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Abstract—Approximate computing is an emerging design pa-
radigm for trading off computational accuracy for computational
effort. Due to their inherited error resilience many applications
significantly benefit from approximate computing. To realize ap-
proximation, dedicated approximate circuits have been developed
and provide a solid foundation for energy and time efficient
computing. However, when it comes to the design and integration
of the approximate HW, complex error analysis is required to
determine the effect of the error with respect to application
specific error norms. This frequently leads to sub-optimal results.

In this work, we propose to reverse the typical design flow
for approximate HW and demonstrate the new flow for a first
application: LU-Factorization, which is one of the most basic and
most popular numerical algorithm known. The general idea of
the reversed flow for approximate HW design is to start with the
application and determine the required computational accuracy
such that the computational error of the result is below the
application specific error bound. This allows us to push the
approximate HW to its limits, while guaranteeing that the result
is correct by construction wrt. the requirements. The effectiveness
of our approach for LU-Factorization is shown on a well-known
and large set of benchmarks.

I. INTRODUCTION

Approximate computing is an emerging field of research
in computer science. The main purpose of approximate com-
puting is to trade off accuracy for computational speed and
HW complexity. A lot of effort has been spent in the de-
velopment of approximate HW, such as adders [1], [2], [3],
multipliers [4], [5] and general Synthesis and HW generation
[6], [7], [8], [9].

The approaches for approximation differ, as some tweak
the HW parameters, for example by voltage scaling and over
clocking [10], [11], while others modify the behavior by
changing the implemented function (e.g. [1], [8], [12], [5]).

However, designing and integrating approximate HW for
a concrete application is often a difficult task. Approximate
HW is evaluated with respect to typical error metrics for
approximate computing (e.g. error-rate, worst-case error, bit-
flip error) [13], [14]. Linking these error metrics to application
specific error norms can be very challenging.

In this paper, we first review the conventional approximate
HW design flow. As application domain we have chosen
numerical algorithms, since techniques for error analysis are
well known in this field . We identify the main shortcoming
of the conventional approximate HW design flow, that is, long
design loops are necessary. These loops result from numerous
iterations of the complete approximate design flow starting
from different approximate HW components until a suitable
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approximate HW component is found which satisfies the
application specific error bound. To overcome this deficiency,
we reverse the conventional approximate HW design flow by
starting from the application specific error bound such that
we can take full advantage of the approximate HW which is
correct by construction and thus guarantees that the application
specific error bound holds.

To demonstrate our proposed reversed approximate HW
design flow, we consider as a first application the problem of
solving linear equations. This problem is a challenge faced in
many applications: electronic circuits when using Kirchhoffs
rules or network analysis when analyzing traffic flows, to
mention only a few (a lot of examples can be found in [15]).
In this context, the LU-Factorization is one of the most
common ways to solve a linear system of equations of the
form Ax = b directly, i.e. not using an iterative method.
Essentially, LU-Factorization is based on decomposing the
matrix representing the linear system into a product of two
triangular matrices (one Lower and one Upper triangular
matrix). The major advantage of this approach is that solving
the same system A for many right-hand sides b1, b2, . . . can
be done very fast, once the LU-Factorization is computed
(cf. [15], p.494).

Following the proposed reversed approximate HW design
flow, we demonstrate how to speed up the computations
during LU-Factorization using approximate computing. More
precisely, for a given LU-Factorization and an application
specific upper bound on the loss of accuracy of the result, we
derive a bound for the computational accuracy needed which
determines the integrated approximation. This bound can be
calculated before any right-hand side bi is known and thus
offline and without any negative effect on the runtime of the
application. The formula for the bound is not restricted to a
specific error-norm, which can differ between applications.

We demonstrate the effectiveness of our approach for se-
veral systems of equations of different sizes with different
right-hand sides using approximate HW. For this purpose, we
use the ideas of [4] of reducing the computational complexity
of multiplications by implementing a floating-point multiplier,
which ignores the l least significant bits of the mantissa. Our
experiments show that significant speed-ups with guaranteed
accuracy are possible.

The remainder of this paper is structured as follows: In
Section II related word is reviewed. Section III reviews
the conventional approximate HW design flow and intro-
duces the proposed reversed design flow. Afterwards, in
Section IV the basics for the considered numerical algorithm,
i.e. LU-Factorization are reviewed. We derive error bounds



depending on accuracy requirements in Section V and give a
method on how to relate these to floating-point arithmetic in
Section VI. Section VII presents the experimental evaluation.
Finally, Section VIII concludes the paper.

II. RELATED WORK

A lot of work has been done in analyzing the accuracy of
Gaussian Elimination and LU-Factorization.

Wilkinson was the first one to analyze rounding errors in
the context of numerical algorithms in detail in [16] and [17].
Amongst other things, he introduced the common models
for rounding errors induced by the usage of floating-point
arithmetic. Others, such as the author of [18], have built upon
his work.

The author of [19] gives a summary of the work done on the
accuracy of Gaussian Elimination. He gives some information
about the accuracy of floating-point numbers in [18], it’s
application in numerical algorithms and their implementations.
Alongside other applications he analyzes the sensitivity of
linear systems towards perturbations, after introducing some
more basics like vector and matrix norms etc..

In [20], the authors give a detailed analysis of the backward
error for the ∞-norm for totally positive matrices. They
analyze rounding errors in the context of spline interpolation.

The author of [21] did some general work to analyze
algorithms and based on this, derived concrete formulas for
linearized errors of the calculation of the LU-Factorization and
the solving of linear systems in [22].

The authors of [23] have introduced a way on how to
use approximation in iterative algorithms. They give general
schemes on how to adopt the level of approximation in a
flexible environment based on the results and the change of
the results of each iteration. However they do not give any
details about error bounds and do not mention direct solvers
for linear equations.

III. APPROXIMATE HW DESIGN FLOW FOR NUMERICAL
APPLICATIONS

First, in this section we review the conventional approximate
HW design flow for numerical applications and describe its
shortcomings. Then, we introduce the proposed reversed flow
which provides a direct solution to take full advantage of
approximate HW for the considered numerical applications.

A. Conventional Approximate HW Design Flow

Given a numerical application the design team is faced with
the question of how to select (or built) an approximate HW
design such that approximation is fully exploited, while at the
same time application specific error bounds are not violated.
Here, approximate HW designs are usually evaluated with
respect to error metrics specific to approximate computing.
A transfer to application specific error norms is generally not
straightforward.

Fig. 1(a) illustrates the conventional design flow for desig-
ning approximate HW for a numerical application: First, an
approximate HW design is chosen. For example, a dedicated

approximate adder or an approximate multiplier is selected.
This design is evaluated in terms of approximate error metrics,
such as average case error, or worst-case error etc. Then,
in the third step, the effect of the error induced by the
approximate component on the computational accuracy of the
system is evaluated. Consider for instance an approximate
adder. Knowing the worst-case error of the approximate adder,
it is possible to directly conclude a bound for its accuracy.
For this purpose, classical numeric error analysis can be used.
Once the computational accuracy for the relevant operations
is known, its propagation to the application specific error
norms can be calculated (6th step). Finally, the designer has
to decide whether the result is good enough: Therefore, the
error e is evaluated in the application specific error norm and
compared to a application specified error bound B. If the result
meets the bound B and is close enough to B, then a suitable
solution based on the in the first step selected approximated
component(s) has been found. However, the circuit may still
be sub-optimal, since there might be a better solution. Even
worse, the normal case is that either the bound B is violated
or the result is too far away from the tolerated deviation; in
both cases the complete flow has to be repeated in a long and
costly loop. In practice, several iterations appear. To overcome
this problem we reverse this flow as presented in the next
subsection.

In addition, statistical design flows are being used. Parame-
ters of the approximate hardware are being adjusted by using
it on a fixed set of problems and evaluating the resulting error
induced by approximation. However such a design flow can
not guarantee, that the error bound holds for every possible
input combination, if the input space is large.

B. Proposed Reversed Approximate HW Design Flow

We propose to reverse the conventional approximate HW
design flow for numeric applications as shown in Fig. 1(b).
Instead of starting with the design of the approximate HW,
we start with the application specific error bound. We reverse
the mathematical analysis by calculating the required compu-
tational accuracy in order to guarantee that the calculated error
of the final result is below the given application specific error
bound B. We relate the required computational accuracy to a
suitable approximate error metric. Since this allows to control
the valid maximum deviation from the correct value in terms
of the approximate error metric, we are able to directly design
the approximate HW which fits the requirements. Hence, no
loops are necessary and the resulting approximate HW layout
is guaranteed to be correct by construction wrt. the application
specific error bound and exploiting the full potential of the
approximate HW.

IV. LU-FACTORIZATION BASICS, FLOATING-POINT
ARITHMETIC AND MATRICES

This section reviews the basic knowledge of the
LU-Factorization, accuracy in the context of floating-point
numbers and matrix operations, which is necessary to under-
stand the remainder of this paper. It also introduces notations
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used throughout the paper. First, we give a summary of the
LU-Factorization. Afterwards we introduce brief definitions
of matrix operations, which are necessary to know, in order
to understand the relations between equations, which are
explained in this paper. Finally, we introduce notations used
throughout this paper, including the unit round off and a model
for the rounding errors induced by the usage of floating-point
arithmetic.

A. LU-Factorization

The LU-Factorization of a matrix A is commonly defined
as A = LU with L being a lower triangular matrix with unit
diagonal elements and U being an upper triangular matrix.

When solving a linear system of equations Ax = b for a
non singular matrix A with a given LU-Factorization A = LU
and a given right-hand side b, the resulting equation is

LUx = b. (1)

In the following we give an example on how to solve a linear
system of equations using the LU-Factorization.

Matrix A and vector b are defined by Eq. 2. The corre-
sponding LU-Factorization of A is given by Eq. 3. To solve
LUx = b, we substitute y = Ux, such that the remaining
equation is Ly = b. We formulate this problem in Eq. 4a and
solve it in Eq. 4b. The remaining problem is to solve Ux = y,
which is formulated in Eq. 5a and solved in Eq. 5b. The result
is given in Eq. 6.

A =

1 2 3
2 8 11
3 22 35

 , b =

 14
51
152

 (2)

L =

1 0 0
2 1 0
3 4 1

 , U =

1 2 3
0 4 5
0 0 6

 (3)

L y = b1 0 0
2 1 0
3 4 1

 y1

y2

y3

 =

 14
51
152

 (4a)

y1 = 14

y2 = 51− 2y1 = 23 (4b)
y3 = 152− 3y1 − 4y2 = 18

U x = y1 2 3
0 4 5
0 0 6

 x1

x2

x3

 =

14
23
18

 (5a)

6x3 = 18 ⇒ x3 = 3

4x2 = 23− 5x3 = 8 ⇒ x2 = 2 (5b)
x1 = 14− 2y2 − 3y3 = 1 ⇒ x1 = 1

x =

1
2
3

 (6)

One can observe that the calculations mainly consist of mul-
tiplications and subtractions. While the number of divisions
is linear in the dimension of the problem, the number of
subtractions and multiplications grows quadratic.

B. Matrix Operations

Before we take a closer look at LU-Factorization specific
error norms, we need to introduce some basic matrix operati-
ons, which can be found in literature, for example in [24]. We
will utilize them to reverse the mathematical error analysis of
the LU-Factorization.

An induced matrix norm is defined by:

‖A‖ = max
x 6=0

‖Ax‖
‖x‖

, A ∈ Cm×n, x ∈ Cn. (7)

There are also matrix norms which are not induced (not related
to a vector norm), but these are not relevant for this paper.
Whenever we use the expression matrix norm, we mean an
induced matrix norm.

One can interpret a matrix norm in the following way:
Imagine a vector norm denoting the length of a vector. A



matrix norm denotes how much it stretches the vector. The
fraction ‖Ax‖‖x‖ can be interpreted as the magnification of x that
takes place, as x is multiplied with A. Take rotation matrices
as an example. These matrices generally have a norm of 1,
as they do not stretch the multiplied vectors in anyway, but
rotate them around the origin.

Matrix norms have the property of being submultiplicative.
Submultiplicativity for matrix norms is defined as:

‖AB‖ ≤ ‖A‖ ‖B‖ , A ∈ Cm×n, B ∈ Cn×p. (8)

C. Notations

In order to distinguish between a computation in exact
arithmetic and arithmetic using approximation, we need to
introduce additional notations.

If an operator � with � ∈ {+,−, ∗, /} is used, we refer
to exact arithmetic. When using approximation to calculate
the result of an operation, we use the notation (�)a. So for
example

(
x
y

)
a

would give an approximation for the exact
result of x

y .
Throughout this paper we use the notation of |A| denoting

the matrix of absolute values of A. By matrix of absolute
values we mean a matrix consisting of the absolute values of
each entry of A. Thus if A = (ai,j), i = 1 . . . n, j = 1 . . .m,
then |A| = (|ai,j |), i = 1 . . . n, j = 1 . . .m. A comparison
between matrices is always point-wise.

Since we want to introduce approximation while using
floating-point arithmetic (for more information on the defi-
nition of floating-point arithmetic see [25]), we need to define
an upper bound for the error, which is introduced due to the
usage of floating-point arithmetic. A common model for the
rounding error of a number α ∈ R when it is represented in
floating-point arithmetic is (α)a = α(1 + δα), δα ∈ R.

The upper bound for all δ and any operation � with
operands α and β is called the unit round off µ. Thus
∀α, β ∈ R and all � holds:

(α� β)a = (α� β)(1 + δα�β), |δα�β | ≤ µ, (9)

see for example [16], [18]. µ is a measure for the worst-
case computational accuracy achieved by executing a single
operation in floating-point arithmetic.

V. ERROR BOUNDS FOR THE LU-FACTORIZATION IN
FLOATING-POINT ARITHMETIC

This section is structured as follows: Subsection V-A intro-
duces general error norms for the solving of linear systems
of equations, which are of interest for different applications.
Subsection V-B derives an upper bound for one of them.
Finally, Subsection V-C uses this upper bound to derive bounds
for the unit round off µ.

A. Error Norms

Let x be the solution to
Ax = b (10)

and x̂ the solution to the disturbed system

(A+ ∆A)︸ ︷︷ ︸
=:Â

x̂ = b, (11)

where ∆A ∈ Rm×m is the disturbance and A ∈ Rm×m,
Â ∈ Rm×m, b ∈ Rm, x ∈ Rm, x̂ ∈ Rm and A and Â are
regular.

One is usually interested in the forward or the backward
error induced by the disturbance. So in how large ∆A may at
most be, such that either

ε(x̂) =
‖∆x‖
‖x‖

, ∆x = x̂− x (forward error),

which we call the forward error, or

ρ(x̂) :=
‖b−Ax̂‖
‖A‖ ‖x̂‖

(backward error), (12)

which we call backward error, is smaller than a given bound
B for a given norm ‖·‖ [18], [26].

These error norms can be interpreted as follows: The
forward error is a measure for relative size of the error ∆x
calculated in the result x̂. It limits how large the error in the
calculated result may become in relation to the size of the real
result x of the equation. A forward error of 0.1 would mean
that the norm of the error ∆x of the calculated result is 10%
of the size of the norm of the real result x.

The backward error is not a measure for the error in x, but
a measure for how far the problem we actually solved is away
from the problem we initially wanted to solve. It quantifies
how well the data of the problem (i.e. the entries of A) is
measured. From an application point of view, a bound for the
backward error means, that the user is satisfied with a solution
of a problem for some data that lie within a certain uncertainty
range of the measured data [27]. We focus on the backward
error in this paper.

∆A may be induced due to the approximations performed
during the calculation of the LU-Factorization of A and/or
the limited accuracy when solving Eq. 1. We assume that the
original problem (Eq. 10) is well enough defined, such that the
result can be calculated with sufficient accuracy, when machine
accuracy is used.

The remainder of this section is structured as follows: In
Subsection V-B, we derive a general upper bound for the
backward error. Subsection V-C uses this bound to determine
limits for the unit round off µ as defined by Eq. 9, which
can be used in Section VI to determine limits for the needed
accuracy of a floating-point multiplier.

B. Influence of Disturbances on the Results

Lemma 1. Let A,∆A ∈ Cn×n and A be non singular. Let
further ‖·‖ denote a norm. Let x be the solution to Ax = b
and x+ ∆x be the solution to (A+ ∆A)(x+ ∆x) = b. Then

‖∆x‖
‖x̂‖

≤ κ(A)
‖∆A‖
‖A‖

,

with κ(A) = ‖A‖ ‖A−1‖ denoting the condition number of A.

Proof. The equation is well known. See for example [24],
Theorem 2.3.3.



It is important to note, that ‖∆x‖‖x̂‖ is an upper bound for the
backward error as defined by Eq. 12:

ρ(x̂) :=
‖b−Ax̂‖
‖A‖ ‖x̂‖

=
‖b−

=b︷︸︸︷
A(x+∆x)‖
‖A‖ ‖x̂‖

=
‖A∆x‖
‖A‖ ‖x̂‖

≤ ‖A‖ ‖∆x‖
‖A‖ ‖x̂‖

=
‖∆x‖
‖x̂‖

(13)

This enables us to use Lemma 1 for our calculations, since a
bound for ‖∆x‖‖x̂‖ results in a bound for ρ(x̂).

C. Equation solving with Limited Accuracy

Solving a system of equations Ax for any right side b will
introduce additional errors, if we use approximated operations.
In order to solve Eq. 10, we need to first solve

Ly = b (14)
and subsequently

Ux = y. (15)

Solving the systems in Eq. 14 and 15 in floating-point
arithmetic introduces the following errors, if A ∈ Rn×n and
nµ < 1 (which is usually the case):

(A+ ∆A)x̂ = b

|∆A| ≤ γn(1 + γn)|L||U |, (16)

with
γn =

nµ

1− nµ
⇒ µ =

γn
n+ nγn

, (17)

see [20].
The proof of Eq. 16 would require a lot of additional

effort in this context, so instead, we try to illustrate it briefly:
γn |T | can be interpreted as a bound for the error of the
result achieved, when solving a linear system of equations
T of triangular form using substitution (see [18], Theorem
8.5). When solving Ax = b using the LU-Factorization, we
solve the two triangular systems of equations L and U . We
take the result of the first triangular system as the right-hand
side of the second triangular system. This is the quadratic
part of the factor of the error bound (γ2

n). The solving of the
second triangular system adds an additional error, which itself
is bounded by γn. Thus we have γn + γ2

n = γn(1 + γn).
We can combine Lemma 1 and Eq. 16 to get an upper

bound for the backward error as defined in Eq. 12 depending
on γn. Due to the definition of matrix norms, it is obvious
that ‖∆A‖ ≤ ‖|∆A|‖ and thus we can conclude that

‖∆x‖
‖x̂‖

≤ κ(A)
γn(1 + γn)‖|L||U |‖

‖A‖
. (18)

Eq. 18 can easily be solved for γn:

γn ≥ −
1

2
+

√
1

4
+
‖∆x‖
‖x̂‖

‖A‖
κ(A) ‖|L| |U |‖

(19)

Since we do not want the resulting error to be larger than
allowed, we choose γn in such a way that equality is given
for Eq. 19.

By combining Eq. 19 and Eq. 17, we can calculate µ
depending on the inputs:

µ =
− 1

2 +
√

1
4 + ‖∆x‖

‖x̂‖
‖A‖

κ(A)‖|L||U |‖

n+ n
(
− 1

2 +
√

1
4 + ‖∆x‖

‖x̂‖
‖A‖

κ(A)‖|L||U |‖

) (20)

The only unknown on the right-hand side of this equation
is the fraction ‖∆x‖‖x̂‖ . Since the value used for it is an upper
bound for the resulting backward error (see Eq. 13), we can
simply set it to the value given for the maximum tolerable
backward error and be sure, that the backward error of the
result will not exceed the given bound, if the computational
error is less or equal to µ.

VI. APPROXIMATE FLOATING-POINT MULTIPLIER

Section V gives us a rule on how to choose the unit round
off µ according to the inputs L and U in the form of Eq. 20.

We need to introduce a way on how to determine the number
of relevant mantissa bits depending on µ.

An approximate floating-point multiplier as proposed by [4]
allows us to ignore mantissa bits of the bit representation of
the operands of a multiplication. Let the length of the bit
representation of the mantissa be m and the approximation
level be l. By approximation level l we mean, that the bit
length of the mantissa of the bit representation of each operand
of a multiplication is shortened by l bits, leaving a mantissa
length of m− l bits. Higham gives detailed information about
the standard model for floating-point operations in [18]. It is
stated, that operations are to be performed as if they were
calculated with infinite precision and then the unit roundoff
µ is to be applied. Let α, β ∈ R. Then according to [18],
Theorem 2.2 their floating-point representation (α)a and (β)a
is given by

(α)a = α(1 + δα), (β)a = β(1 + δβ).

Let δ = max(|δα| , |δβ |) be an upper bound for δα and δβ ,
then a bound for the error of the product of (α)a and (β)a
induced by floating-point arithmetic is given by

|(α)a(β)a − αβ| ≤ |αβ(1 + 2δ + δ2)− αβ|.

Since this bound is reached if α = β, we can conclude that
µ ≥ 2δ + δ2. Solving the equation for δ gives

δ ≤ −1 +
√

1 + µ . (21)

µ can be determined by Eq. 20.
We can now calculate an upper bound δ using Eq. 21 and

transform it directly to the level of inaccuracy we can tolerate
in our approximate multiplier, according to [18] p.39, a general
bound for δ is given by

δ ≤ 1

2
b1−m,

with b being the used radix. If we shorten the length of the
mantissa by l bits, it changes to

δ ≤ 1

2
b1−(m−l)



and thus

l ≥ logb 2δ +m− 1 . (22)

Eq. 22 enables us to calculate how many mantissa bits of the
operands of a multiplication can be ignored in order to be sure
that the rounding error of the result will be bounded by µ. δ
can be calculated using Eq. 21, while µ is calculated using
Eq. 20 for any given bound for the backward error.

VII. EXPERIMENTAL EVALUATION

In this section, we present the experimental evaluation on
real life problems. For approximation, we use as explained
before an approximate floating-point multiplier which ignores
the last l mantissa bits of the operands. Based on this approx-
imation scheme, we calculate the level of approximation with
our proposed reversed flow, i.e. based on the application speci-
fic error bound we determine the number of mantissa bits to be
dropped for each problem. To demonstrate the effectiveness of
our approach we show the speedup achieved by approximation
compared to the non-approximated calculation.

A. Experimental Setting and Experimental Procedure

There is a large collection of matrices appearing in different
applications called SuiteSparse Matrix Collection [28]. We use
a subset of this collection which consists of square matrices of
different sizes, and use GNU Octave c© 4.0.2 to calculate their
LU-Factorization. In addition, we determine the feasible values
for the approximation level l using the equations from our
three main results of Section VI (visualized by boxes). We use
the Euclidean norm in our experiments. Right-hand sides are
computed by multiplying the matrices with a constant vector
filled with ones. Finally, we utilize the approximate floating-
point multiplier to solve the equation using the precalculated
LU-Factorization.

A ZedBoardTM and Xilinx Vivado c© 2016.3 are used to
realize the approximate floating-point multiplier which is
written in VHDL. First, we design our HW to calculate the
results using full machine accuracy. Afterwards we calculate
the necessary computational accuracy for each matrix to get
a backward error below different error bounds, which are
0.01, 0.10, 0.30 and 0.50. We then redesign our HW according
to the calculated required computational accuracy using the
relations developed in the previous section.

An intuitive interpretation of the values chosen as error
bounds is as follows: Recall that we actually bound ‖∆x‖‖x̂‖ since
this is an upper bound for the backward error (see Eq. 13).
Limiting this to 0.01 means that the norm of the error in
the calculated result cannot be larger than 1% of the norm
of the calculated result itself. This explanation is for general
norms. Now to give a concrete example, consider the ∞-
norm (this norm just finds the largest entry in a given vector):
Limiting ‖∆x‖∞‖x̂‖∞ to 0.01 means that the largest deviation in
the calculated result vector may not be larger than 1% of its
largest entry.

In order to use the approximate floating-point multiplier,
we first need to calculate how many mantissa bits l may

be dropped with respect to each application specific error
bound for each problem. After calculating the feasible unit
round off µ which is an upper bound for the worst-case
computational accuracy, using Eq. 20 and subsequently δ
based on Eq. 21, we round the result l of Eq. 22 down to
the nearest integer.

B. Experimental Results

Table I summarizes the number of dropped bits l for
different application specific error bounds. The first column
denotes the name of the benchmark problem. The second
column gives the dimension and the third column the condition
number κ of the corresponding matrix. Since all matrices
are square, we only give the size of one dimension in the
second column of the table. The remaining columns give the
feasible values for l for each error bound 0.01, 0.10, 0.30,
0.50, respectively.

As can be seen in Table I larger matrices and matrices with
higher condition numbers tend to have smaller feasible values
for l and thus allow less approximation. This was expected
due to the form of Eq. 20. The size of the matrix n and
the condition number κ are both part of the denominator and
the larger these values become, the smaller the resulting unit
round off µ will be. Furthermore, larger matrices tolerate fewer
errors, since they propagate and accumulate with each step of
solving the systems L and U. Looking at Lemma 1 it becomes
clear that in general matrices with high condition numbers tend
to allow a smaller disturbance ∆A which is induced by our
approximation during the solving process.

TABLE I
NUMBER OF DROPPED MANTISSA BITS l (APPROXIMATION LEVEL) FOR

DIFFERENT APPLICATION SPECIFIC ERROR BOUNDS

Benchmark size condition Dropped bits l for error bounds
number 0.01 0.10 0.30 0.50

tols2000 2000 5991449.6 11 15 16 17
G2 800 4600.5 13 16 17 18
G3 800 2556.1 13 17 18 19
steam2 600 3783125.2 14 17 19 19
tols1090 1090 1831083.5 14 17 19 20
ukerbe1 dual 1866 7451.0 15 18 19 20
tols340 340 203453.9 19 22 24 24
wang2 2903 23055.4 19 22 24 25
wang1 2903 20323.0 20 22 24 25
Trefethen 2000 2000 15517.6 20 23 25 26
str 200 363 15106.1 22 25 27 28
str 400 363 6430.7 23 27 28 29
tols90 90 20232.0 24 27 29 30
Trefethen 200 200 1090.7 27 30 32 33
Trefethen 20 20 63.1 35 38 39 40
Tina AskCog 11 19.8 35 39 40 41

To evaluate the efficiency of our approach, we compare the
run-time needed to calculate the results using floating-point
operations with double precision (golden non-approximated
results; cf. [25]) to the run-time needed to solve the pro-
blems using the proposed reversed approximate HW design
flow. Table II gives information about the run-time saved
by approximation. Again, the first column denotes the name
of the benchmark. The second column shows the run-time
needed when using a floating-point multiplier with double
precision. The remaining four columns give information about



TABLE II
COMPARISON BETWEEN THE COMPUTATION TIMES FOR DIFFERENT ERROR

BOUNDS
Benchmark double speedup in [%] for error bounds

precision [ms] 0.01 0.10 0.30 0.50
tols2000 193.740 <0.1 0.3 0.2 0.3
G2 1189.331 <0.1 4.8 9.7 9.7
G3 1198.436 <0.1 9.7 9.7 9.7
steam2 77.842 3.7 7.7 7.8 7.8
tols1090 60.949 0.4 0.7 0.4 0.8
ukerbe1 dual 602.988 7.1 7.2 7.1 7.1
tols340 9.294 4.0 3.9 2.7 2.7
wang2 2740.468 8.4 8.5 5.1 8.5
wang1 2740.786 8.5 8.6 5.1 8.5
Trefethen 2000 5433.548 9.6 14.1 9.5 14.1
str 200 16.465 5.9 5.9 5.9 8.8
str 400 18.088 9.3 6.4 9.4 16.4
tols90 3.713 6.5 10.4 23.4 18.6
Trefethen 200 59.179 9.7 20.1 24.7 20.2
Trefethen 20 0.654 30.9 29.4 37.5 40.4
Tina AskCog 0.090 21.1 27.8 30.0 30.0

the percentage of time saved when setting the error bound
to 0.01, 0.10, 0.30 and 0.50, respectively. The values for l as
given in Table I are used, such that the l least significant bits
of the operands are dropped by the approximate floating-point
multiplier.

It can be seen that increased usage of approximation results
in lower run-times. Allowing a backward error of 0.01 has
reduced the run-time by more than 30% for the problem
Trefethen 20. The amount of reduction achieved by approxi-
mation does not solely dependent on the approximation level.
Problem str 200 allowed an approximation level of 22 for
the error bound 0.01 and achieved a speedup of 5.9%, while
problem ukerbe1 dual could only tolerate an approximation
level of 15, but achieved a speedup of 7.1% for the same
error bound.

This has to be due to the nature of the problem itself. If we
compare tols2000 to Trefthen 2000, then we can recognize
that almost no speedup was achievable due to approximation
for tols2000, while for Trefthen 2000 a notable speedup could
already be achieved for small error bounds, even though
both matrices have the same size. The LU-Factorization of
tols2000 is sparse, which results in many multiplications
being skipped due to one factor being 0, while both, matrix
L and matrix U, of the LU-Factorization of Trefthen 2000
have about three orders of magnitude more non zero entries
than the LU-Factorization of tols2000. This results in many
more multiplications compared to other operations, making
the usage of an approximate multiplier a lot more efficient.
As a rule of thump for the efficiency of the usage of an
approximate multiplier, one could compare the computation
time of solving a problem to its size, when using full accuracy.
If there are many zero entries in the LU-Factorization, then
the computation time will be low, because little operations are
needed. If there are many non zeros, then many multiplications
are needed and the computation time rises, which can be
reduced significantly by the use of an approximate multiplier.

VIII. CONCLUSION

In this paper we have proposed to reverse the typical design
flow for approximate hardware. In the reversed flow we start
with the application and determine the required computational
accuracy such that the computational error of the result is
below the application specific error bound. In contrast to the
result of the traditional HW design flow, the used approximate
HW is correct by construction.

We have demonstrated the new reversed flow for a first
application, i.e. LU-Factorization. In the experiments we were
able to demonstrate that a significant speed-up for solving
linear equations can be achieved while guaranteeing the ap-
plication specific error bound. As a consequence, the user
can chose the accuracy required for the concrete application
context.
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Gröbner basis,” in DATE, 2018, pp. 889–892.

[9] A. Chandrasekharan, M. Soeken, D. Große, and R. Drechsler, “Approximation-aware
rewriting of AIGs for error tolerant applications,” in ICCAD, 2016.

[10] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw, T. Austin,
K. Flautner, and T. Mudge, “Razor: A low-power pipeline based on circuit-level timing
speculation,” in MICRO, 2003.

[11] A. B. Kahng, S. Kang, R. Kumar, and J. Sartori, “Designing a processor from the ground
up to allow voltage/reliability tradeoffs,” in (HPCA-16), Jan. 2010, pp. 1–11.

[12] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan, “MACACO: modeling and
analysis of circuits for approximate computing,” in ICCAD, Nov. 2011, pp. 667–673.

[13] A. Chandrasekharan, M. Soeken, D. Große, and R. Drechsler, “Precise error determination
of approximated components in sequential circuits with model checking,” in DAC, 2016.

[14] M. Soeken, D. Große, A. Chandrasekharan, and R. Drechsler, “BDD minimization for
approximate computing,” in ASP-DAC, 2016, pp. 474–479.

[15] H. Anton and C. Rorres, Elementary Linear Algebra: Applications Version, 11th ed. John
Wiley & Sons, 2014.

[16] J. H. Wilkinson, Rounding Errors in Algebraic Processes. Dover Publications, Incorpo-
rated, 1994.

[17] ——, The Algebraic Eigenvalue Problem. New York, NY, USA: Oxford University
Press, Inc., 1988.

[18] N. J. Higham, Accuracy and Stability of Numerical Algorithms. SIAM, 2002.
[19] ——, “How accurate is gaussian elimination?” Department of Computer Science, Cornell

University, Ithaca, NY, USA, Tech. Rep., 1989.
[20] C. de Boor and A. Pinkus, “Backward error analysis for totally positive linear systems,”

Numerische Mathematik, vol. 27, no. 4, pp. 485–490, 1976.
[21] F. Stummel, “Perturbation theory for evaluation algorithms of arithmetic expressions,”

Mathematics of Computation, vol. 37, no. 156, pp. 435–473, 1981.
[22] ——, “Forward error analysis of gaussian elimination,” Numer. Math., vol. 46, no. 3, pp.

365–395, Sep. 1985.
[23] Q. Zhang, F. Yuan, R. Ye, and Q. Xu, “Approxit: An approximate computing framework

for iterative methods,” in DAC. New York, NY, USA: ACM, 2014, pp. 97:1–97:6.
[24] D. S. Watkins, Fundamentals of Matrix Computations. New York, NY, USA: John Wiley

& Sons, Inc., 1991.
[25] IEEE Task P754, IEEE 754-2008, Standard for Floating-Point Arithmetic. IEEE

Computer Society, Aug. 2008.
[26] G. H. Golub and C. F. V. Loan, Matrix Computations, 4th ed. J. Hopkins Uni. Press,

2013.
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