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Abstract—Many applications are inherently error tolerant. Ap-
proximate Computing is an emerging design paradigm, which
gives the opportunity to make use of this error tolerance, by
trading off accuracy for performance.

The behavior of a circuit can be defined at an arithmetic level,
by describing the input and output relation as a polynomial.
Symbolic Computer Algebra (SCA) has been employed to verify
that a given circuit netlist matches the behavior specified at the
arithmetic level.

In this paper, we present a method that relaxes the exactness
requirement of the implementation. We propose a heuristic
method to generate an approximation for a given netlist and use
SCA to ensure that the result is within application-specific bounds
for given error-metrics. In addition, our approach allows for
automatic generation of approximate hardware wrt. application-
specific input probabilities. To the best of our knowledge taking
input probabilities, which are known for many practical appli-
cations, into account has not been considered before. We employ
the proposed approach to generate approximate adders and
show that the results outperform state-of-the-art, handcrafted
approximate hardware.

I. INTRODUCTION

Approximate Computing is an emerging field of research,
which deals with exploiting the inherited error tolerance of
applications. Approximate Computing tries to improve the
performance of these applications in terms of computation
time, power consumption and/or hardware complexity by
introducing additional errors, which are either timing induced
or caused by functional approximation. This paper focuses on
the later approach of functional approximation.
A lot of research in the field of automating the design of data

paths from high-level specifications using Symbolic Computer
Algebra (SCA) has been done (see e.g. [1]). At the same time,
SCA has been employed in the field of verification of circuits
[2], [3], [4], [5].
In this paper we propose to use the techniques derived in

both fields as follows: We present a heuristic method to
automatically generate an approximate circuit for a given high-
level specification employing SCA for error-metric evaluation.
Starting with the non-approximated netlist, we remove gates
to approximate the circuit. Using SCA we guarantee that user
specific bounds for error-metrics hold. We show that the results
of our approach can outperform state-of-the-art handcrafted
approximate hardware.
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It has been shown that for many practical applications non-
uniform input distributions occur (see e.g. [6]). Hence, we
extend our approach to take this information into account. By
this, we allow for even further improved approximation.

II. RELATED WORK

There has been a lot of research in the field of verifying
circuits on gate-level using Gröbner Basis [2], [3], [4], [5].
The basic idea is that given a set of polynomials describing the
internal structure of the circuit (its netlist), one can conclude
that the resulting polynomial, which describes the relation of
the output to the input, equals the desired functionality (which
is also given in polynomial form). We employ techniques
based on Gröbner Basis for error-metric computation.

Some approaches towards the generation of approximate
hardware exist:
In [7] the authors have generated approximate hardware using

And-Inverter Graphs (AIGs). This technique allows the reduc-
tion of hardware complexity and critical path length. However,
they don’t support input probabilities. Further, the authors only
consider gates on the critical path, while we propose to adopt
the considered gates based on the approximation goal.
SALSA, introduced in [8], presents a methodology for au-

tomatic approximate hardware generation. It utilizes Approx-
imate Don’t Cares and Q-functions for generating approxi-
mate hardware and maps it to a synthesis problem. Further,
ASLAN [9] has been presented, which extends SALSA to an
algorithm for automatic generation of approximate sequential
circuits. This requires the definition of a Quality Evaluation
Circuit, which is a design problem itself. Again these method-
ologies don’t support input probabilities.

III. PRELIMINARIES

We assume that the reader is familiar with the basics of SCA
in the context of circuit verification. Essentially, SCA-based
verification performs a series of divisions of the specification
polynomial by the circuit polynomials (also known as Gröbner
basis reduction). For details we refer the reader to [4], [3].
Over the past years several metrics have been used in

approximate computing. One of the most popular metrics is
the worst-case error (wc). It can be defined as

wc(f, f̂) = max
x
{|f(x)− f̂(x)|}. (1)

In [10] the authors propose a mean squared error (mse) error-
metric:

mse(f, f̂) =

(
∑
x
(f(x)− f̂(x))2)

2n
. (2)



IV. APPROXIMATE CIRCUIT GENERATION

In this section we introduce the definition of the problem
at hand and a description on how to determine the difference
between an implementation of a given circuit and its specifi-
cation in Section IV-A. In Section IV-B we describe how to
use SCA for the computation of error-metrics.

A. Problem Formulation

Approximate Circuit Generation.
Given a pseudo-Boolean polynomial f(X = x1, . . . , xn) :
Bn → Z, which is a definition of the system behavior of a
circuit at an arithmetic level, a cost function c and an error
bound B, find a netlist N which realizes a function f̂(X),
such that f̂ = min

N
c(N) and e(N, f) ≤ B for some error

function e.

We propose to tackle this problem heuristically by removing
gates from the netlist N of the implementation of f , until the
error bound is reached. We remove a gate by replacing its
output with one of its inputs. An algorithm for this problem
is presented in Section V. This algorithm also requires to
calculate the error function e. In general, e calculates the
difference between the polynomial representation f and its
approximate realization f̂ and evaluates it in terms of an
error-metric. Hence, we provide a method to determine a
functional representation of the difference between a polyno-
mial representation f and its approximate realization f̂ next.
Afterwards we show how to evaluate this representation in
terms of different error-metrics.

Lemma 1. In order to determine the difference between a
polynomial representation f and its approximate realization
f̂ , it is sufficient to consider the remainder R of the realization
of f when it is expressed in terms of the Gröbner Basis B̂ of
f̂ . If the remainder is zero, then f̂ is the exact implementation
of f . Otherwise, f̂ is the exact implementation of f −R.

Proof. The proof is straight forward and can be deduced by
using the representation of f and f̂ in terms of the Gröbner
Basis of the approximate circuit.

B. Error-Metrics Calculation for Pseudo-Boolean Functions

After presenting a method to find a representation for the
difference between a polynomial representation f and its
approximate realization f̂ , we now derive how to evaluate
the remainder R in terms of the error-metrics presented
in Section III. In general, R is a pseudo-Boolean function
R : Bn → Z. Evaluating R for any input combination will
yield the difference between f and f̂ for the concrete input.

1) wc-error: Given the remainder R, the evaluation of
the worst-case error results in the classical pseudo-Boolean
optimization problem.
There is a lot of theory about finding global minima/maxima

of pseudo-Boolean functions. This problem is known to be
NP-hard and is tackled in different ways using solvers of
very different fields [11]. We use the optimization feature of
an SMT-solver in this work. Since R is a pseudo-Boolean

function, it can be passed to the SMT-solver without any
reformulation.
2) mse-error: We propose to calculate the average of a

multilinear pseudo-Boolean function in a recursive way and
use this formulation to calculate the mse-error.
Every pseudo-Boolean function f(X) with X = x1, . . . , xn

can be written in the form

f(X) = x1 · g(x2, . . . , xn) + h(x2, . . . , xn)

[12]. If the input probability p(xi) for which the input xi is
set to 1 is known, we conclude

avg(f(X)) =

∑
x∈Bn

f(x)

2n

= p(x1) · avg(g(x2, . . . , xn)) + avg(h(x2, . . . , xn)). (3)

We can use Eq. 3 to calculate the average value of pseudo-
Boolean functions in a recursive manner. If the input proba-
bility of p(xi) = 0.5 ∀i, then

mse(R(x)) = avg(R(x)2) (4)

However, it makes sense to extend this definition if the
distribution of the input probabilities is known. We propose
that if the distribution of the input probabilities is known, this
should be taken into account in the mse-error-metric. Thus,
the average of R(x)2 in Eq. 4 should always be calculated
wrt. to the given probability distribution. If no distribution is
given then naturally p(xi) = 0.5 ∀i is assumed.

V. PROPOSED ALGORITHM

In this section we introduce the algorithm for the generation
of an approximate circuit f̂(X) for a given functional descrip-
tion f(X) and its initial non-approximated gate-level netlist
N . We start with the overview of the proposed algorithm in
Section V-A and assumptions we make in order to simplify the
problem. It is followed by an algorithm to minimize the Gate
Count (GC) for a given netlist in Section V-B. Afterwards we
give a description on how to adapt the algorithm to optimize
the circuit wrt. the Critical Path Length (CPL) in Section V-C.

A. Algorithm Overview

The goal of the proposed algorithm is to create an approxi-
mation f̂ by replacing gates in N with one of their respective
inputs.
1) Simplifications: We solve the problem heuristically by

making the following assumptions:
1) Whenever we remove a gate, the error does not decrease
2) Whenever the remainder R gets too complex, the result-

ing error will be large. The complexity of the evaluation
of R can be estimated by counting the number of literals.

The first assumption allows us to stop checking new combi-
nations, whenever the error-bound is violated.
The second assumption allows us to configure the quality of

approximation as a trade-off for run-time.



2) Vanishing Monomials: During the elimination process
the size of the polynomial can grow exponentially in the
number of monomials [4], [3]. These monomials vanish if the
specification meets the implementation. Approaches to deal
with these blow ups have been proposed. We utilize the state-
of-the-art method of logic reduction (a mix of XOR rewriting
followed by common rewriting) as proposed in [3].
However, during the approximation process netlists may

occur for which these monomials do not vanish. Since the
computation time of the elimination process may become
infeasible, we limit the number of monomials that may appear
during the polynomial division. If this limit is reached, we
assume that the implementation does not meet the required
error bound.

B. Algorithm

In this section we introduce a basic algorithm to determine
an approximation for the original circuit.

Algorithm 1 Approximate Circuit Generation
1: function ACI(f,N,errFun,B)
2: result = N ;
3: newApproximation.N = N ;
4: newApproximation.error = B;
5: for all g ∈ N.gates do
6: for all i ∈ g do
7: N̂ = N ;
8: replace(N̂ , g, i);
9: error =errFun(N̂ , f);

10: if error < newApproximation.error then
11: newApproximation.N = N̂ ;
12: newApproximation.error = error;
13: end if
14: end for
15: end for
16: if newApproximation.N 6= N then
17: return ACI(f, newApproximation.N, errFun,B);
18: else
19: return result;
20: end if
21: end function

We construct a greedy algorithm depicted in Algorithm 1 as
a heuristic to find an approximation f̂ for a given function f .
The inputs are the symbolic representation of the function f
which is to be approximated and its corresponding netlist N .
The error-metric is encoded in the parameter errFun (see
Section III) and its bound by the parameter B.

In Line 5 we iterate over all gates in N . We replace the
current gate by one of its inputs in Line 8. We calculate the
error of the approximation in Line 9. If the expression of the
remainder R gets too complex, we assume that the error is∞.
If the error bound for the error calculated by replacing the gate
holds, we check if it is smaller than for any other previous
computed approximation in Line 10. If so, we store the current
approximation. In Line 16, we check if any approximation has
been found, for which the error bound holds. If this is the case,
we recursively call our algorithm and remove another gate. If
not, we return the netlist which was given, since no other gate
can be removed without breaking the error bound.

C. Optimization wrt. Critical Path Length

If one wants to optimize for delay instead of area, only gates
on the critical path are of interest. So instead of removing gates
from anywhere in the circuit, the algorithm can be restricted to
the critical path. The critical path has to be determined initially
and redetermined after each removal.

VI. EXPERIMENTAL RESULTS

We have implemented the parallelized version of Algorithm 1
in C++. The wc-error is evaluated using the optimization
feature of the SMT-solver Z3 [13]. All experiments have been
carried out on an Intel R© Xeon R© CPU E5-2630 v3 @ 2.40GHz
with 64GB memory running Linux (Fedora release 22). We set
the maximum number of monomials which may occur during
the division process to 10, 000 for all experiments.
A. Optimization wrt. Gate Count

We have optimized an 8-bit Ripple-Carry-Adder (RCA)
using the wc-error-metric and the mse-error-metric in terms
of Gate Count (GC). We have set the complexity-limit of
the remainder to 750 for the mse-error and to 200 for the
wc-error. The results can be seen in Table I and Table II.
The first column gives the name of the architecture. The
second column shows the calculated error and the third
column the remaining number of gates. The fourth column
denotes the computation time in CPU seconds. We set 4, 8,
16, 32, 64 and 128 as limits for the wc-error. We used 96
and 408 as limits for the mse-error-metric, since these are
values that many architectures of handcrafted approximate
architectures from the repository [14] use. The first row
shows the values for the golden, non-approximated RCA
architecture in both tables. The remaining rows show the
results of our algorithm. Their names are encoded as follows:
< approximation goal > < error −metric > < error bound >.
It can be seen that when optimizing wrt. GC, large
improvements in the number of gates can be achieved.
Table II also shows the effect when taking input probabilities

into account. For the fourth and fifth row (GC mse 96 prob
and GC mse 408 prob), we have set the probability of the
lower half input bits of each input word to 0.5, while setting
the probability of the upper half input bits of each input word
to 0.1. By this, we simulate that the domain of the inputs is
mostly below 16. As can be seen specifying input probabilities
allows us to reduce the GC even further, since more gates in
the region which influences the higher order outputs can be
removed: Instead of reducing the GC to 29 for mse-error limit
of 96, we now get a circuit with only 20 gates (second row
vs. fourth row). For a mse-error limit of 408, the reduction in
gate count is from 24 to 12 (third row vs. fifth row).
B. Optimization wrt. Critical Path Length

In this subsection we consider another optimization criteria,
i.e. we optimize wrt. Critical Path Length (CPL) (cf. Sec-
tion V-C). To evaluate the quality of the proposed approach,
we compare against state-of-the-art handcrafted approximate
adder architectures with a wc-error of 64 or 128, respec-
tively. They have been taken from the repository [14] and



TABLE I
APPROXIMATIONS FOR AN 8-BIT ADDER IN TERMS OF GATE COUNT FOR

wc-ERROR

Approximation wc-error gate count calc. time [s]
RCA 8 0 49 -
GC wc 4 3 42 4.8
GC wc 8 7 39 6.5
GC wc 16 12 29 11.4
GC wc 32 28 21 16.2
GC wc 64 59 16 20.6
GC wc 128 124 14 21.5

TABLE II
APPROXIMATIONS FOR AN 8-BIT ADDER IN TERMS OF GATE COUNT FOR

mse-ERROR

Approximation mse-error gate count calc. time [s]
RCA 8 0 49 -
GC mse 96 21.5 29 12.5
GC mse 408 249.5 24 16.9
GC mse 96 prob 87.9 20 11.0
GC mse 408 prob 390.4 12 11.7

synthesized to gate-level using AND, OR and XOR gates with
Yosys 0.7 [15]. In our approach, we have set the complexity-
limit of the remainder to 2000 and use 64 and 128 as bounds
since these were the most common wc-errors computed for
the state-of-the-art approximate adder architectures. We use
ABC 1.01 [16] to calculate the delay of our results and
of the handcrafted adders after mapping them to the library
mcnc.genlib.
The results can be seen in Fig. 1(a) and Fig. 1(b), respec-

tively. The y-axis denotes the calculated delay in ns for each
architecture. The black bar represents the delay of the golden
non-approximated RCA. The gray bars refer to different adder
architectures (we have used the same abbreviations as given
in the Library [14]). The dashed bar refers to the result of our
proposed approach. The naming is the same as introduced in
the previous section. All results were computed in less than
120s.
As can be seen our proposed approach has reduced the

delay of the RCA significantly and outperformed all compared
architectures.
We have also considered larger circuits as benchmarks by

approximating a 16-bit adder using the wc-error-metric in
terms of CPL. We have used 1024 and 4096 as error bounds
and again compared the results to state-of-the-art handcrafted
approximate adders from the repository [14]. Results can be
seen in the Figures 2(a) and 2(b). All results were computed in
less than 4h. Again the results from the heuristic outperform
the architectures from the repository.

VII. CONCLUSIONS

We have proposed a method to automatically generate an
approximate circuit for a given high-level specification un-
der accuracy constraints wrt. a given optimization goal. Our
method employs Symbolic Computer Algebra (SCA) for error
metric evaluation. SCA produces a remainder polynomial
representing the error of the approximation. This polynomial
can be easily interpreted and evaluated.
We have used our approach to optimize an 8-bit RCA in terms

of GC wrt. different error-metrics. Furthermore, we considered
the critical path length as alternative optimization goal during
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(b) 8-bit Adder wc=128
Fig. 1. Results for 8-bit Adder
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(a) 16-bit Adder wc=1024
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(b) 16-bit Adder wc=4096
Fig. 2. Results for 16-bit Adder

approximation. In the experiments we have shown that our
approach produces much better results in comparison to state-
of-the-art handcrafted approximated architectures.
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integer multipliers by combining Gröbner basis with logic reduction,” in DATE, 2016, pp.
1048–1053.

[4] F. Farahmandi and B. Alizadeh, “Groebner basis based formal verification of large
arithmetic circuits using gaussian elimination and cone-based polynomial extraction,”
MICPRO, vol. 39, no. 2, pp. 83 – 96, 2015.

[5] D. Ritirc, A. Biere, and M. Kauers, “Column-wise verification of multipliers using
computer algebra,” in FMCAD, 2017, pp. 23–30.

[6] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-power digital signal
processing using approximate adders,” TCAD, vol. 32, pp. 124–137, 2013.

[7] A. Chandrasekharan, M. Soeken, D. Große, and R. Drechsler, “Approximation-aware
rewriting of AIGs for error tolerant applications,” in ICCAD, 2016, pp. 83:1–83:8.

[8] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghunathan, “Salsa:
Systematic logic synthesis of approximate circuits,” in DAC, 2012, pp. 796–801.

[9] A. Ranjan, A. Raha, S. Venkataramani, K. Roy, and A. Raghunathan, “Aslan: Synthesis
of approximate sequential circuits,” in DATE, 2014, pp. 364:1–364:6.

[10] V. Mrazek, R. Hrbacek, Z. Vasicek, and L. Sekanina, “Evoapprox8b: Library of ap-
proximate adders and multipliers for circuit design and benchmarking of approximation
methods,” in DATE, 2017, pp. 258–261.

[11] T. Berthold, S. Heinz, and M. E. Pfetsch, “Nonlinear pseudo-boolean optimization:
Relaxation or propagation?” in SAT, 2009, pp. 441–446.

[12] Y. Crama, P. Hansen, and B. Jaumard, “The basic algorithm for pseudo-boolean program-
ming revisited,” Discrete Applied Mathematics, vol. 29, no. 2, pp. 171–185, 1990.

[13] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in TACAS, 2008.
[14] Chair for Embedded Systems - Karlsruhe Institute of Technology, “Gear -

approxadderlib.” [Online]. Available: http://ces.itec.kit.edu/GeAR.php
[15] C. Wolf, “Yosys - yosys open synthesis suite.” [Online]. Available: http://www.clifford.

at/yosys/about.html
[16] A. Mischenko, M. Case, R. Brayton, and S. Jang, “Scalable and scalably-verifiable

sequential synthesis,” in ICCAD, 2008, pp. 234–241.

http://ces.itec.kit.edu/GeAR.php
http://www.clifford.at/yosys/about.html
http://www.clifford.at/yosys/about.html

