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Abstract—A wide range of applications significantly benefit
from the Approximate Computing (AC) paradigm in terms of
speed or power reduction. AC achieves this by tolerating errors
in the design. These errors are introduced into the design
either manually by the designer or by approximate synthesis
approaches. From here, the standard design flow is taken. Hence,
the manufactured AC chip is eventually tested for production
errors using well established fault models. To be precise, if the
test for a test pattern fails, the AC chip is sorted out. However,
from a general perspective this procedure results in throwing
away chips which are perfectly fine taking into account that the
considered fault (i.e. physical defect that leads to the error) can
still be tolerated because of approximation. This can lead to a
significant amount of yield loss.

In this paper, we present an approximation-aware test meth-
odology which can be easily integrated into the regular test flow.
It is based on a pre-process to identify approximation-redundant
faults. By this, we remove all potential faults that no longer
need to be tested because they can be tolerated under the given
error metric. Our experimental results and case studies on a
wide variety of benchmark circuits show a significant potential
for yield improvement.

I. INTRODUCTION

The complexity of chips is steadily increasing while, at the
same time, the feature sizes are shrinking. Both facts pose ma-
jor challenges to the design of todays chips. In addition, better
energy efficiency and performance become a major concern.
A promising solution is the emerging Approximate Computing
(AC) design paradigm. The key idea of AC is to trade off
correct computation against energy or performance. The good
news is that there are many crucial resource-hungry applica-
tions (e.g. audio/video processing, learning, big-data analysis)
which can tolerate some deviation of the exact result [1]. From
the hardware design side, various handcrafted approximate
designs have been proposed, ranging from building blocks
such as adders, multipliers, etc. to complex configurable CPU
architectures [2]. In the context of design automation for AC,
also solutions for synthesis [3], verification [4], simulation [5]
etc., have been proposed. In this paper, we focus on the last
design step of the chip design, i.e. the post production test.
In general, the task of manufacturing test is to detect whether
a physical defect is present in the chip or not. If yes, the
chip will not be shipped to the customer. However, given an
approximate circuit and a physical defect, the crucial question
is, whether the chip still can be shipped since the defect can
be tolerated under approximation. If we can provide a positive
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answer to this question, this leads to a significant potential for
yield improvement.

In this paper we present an approximation-aware test
methodology. To the best of our knowledge this is the first ap-
proach considering the impact of design level approximations
in post production test. Our methodology does not radically
change the test flow, rather it is a pre-process to classical
Automatic Test Pattern Generation (ATPG). The key idea is
to classify each fault (the logical manifestation of a defect) in
approximation-redundant or non-approximation. For this task,
we essentially compare the non-approximated (golden) design
against the approximated design with an injected fault under
the considered error metric constraint. Using formal methods
(SAT and variants) as well as structural techniques allow us
to classify the fault. For a wide range of benchmarks, we
demonstrate the advantage of our approach. We show that,
depending on the concrete approximation and error metric
(which is driven by the application), a relative reduction of
up to 80% in fault count can be achieved.

In summary, this paper makes the following contributions:

« Identification of approximation-redundant faults

e Mapping into a formal fault classification problem

o Pre-process to classical ATPG

« Significant yield improvement potential

II. RELATED WORK

Several works have been proposed to improve the yield
by classifying faults as acceptable faults and unacceptable
faults. These employ different techniques such as integer linear
programming [6], sampling methods for error estimation [7],
threshold based test generation [8] etc. Further, the work [9]
shows a technique to generate tests efficiently if such a
classification is available.

However, all these approaches are applied to conventional
circuits without taking into consideration the errors introduced
as part of the design process itself. Therefore, these approaches
cannot be directly applied to AC. It has to be noted that
“normal” circuits that produce errors due to manufacturing
defects do not constitute approximation circuits. In AC, errors
are introduced into the design for high speed or low power.
In other words the error is already introduced and taken into
consideration during design time. Now if for these designed
approximated circuits arbitrary fabrication errors are allowed,
the error effects will magnify. For instance, if we discard all the
stuck-at faults at the lower bit of an approximation adder under
a worst-case error constraint of at most 2, the resulting error
can in fact increase above the designed limit. Therefore, the
AC application will fail under such defects. This is exemplified
later in a motivating example in Section IV-A. The key of our



work is that we identify all faults which are guaranteed not
to violate the given error metric constraint, coming from the
AC application. This ensures that the AC chip will work as
originally envisioned for.

At this point we differentiate our work from [10]. In [10]
(and closely related [11]), structural analysis is used to de-
termine the most vulnerable circuit elements. Only for those
elements test patterns are generated and this approach is called
approximate test. In addition, note that [10] targets “regular”
non-approximated circuits and therefore we categorize it as a
technique for approximating a test, rather than a technique for
testing an already approximated circuit.

III. PRELIMINARIES

At first, the relevant parts from post production tests are
reviewed in this section. Then, the basic error metrics typically
used in approximate computing are defined and it is reviewed
how to precisely compute them.

A. Post Production Test, Faults and ATPG

The manufacturing process of a circuit is vulnerable to
a large number of physical defects, especially due to the
shrinking feature sizes. A post production test is applied to
the manufactured ICs to detect these defects and filter out the
non-correct circuits. A fault f is a logical manifestation of
these defects. The most popular fault model used in practice
is the Stuck-At Fault Model (SAFM). In this scheme, a signal
connection s in the circuit is considered to be permanently
stuck’ at a constant value, either 1 or 0. In this work, we
concentrate only on the SAFM, but the proposed approach
can also be extended to other fault models.

A test set T is a set of test vectors ti,...,%t, applied
at the circuit inputs which activates the fault locations and
produces detectable difference at an observation point. In the
post-production test, each detectable fault in the circuit has
to be covered by at least one test pattern in the test set.
The computation of this test set is called Automated Test
Pattern Generation (ATPG) [12]. The ATPG takes all faults
F = fi,..., fin of a fault model as input and generates a
favorably small test set with a high fault coverage.

Basically, a fault f can be classified by the ATPG in three
categories. A fault is called detectable, when the ATPG proves
that the fault is testable by producing a test which detects
f. A fault is redundant, when the ATPG proves that there
is no test which is able to detect f. A fault is classified as
aborted, when the ATPG cannot classify f due to reasons of
complexity. ATPG techniques are well developed and are able
to produce small test sets in reasonable time using structural
implication techniques or formal proof engines [13].

B. Error Metrics

Several error metrics have been proposed to determine the
quality of approximations (see e.g. [4], [14], [5]). The metrics
relevant for this work are given in the following.

Let NV be a netlist with p input bits and ¢ output bits, and
Ny be the version with an injected fault f. The error e; of
the netlist under the fault f is the absolute difference in the
magnitudes of the output. i.e., error ey over ¢ output bits is

ef =|(Njg-1,.. Nyo) — (Ng—1, ..., No)| (1)

Here (Nyfg—1,...,Nf0) and (Ny—1, ..., Ng) are the output bit
vectors of the faulty and original netlist respectively.

The worst-case error or error-significance is the maximum
possible error magnitude among all the 2P input combinations.

wc:max{8f076f17-~-a€fM} 2)

where M = 2P — 1.
The error-rate is the ratio of the count of all the errors to
the total number of input vectors. i.e.,

M
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The total bit-flips e;%- is the hamming distance between N
and Ny due to the injected fault f.

qg—1
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And the bit-flip error is the maximum hamming distance
possible due to the fault f,

bf = max{e?ﬁ, e?l, ey e?M} (5)

All these error metrics are independent quantities on their
own and do not necessarily correlate with each other. For
instance, a design with very high worst-case error does not
imply that the bit-flip error or the error-rate is high.

An approach based on formal methods has been presented
in [4] to precisely determine the impact of approximation wrt.
a given error metric. The authors propose an approximation
miter circuit inspired from the classical formal equivalence
checking. In our work we retain the fundamental concepts
used in [4], but adapted for fault classification.

IV. APPROXIMATION-AWARE TEST METHODOLOGY

In this section we introduce the proposed approximation-
aware test methodology. Before the details are provided, we
describe the general idea using a motivating example. In
the second half we present the proposed fault classification
approach.

A. General Idea and Motivating Example

In the context of approximate computing yield improvement
can be achieved when a fault (logical manifestation of a
physical defect) is found which can still be tolerated under
the given error metric. In this case the fabricated chip can
still be used as originally intended, instead of sorting it out.
As mentioned earlier we consider single stuck-at faults in this
work only (cf. Section III-A). Given an approximate circuit,
a constraint wrt. an error metric, the list of all faults for
the approximate circuit, then each fault is categorized by our
approach into one of the following:

o approximation-redundant fault — These are faults which
can be approximated, i.e. the fault effect can have an
observable effect on the outputs, but it is proven that the
effect will always be below the given error limit. Hence,
no test pattern is needed for these faults. Note that regular
redundant faults are also classified into this category.

o non-approximation fault — These are faults whose error
behavior is above the given error limit. Hence, they have
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to be tested in the post production test and thus a test
pattern has to be generated for these faults.

Further, if a fault cannot be classified due to reasons of
excessive run time, it is treated as an non-approximation fault.

In the following a motivating example is provided to demon-
strate both fault categories. Consider the 2-bit approximation
adder as shown in Fig. 1. This adder has two 2-bit inputs
a = ajap and b = b1by and the carry input ¢;,, and computes
the sum as ¢y Sumisumg. The (functional) approximation
has been performed by cutting the carry from the full adder
to the half adder as can be seen in the block diagram on the
left of Fig. 1. As error metric we consider a worst-case error
of 2 (coming from the application where the adder is used). To
explain the proposed fault classification we will focus on the
output bit sum and the faults at this bit, i.e. flgag and flgay
corresponding to a stuck-at-0 and stuck-at-1 fault, respectively.

The truth table of the original golden adder, the approxima-
tion adder, and the approximation adder with different fault
manifestations is given at the right side of Fig. 1. The first
column of the truth table is the input applied during fault
simulation, followed by the output response of the correct
golden adder. Next the response of the approximation adder,
and the error ef (as an integer) is shown. The worst-case error
wct is the maximum among all such e. As can be seen the
maximum is 2, since cutting the carry leads sometimes to a
“wrong” computation but the deviation from the correct result
is always less than or equal to 2. The next four columns are the
output and error response of the approximation adder with the
stuck-at fault, i.e. SAO and SA1 at the sum output bit. Recall,
since the adder is used for AC applications all the errors below
the worst-case error of wct = 2 are tolerated. Under this
error criteria, the SA1 fault flga; at the sumg output bit
is approximation-redundant because error e* is always less
than or equal to 2, as can be seen in the rightmost column of
the truth table. However, for the same output bit, the SAQ fault
flsao is a non-approximation fault: the worst-case error is 3

Approximation adder with faults and truth table

T, § Golden non-approx, approx (carry cut) 2-bit adder responses
*, = Approx adder with SA0, SA1 at sumq (flg A 0. flgA1)
In:Cjpajagbybg . Out:Cqygsumysumg

5

e: error in each case, worst-case errors wct=2,wc* =3, wc

Algorithm 1 Approximation-aware fault classification

1: function APPROX_PREPROCESS(faultList faults, error behav. e)
2 N  get_network()

3 for each f € faults do

4 if fault_not_processed(f) then

5: Ny < get_faulty_network(f)
6.
7
8

E < get_error_computation_netw(metric(e))
C < negation_of(e)
: ® = construct_miter(N, Ny, E, C)
9: result = solve(P)

10: if result = SAT then

11: set fstatus < NonApproxFault
12: else

13: set fstatus < ApproxFault

14: end if

15: imply_approximation (f, fstatus)

16: end if

17: end for

18: return faults

19: end function

which becomes evident in column e* and the shaded rows.

In practice, the employed error criteria follows the require-
ments of the AC application. Each application will have a
different sensitivity on the error metric given in Section III-B.
However, if we can identify many approximation-redundant
faults, they do not have to be tested since they can be tolerated
based on the given error metric constraint.

In the next section we present the proposed fault classifica-
tion algorithm which can handle the different error metrics.

B. Approximation-aware Fault Classification

At first, the overall algorithm is presented. Then, the core
of the algorithm is detailed.

1) Overall Algorithm: The main part of the proposed
approximation-aware fault classification methodology is the
fault-preprocessor. It classifies each fault into the above intro-
duced fault categories and is inspired by regular SAT-based
ATPG approaches, since these approaches are known to be
very effective in proving redundant faults.
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Fig. 2. Approximation Miter for Approximation-aware Fault Classification

The approximation-aware fault classification algorithm is
outlined in Algorithm 1. The algorithm is generic and details
on the individual steps are given below. The inputs are
the list of all faults and the error behavior (in terms of a
constraint wrt. an error metric, e.g. the worst case error should
be less than 10). Such information can be easily provided
by the designer of the approximation circuit. Further, an
approximation-aware fault classification miter is constructed
(see Line 8). This formulation is then transformed into a
SAT instance which is solved by a SAT solver. The general
principle of an approximation miter has already been presented
in [4] where error metrics are precisely computed. In this
work however, we follow the miter principle but use it to
determine the fault classification. After fault classification,
structural techniques are applied to deduce further faults. The
pre-processor algorithm returns the same list of faults, but
for each fault the status has been updated, i.e. it has been
classified as approximation-redundant or non-approximation.
In the following we explain how the approximation miter for
fault classification is constructed and used in our approach.

2) Approximation Miter for Fault Classification: The ap-
proximation miter for fault classification (see Fig. 2 and Line 8
in Algorithm 1) is constructed using

o the golden reference netlist N — this netlist consists
of the correct (non-approximated) circuit (provided by
get_network() in Line 2)

o the faulty approximate netlist Ny — this netlist is the
final approximate netlist including fault f (provided by
get_faulty_network(f) in Line 5)

o the error computation network E — based on the given
error metric, this network is used to compute the concrete
error of a given output assignment of both netlists (see
Line 6)

o the fault classification network C — the result of the fault
classification network becomes 1, if the comparison of
both netlists violates the error metric constraint

Again, the goal of the fault classification miter is to decide
whether the current fault is approximation-redundant or not.
In other words we are looking for an input assignment such
that the given error metric constraint is violated. For instance,
in case of the motivating example this worst-case constraint
is we < 2, so we are looking for its negation. For this
approximate adder example we set C' to wc > 2 (see Line 7).

Now the complete problem is encoded as a SAT instance
and run a SAT solver. If the solver returns satisfiable — so
there is at least one input assignment which violates the error
metric constraint — we have proven that the fault is a non-
approximation fault (Line 11). If the solver returns unsatis-
fiable, we have proven that the fault is an approximation-
redundant fault (Line 13). This fault does not have to be
targeted during the regular ATPG stage.

In addition to the SAT techniques mentioned above, several
structural techniques are also used in conjunction with the
SAT solver for efficiency (see Line 15). This includes for
example fault equivalence rules and constant propagation for
redundancy removal.

Besides, several  trivial approximation-redundant/
non-approximation faults can be identified. Such trivial
faults are located near the outputs. An example is a fault
affecting the MSB output bits that always results in error
metric constraint violation. These can be directly deduced as
non-approximation faults through path tracing.

In the next section the experimental results are provided.

V. EXPERIMENTAL RESULTS

We have implemented all algorithms in C++. The input
to our program is the gate level netlist of the approximated
circuit which is normally used for standard ATPG generation.
Now, instead of running ATPG, we execute our proposed
approximation-aware fault classification approach (cf. Sec-
tion IV). This filters out the approximation-redundant faults.
From there on the standard ATPG flow is taken.

In the following we report results for approximated circuits
using worst-case error and bit-flip error constraints. Consider-
ing error-rate is left out for future work.!

The experimental evaluation of our approach has been done
for a wide range of circuits. For the circuits we have deter-
mined the respective error metrics using the public available
tool from [4]. In this section we first explain the results using
the worst-case error as approximation pre-processing criteria.
These results are provided in Table I. The experimental eval-
uation using the bit-flip error metric is separately explained at
the end of this section with Table II. Note that a combination
of these error metrics can also be provided to the tool. All the
experiments have been carried out on a system with 3.0GHz
Intel Xeon CPU. Further, the worst-case error and the bit-flip
error are the error metrics coming from the application.

A. Results for the Worst-Case Error Metric

All the results for the worst-case error scenario are summa-
rized in Table I. Before we describe the different benchmarks
(four different sets in total) and the obtained results we
explain the general structure of the table. The first three
columns give the circuit details such as the number of primary
inputs/outputs and the gate count. This is followed by the
fault count without our proposed approach, i.e. this gives
the “normal” number of faults for which ATPG is executed.
Note that fault-equivalence and fault-dominance are already
accounted in these fault counts (column: f,s). The next

'As explained before our methodology uses SAT calls to determine the
worst-case error behavior (cf. Section IV). However, for error-rate not only
pure SAT-calls are needed, but model counting. Model counting is a higher
complexity problem compared to SAT (#P-complete vs NP-complete) [23].



TABLE I
SUMMARY OF THE APPROXIMATION-AWARE FAULT CLASSIFICATION RESULTS FOR THE WORST-CASE ERROR

Architecturally approx. adders! (set:1) #Faults time EPFL benchmarks® (set:3) #Faults time
Circuit #PI/+PO  sgates forig f;’ CalT fXC (%) sec  Circuit #PI/+PO sgates forig f;;’;al fXC (%) sec
ACA_TI_N16_Q4 * 32/17 225 483 180 62.73% 14s  Barrel shifter* 135/128 3975 8540 6677 21.81% 3493s
ACA_II_N16_Q8 32/17 255 535 277 48.22% 16s  Max* 512/130 3780 7468 5783 22.56% 2156s
ACA_I_N16_Q4 32/17 256 530 174 67.17% 14s  Alu control unit* 7/26 178 378 252 33.33% Ss
ETAII_N16_Q8 * 32/17 255 535 277 48.22% 16s  Coding-cavilc* 10/11 885 1830 1194 34.75% 73s
ETAII_N16_Q4 32/17 225 483 180 62.73% 13s Lookahead XY router* 60/30 370 739 459 62.11% 12s
GDA_St_N16_M4_P4t 32/17 258 575 331 42.43% 17s  Adder* 256/129 1644 3910 2738 29.97% 969s
GDA_St_N16_M4_P8 32/17 280 617 188 69.53% 21s  Priority encoder*® 128/8 1225 2759 1335 51.61% 84s
GeAr_N16_R2_p4tt 32/17 255 541 160 70.43% 16s  Decoder* 8/256 571 2338 2175 6.97% 132s
GeAr_N16_R6_P4 32/17 263 561 286 49.02% 19s  Round robin* 256/129 16587 26249 11802  55.04% 43940s
GeAr_N16_R4_P8 32/17 261 552 161 70.83% 17s  Sin* 24/25 549213979 12756  8.74% 7464s
GeAr_N16_R4_P4 32/17 255 535 277 48.22% 16s

Arithmetic designs® (set:2) #Faults time ISCAS-85 benchmarks? (set:4) #Faults time
Circuit #PI/4PO  sgates forig fg:l alT fZC (%) sec  Circuit #PI/4PO sgates forig ff\:;al fZC (%) sec
Han Carlson Adder* 64/33 6551415 969 31.52% 88s  c499* 41/32 577 1320 755 42.80% 53s
Kogge Stone Adder™* 64/33 8391789 1475 17.55% 140s  c830* 60/26 527 1074 271 74.77% 27s
Brent Kung Adder* 64/33 5451178 700 40.58% S51s  c432* 36/7 256 487 441 09.45% Ts
Wallace Multiplier* 16/16 641 1641 669 59.23% 5027s c1355* 41/32 575 1330 680 48.87% 57s
Array Multiplier*® 16/16 6101585 619 60.95% 4250s c1908* 33/25 427 974 694 28.74% 46s
Dadda Multiplier* 16/16 641 1641 652 59.40% 6875s c2670* 233/140 931 1950 372 80.92% 138s
MAC unitl* 24/16 7251821 760 58.26% 12782s  ¢3540* 50/22 1192 2657 2388 10.12% 268s
MAC unit2* 33/48 8742104 492 76.61% 921s c5315* 178/123 2063 4224 2851 32.50% 1112s
4-Operand Adder* 64/18 614 1434 1156 19.39% 60s  ¢7552* 207/108 2013 4490 2938 34.57% 1014s

#PI, #PO: number of primary inputs, primary outputs.

#gates: gate count after synthesis

2. .1 WC
time: time taken for 3¢ |

forig : final fault count for which ATPG generated without approximation (dominant, equivalent faults not included)
fie,: final fault count after approx. pre-processor with worst-case limits. fA: relative reduction in fault(%). f¢ = (forig —fe ./ forig) * 100

final*

* shows approximation using public tool [15], further taken through standard synthesis flow. Tworst-case error evaluated using [4]

! Adhoc architecturally approx adders: =ACA [16], FETA [17] *GDA [18], HGeAr [19].

2 Arith from [20]. 3from [21]. 4from [22]

two columns provide the resulting fault count and reduction
in faults using our approximation-aware fault classification
methodology (columns: f; ., and f5 %). The last column
denotes the run-time in CPU seconds spent for our developed
approach, i.e. only the pre-processing (Algorithm 1).

1) Arithmetic Circuits: The first two sets in Table I con-
sists of commonly used approximation arithmetic circuits.
The first set are manually architected approximation adders
primarily used in image processing applications [16], [17],
[18]. These designs are available in the repository [19].
As evident from the Table I, a significant portion of the
faults in all these designs are approximation-redundant. It
can also be seen that such architectural schemes show a
wide range in approximation-redundant fault count, even
in the same category. For example among the different
Almost Correct Adders [16], ACA_I_N16_Q4 has a far
higher ratio of approximation faults compared to the scheme
ACA_II_N16_Q8 (67% vs 48%). The adder GDA_St_N16_
M4_P4 [18] has the least ratio of approximation faults in this
category, about 42%.

In the second set, other arithmetic circuits such as fast
adders, multipliers, multiply accumulate (MAC) etc., are eval-
uated. These designs are from [20]. The automated approxima-
tion scheme (public available on GitHub [15]) has been used
to approximate these circuits. Similar to the architecturally
approximated designs, the relative mix of approximation-
redundant and non-approximation faults in these circuits also
vary widely depending on the circuit structure.

2) Other Standard Benchmark Circuits: We also have
evaluated our approach on circuits from the ISCAS-85 [22]

and EPFL [21] benchmarks to demonstrate its generality. Our
methodology is able to classify a high percentage of faults as
approximation-redundant to be skipped from ATPG genera-
tion, eventually improving the yield. The highest fraction of
approximation-redundant faults is obtained in the ISCAS-85
circuit C2670 (above 80%). However, there is a wide variation
in the relative percentage of faults classified as approximation-
redundant. This primarily stems from the structure of the cir-
cuit, approximation scheme employed and the error tolerance
of the AC application.

B. Results for the Bit-Flip Error Metric

We have taken the same set of designs given in Table I
for the evaluation of the approximation-aware fault classifica-
tion methodology under the bit-flip error metric. The results
obtained are summarized in Table II. As mentioned before
the bit-flip error is the maximum hamming distance of the
output bits of the approximated and non-approximated designs,
irrespective of the error magnitude. The Table II shows the
approximation-aware fault classification results for architec-
turally approximated adders [16], [17], [18], [19], arithmetic
designs [20], standard ISCAS benchmark circuits [22] and
EPFL benchmarks [21].

The results in Table II show a different trend compared
to the worst-case error results in Table I. In general, the ap-
proximation pre-processor has classified a lesser percentage of
faults as approximation redundant in the first category of hand
crafted approximated adder designs. This has to be expected
since each approximation scheme is targeted for a different
error criteria, and therefore has a different sensitivity for each



TABLE II
SUMMARY OF THE APPROXIMATION-AWARE FAULT CLASSIFICATION
RESULTS FOR THE BIT-FLIP ERROR

Benchmark Details #Faults time
Approximate adders® #aates  forig fﬁbial fzf (%) sec
ACA_II_N16_Q4 225 483 400 17.18% 4s
ACA_II_N16_Q8 255 535 430 10.28% 4s
ACA_I_N16_Q4 256 530 426  19.62% 5s
ETAII_N16_Q8 255 535 480  10.28% Ss
ETAII_N16_Q4 225 433 400  17.18% 4s
GDA_St_N16_M4_P4 258 575 508  11.65% 5s
GDA_St_N16_M4_P8 280 617 197  68.07% 7s
GeAr_N16_R6_P4 263 561 200 64.35% 5s
GeAr_N16_R4_P8 261 552 199  63.95% 6s
GeAr_N16_R4_P4 255 535 480 10.28% Ss
Arithmetic designs® #gates  forig fﬁbi al fo (%) sec
Han Carlson Adder* 655 1415 1202 15.05% 155s
Kogge Stone Adder* 839 1789 1699 5.03% 105s
Brent Kung Adder* 545 1178 1018  13.58% 58s
Wallace Multiplier* 641 1641 309 81.17% 52s
Array Multiplier*® 610 1585 311 80.37% 55s
Dadda Multiplier* 641 1641 303  81.13% 54s
MAC unitl* 725 1821 1775 2.53% 70s
MAC unit2* 874 2104 2017 4.13% 161s
EPFL circuits® #gates  forig g ial fzf (%) sec
Barrel shifter® 3975 8540 3454  59.55%  61488s
Alu control unit* 178 378 178  5291% 11s
Coding-cavlc* 885 1830 1346 26.45% 76s
Lookahead XY router* 370 739 655 11.37% 77s
Int to float converter™ 296 624 293 53.04% 9s
Priority encoder* 1225 2759 1061  61.54% 87s
ISCAS circuits* #oates  forig  fro.  fa (%) sec
c499* 577 1320 1153  12.65% 73s
c880* 527 1074 305  71.60% 31s
c1355* 575 1330 1196  10.08% 79s
c1908* 427 974 949 2.57% 30s
c2670* 931 1950 428  78.05% 396s
c3540* 1192 2657 839  68.42% 418s
c5315* 2063 4224 1648  60.98% 6224s
c6288* 2836 7048 3071 56.42% 4881s

#gates: gate count after synthesis

forig: original fault count for ATPG without bit-flip approximation
(Note: dominant and equivalent faults are excluded from this count)

fglfml: final fault count after approximation-aware fault classification

f5 (%): Reduction in fault count = (forig — fgflal / forig> * 100

time: CPU time taken by approximation-aware fault classification

Benchmark sources: ' Approximate adders from [19]

2 Arithmetic designs [20], 3EPFL circuits [21], 4ISCAS circuits [22]

* shows approximation technique using the public tool [15]

of these error metrics. Furthermore, these two error metrics
are not correlated. As an example, a defect affecting only the
most significant output bit has the same bit-flip error as that of
a defect affecting the least significant output bit of the circuit.
However, the worst-case errors for these respective defects are
vastly different. We refer to the individual works [16], [17],
[18], [19] etc., for a detailed discussion of the error criteria
employed in the design of these circuits. Nevertheless, our
approximation-aware fault classification tool is able to classify
a significant number of faults as approximation redundant in
several circuits provided in Table II.

Overall, the results confirm the applicability of our proposed
methodology. Note that, in general the run-times for a SAT

based ATPG flow depend mainly on the circuit complexity,
size and the underlying SAT techniques. Our approach is
also influenced by these factors. Therefore, improvements in
SAT-based ATPG has a direct impact in our approach. It
is also worth mentioning that the approximation-aware fault
classification and the subsequent ATPG generation is a one
time effort whereas the actual post production test of the circuit
is a recurring one. Hence, the additional effort and run-times
are easily justified due to high reduction in the fault count that
has to be targeted for test generation.

VI. CONCLUSIONS

In this work, we presented an approximation-aware test
methodology. First, we proposed a novel fault classification
based on the approximation error characteristics. Further, we
showed a formal methodology that can map all the faults of an
approximation circuit into approximation-redundant and non-
approximation faults. The approximation-redundant faults are
guaranteed to have effects that are below the error threshold
limits of the AC application. Hence, the subsequent ATPG
generation has to target only the non-approximation faults and
thereby yield can be improved significantly.

Our methodology can be easily integrated into today’s stan-
dard test generation flow. Besides, the experimental results on
a wide range of circuits confirm the potential and significance
of our approach. Substantial reduction in fault count up to 80%
is obtained depending on the concrete approximation and the
error metric.
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