party tools
and should thus “just run” on most systems. It allows designers
to quickly and easily get an overview of both, their system’s
behavior and its layout – allowing them to quickly evaluate
the results of the synthesis and routing processes.

The proposed set of grammar and visualization thus as-
sists designers in the development of microfluidic biochips,
enabling them to quickly grasp the properties of how a system
behaves and draw the according conclusions for their design
processes.

BioViz is available online at http://www.informatik.
uni-bremen.de/agra/bioviz/.

VI. FUTURE WORK

While the visualization itself is working as it is, there are
several points left for improvement.

The visualization itself is currently smooth and provides
an interactive way of browsing existing simulation traces,
but does not itself control any other tool that assists in the
design process. Interactivity could also mean, however, that
the problems themselves are e.g. defined from within the
visualization – giving the designer the ability to interactively
design a biochip and define core constraints for the following
simulation. In that case, the visualization itself would become
less of a purely visual assistant and more of a visual design
tool – enabling designers to use it as a graphical editor.

The tool could also be equipped with a plugin system –
allowing designers to not only adapt the grammar (which then
needs to be hard-coded into the tool) but also the tool itself.
This would allow designers to more easily alter the given
technology to their needs – allowing them to more quickly
come up with visualizations that match their specific use case.

REFERENCES

[1] Max Halperin, Eugene Rogot, Joan Gurian, and Fred Ederer. Sample
sizes for medical trials with special reference to long-term therapy.
Journal of chronic diseases, 21(1):13–24, 1968.

[2] Tsung-Wei Huang and Tsung-Yi Ho. A Two-Stage ILP-Based Droplet
Routing Algorithm for Pin-Constrained Digital Microfluidic Biochips.
In International Symposium on Physical Design, pages 201–208, 2010.

[3] Oliver Keszocze, Robert Wille, and Rolf Drechsler. Exact routing for
digital microfluidic biochips with temporary blockages. In Int’l Conf.
on CAD, pages 405–410, 2014.

[4] Daniel Grissom, Kenneth O’Neal, Benjamin Preciado, Hiral Patel,
Robert Doherty, Nick Liao, and Philip Brisk. A Digital Microfluidic
Biochip Synthesis Framework. In VLSI of System-on-Chip, pages 177–
182, 2012.

[5] Oliver Keszocze, Robert Wille, Tsung-Yi Ho, and Rolf Drechsler.
Exact One-pass Synthesis of Digital Microfluidic Biochips. In Design
Automation Conf., pages 142:1–142:6, 2014.

[6] Fei Su and Krishnendu Chakrabarty. Unified high-level synthesis and
module placement for defect-tolerant microfluidic biochips. In Design
Automation Conf., pages 825–830, 2005.

[7] M. G. Pollack, A. D. Shenderov, and R.B. Fair. Electrowetting-based
actuation of droplets for integrated microfluidics. Lab on a Chip,
2(2):96–101, 2002.

[8] Daniel Grissom. Design of topologies for interpreting assays on digital
microfluidic biochips. 2014.

[9] Oliver Keszocze, Robert Wille, Krishnendu Chakrabarty, and Rolf
Drechsler. A General and Exact Routing Methodology for Digital
Microfluidic Biochips. In Int’l Conf. on CAD, pages 874–881, 2015.

[10] Vaishnavi Ananthanarayanan and William Thies. Biocoder: A pro-
gramming language for standardizing and automating biology protocols.
Journal of biological engineering, 4(1):1–13, 2010.

[11] Terence J. Parr and Russell W. Quong. Antlr: A predicated-ll (k) parser
generator. Software: Practice and Experience, 25(7):789–810, 1995.

[12] Yang Zhao and Krishnendu Chakrabarty. Simultaneous Optimization
of Droplet Routing and Control-Pin Mapping to Electrodes in Digital
Microfluidic Biochips. IEEE Trans. on CAD, 31(2):242–254, 2012.

[13] Gary Wang, Daniel Teng, and S.-K. Fan. Digital microfluidic operations
on micro-electrode dot array architecture. IET nanobiotechnology,
5(4):152–160, 2011.

[14] Oliver Deussen. Level-of-detail. In Digital Design of Nature,
X.media.publishing, pages 181–200. 2005.

[15] Yang Zhao, Krishnendu Chakrabarty, and Bhargab B. Bhattacharya.
Testing of low-cost digital microfluidic biochips with non-regular array
layouts. Journal of Electronic Testing, 28(2):243–255, 2012.

[16] Ping-Hung Yuh, Chia-Lin Yang, and Yao-Wen Chang. Bioroute: A
network-flow based routing algorithm for digital microfluidic biochips.
In Int’l Conf. on CAD, pages 752–757, 2007.

[17] Minsik Cho and David Z Pan. A high-performance droplet routing
algorithm for digital microfluidic biochips. IEEE Trans. on CAD,
27(10):1714–1724, 2008.

http://www.informatik.uni-bremen.de/agra/bioviz/
http://www.informatik.uni-bremen.de/agra/bioviz/

	Introduction
	Background
	The Structure of DMFBs
	Design Challenges

	BioGram – A Dedicated Grammar for DMFB Designs
	An Interactive Visualization Engine
	Summary
	Future Work
	References

