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ABSTRACT
To close the ever widening verification gap, new powerful solutions

are strictly required. One such promising approach aims in contin-

uing verification tasks after production of a chip during its lifetime.

This approach is called self-verification. However, for realizing

self-verification tasks on-chip, verification packages have to be

developed. In this paper, we propose the verification package SAT-

Lancer. SAT-Lancer is a compact Boolean Satisfiability (SAT) solver

and has been implemented entirely on HW with the capability of

solving any arbitrary SAT-instance. At the heart of SAT-Lancer is a

scalable memory model, which can be adjusted to given memory

constraints and allows to store the SAT-instance most effectively.

In comparison to previous HW SAT-solvers, SAT-Lancer utilizes

significant less area and can handle order of magnitude larger SAT-

instances.
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1 INTRODUCTION
Electronic systems are used in various application domains ranging

from cars to mobiles, from industrial control to IoT devices. In these

domains very different design goals with respect to functionality,

performance and power requirement have to be considered. How-

ever, the process of verification is fundamental for all electronic

systems and it ensures that a design implementation meets its spec-

ification. To keep pace with the enormous dimension of freedom

in producing chips, a variety of verification methods are available

today. Essentially, three main directions can be distinguished: sim-

ulation, formal verification and emulation. A strong verification

platform spanning from abstract high-level models down to the

Register-Transfer-Level (RTL) implementation is formed by orches-

trating these techniques in a clever way. Simultaneously, on the

design side, Intellectual Property (IP) re-use has become an inte-

gral part of all design flows today. Unfortunately, despite all these

advancements, the verification complexity continues to increase

at approx. 4 times more than the rate of design creation [11]. To

attack this widening verification gap, the new promising and com-

plementary approach of self-verification has been recently proposed

in [5, 6, 10]. Self-verification allows an electronic system to con-

tinue open verification tasks after fabrication. However, to bring
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self-verification to life, as major components verification packages

are needed. The verification packages execute the remaining verifi-

cation tasks directly on the chip.

In this paper, we target small to mid-sized electronic systems

(e.g. from the IoT domain), and hence present a compact verifi-

cation package for self-verification, which allows to heavily or-

chestrate SAT-based verification techniques like Bounded Model
Checking (BMC) [1] directly on-chip. More precisely, we propose

SAT-Lancer: a completeHWSAT-solver IP-componentwhich
can solve any arbitrary SAT-instance that has been generated on-

chip. Such a SAT-instance represents a Boolean formula (coming

from a verification task) and raises the question whether an assign-

ment to all Boolean variables exists such that the overall formula is

satisfied (SAT) or remains unsatisfied (UNSAT), respectively. Other

existing approaches for SAT-solving either focus on accelerating a

SW-based SAT-solver by outsourcing the solving process partially

to HW [2, 8, 13, 14] or by introducing even for small SAT-instance

sizes a large HW-overhead [9, 12]. In contrast to this, the proposed

HW SAT-solver is very compact and can be easily integrated as

an IP-component into an existing design. At the heart of our HW

SAT-solver is a scalable memory model. Essentially, the memory

model defines how to utilize the memory most effectively for stor-

ing the investigated SAT-instance as well as meta information of

the SAT-solving process itself.

In an extensive experimental evaluation we demonstrate the

advantages of our proposed HW SAT-solver. It shows that SAT-

Lancer can handle much larger instances in comparison to existing

HW-based approaches and outperform a SW-based SAT-solver,

which adheres to area constraints for the underlying HW.

2 SCALABLE MEMORY MODEL
In this section we present the heart of SAT-Lancer, i.e., the scal-

able memory model. Please note that we assume that the reader is

familiar with SAT-solving and the basic DPLL algorithm.

In general, to realize a HW SAT-solver the Conjunctive Nor-
mal Form (CNF) instance has to be stored in a HW memory. This

memory is then accessed by the core of the HW SAT-solver for

solving the instance, i.e., to determine a satisfying assignment for

the clauses or to prove that no such assignment exists.

The basic idea of our proposed memory model is to store a lit-

eral of the current clause as well as meta information about the

SAT-solving process itself in a memory word. Thereby, scalability is

achieved by identifying, which information is essential and which

information can be reduced to adhere given memory constraints

(e.g. in terms of word size). Moreover, by following the principle of

locality, the actual HW implementation of SAT-Lancer and in par-

ticular the interface between the SAT-solver core and the memory

can be optimized. This allows to process even large SAT-instances.

2.1 Principle Memory Layout
he principle memory layout is shown in the middle of Fig. 1. As

can be seen it is inspired by the DIMACs encoding. More precisely,
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Figure 1: Example of principle memory layout for example CNF
f = (x1 + x2) · (x 2 + x3)

Figure 2: Meta Information and Literal Encoding

we utilize the lower bits of each memory word to store the index

and add one further bit to store the sign. When assuming a 32 bit

memory, obviously, many bits remain unused and, consequently,

should be used to save HW resources. Due to this fact, we identify

which information of the SAT-solving process can be stored in the

upper bits of a memory word to effectively use the memory.

On the left of Fig. 1 an additional memory is shown which stores

the address where a clause ends. We refer to this memory as Clause
Position Memory (CPM). The CPM allows a fast and direct access to

a specific clause. With this knowledge, instead of storing a “0” to

mark the end of a clause, we can now use this memory location

to store the number of free literals of the clause under the current

assignment. Moreover CPM holds the decision level of a literal that

has maximum value of the clause.

Finally, the most-significant bit of each CPM entry represents the

Clause SAT Status (CSS), i.e., whether the current clause is already
SAT or not (cf. Subsection 2.2).

2.2 Encoding of Meta Information
Staying with the assumption of a 32 bit memory, we performed a

careful analysis of information to be stored in a memory word sup-

plementary to the pure literal encoding. Fig. 2 shows the outcome:

For a 32 bit memory word, the lower 14 bits encode the variable

index, the 14
th

bit the sign, bit-15,16 define the status of the literal

which can be free, assigned to “0” or assigned to “1”, bit-17 defines

whether the variable has been assigned to both values (“0” and

“1”) for conflict resolution at same decision level, bit-18 indicates

whether the assignment to the current literal results from a decision

of the SAT-solver or an implication and the upper 13 bits (19 to 31)

represent the decision level, i.e., the number of decisions, which

have so far been done during the solving process.

Based on the general presentation of our memory model, we

want to emphasize that the scalability is a major challenge: This

is due to the application-specific resource constraints, particularly,

constraints concerning the memory size as well as memory width,

i.e., the size of a (single) word. As becoming evident from the in-

troduced SAT-instance encoding, our scheme is scalable: the bit

Figure 3: State Machine

width of a memory word can be varied and we can reflect this by

adapting the number of bits to represent the index as well as the

decision level while the other bits are kept (essential information).

3 DESIGN OF SAT-LANCER
This section describes the principle design of SAT-Lancer from a

HW point of view and presents an exemplary application of the

complete SAT-solving procedure on basis of a comprehensible SAT-

instance.

3.1 Main Finite State Machine
In Fig. 3, the Finite State Machine (FSM) is represented, which is

inspired by the well-known DPLL-algorithm [3, 4]. In the following

we describe each state in detail by assuming an arbitrary CNF is

represented according to the introducedmemorymodel of Section 2.

Reset: This state initializes the complete SAT-solver and, thus,

introduces a well-defined state to SAT-Lancer.

Read data: The complete SAT-instance is transferred to the

device implementing SAT-Lancer and stored in the main memory.

After the transfer is completed, the number of literals in every

clause is determined and stored in the memory location (cf. Fig. 2).

In the case that the processed CNF contains any unary clause, i.e.,

a clause hold just one positive or negative literal, the next state to

continue is set to “implicate” (cf. Edge 1), and to “decide” (cf. Edge 2)

otherwise.

Decide: In this state an assignment to a variable, which has not

already been assigned, is determined. A particular clause which

has not been yet satisfied and has free variables is identified by

the relevant states. If such a literal is determined, an assignment

to “0” or “1” to the corresponding variable is derived such that

the literal evaluates to true. Furthermore, information concerning

the index and the determined decision (assignment) is stored in a

dedicated register and the decision level is increased by one. The

determined assignment is then propagated to all clauses by entering

the “propagate” state (cf. Edge 3).

Implicate: Here, all clauses are further investigated, which are

not yet satisfied and which hold just one single unassigned literal. In

particular, this literal has to be necessarily assigned in the way that

it evaluates to true. These clauses can be easily detected by taking

advantage of the collected information concerning the CSS and the

remaining number of free variables. If such a variable is identified,

this variable is introduced as an implication (set implication status



bit) and stored in a separate register. Analogously, the assignment

is propagated by entering the “propagate” state (cf. Edge 4).

Propagate: In this state, every (positive as well as negative) lit-

eral of the complete SAT-instance holding the specific Boolean

variable, which should be assigned, is identified by taking advan-

tage of the determined index information. If a clause is already

satisfied, the clause is skipped. Otherwise, for the case that the cur-

rent assignment satisfies the clause, the SAT counter is increased

and the decided bit for the CSS (cf. Fig. 2) is set. Furthermore, the

number of free variables of this clause is decreased by one. During

the evaluation procedure, the implication address is stored and the

implication flag is set for all clauses which are not yet satisfied

and which have just one remaining unassigned literal. If the SAT

counter equals the total number of clauses, the overall instance

becomes SAT (cf. Edge 6). If a clause, which is not yet satisfied, has

no more free variables, i.e., every literal evaluates to false under

the current assignment, a conflict occurs. This causes an immediate

state transition to “resolve conflict” (cf. Edge 7). Otherwise, the state

is changed to “implicate” (cf. Edge 8). If there is no conflict and the

implication flag is set, the state is changed to “implicate” (cf. Edge 8).

Otherwise the state returns to “decide” to assign a further literal

(cf. Edge 5).

Resolve conflict: To resolve the conflict, the decision level is

decreased by one, i.e., the last assignment to the decision variable is

withdrawn and all derived implications are invalidated which are

marked by the implication status bit. Hence, all previously affected

clauses are reevaluated. This step also includes that the counter of

free variables is updated for the effected clauses as well unsetting

the implication status bit if necessary (cf. Edge 10). In case the

conflict occurred at decision level 0 (root level) and it is not possible

to flip any variable since all have been already tried in both ways

(“0” or “1”), the SAT-instance is UNSAT (cf. Edge 9).

Post propagate: Mainly, this state is invoked by the conflict

resolution to check whether a decision variable has already been

tried in both ways, i.e., by an assignment with “0” as well as “1”,

to resolve the conflict. If this is not the case, this not yet tried

assignment will be propagated towards “implication” or “decision”

state based on the free variable numbers which is same procedure as

in “propagate” state (cf. Edges 11 and 12). Otherwise, the status bit

tried both way of the investigated variable is set and the procedure

continues in state “resolve conflict” to further decrease the decision

level (cf. Edge 13).

3.2 Example of Solving Process
To demonstrate the solving process of SAT-Lancer we use the fol-

lowing example.

Example 1. Given the SAT-instance

д = (x1 + x4 + x5) · (x1 + x2 + x3) · (x1 + x2 + x3)

· (x1 + x2 + x3) · (x1 + x2 + x3)

As it can be seen, д consists of 5 clauses, 5 variables and 15 literals.
Table 1 lists the steps for solving д with SAT-Lancer. The first column
gives the number of the current step. The second column shows the
current state of SAT-Lancer (the used abbreviations can be found
below the table). The column Variable Status shows the assignment
to a variable in the form xi = a@d , i.e. xi is assigned to a in decision
level d ; note that during backtracking a variable may be unassigned
and the decision level is reset to 0 and we denote this as xi = U@0.
The next column gives the status of the clause after the assignment,

Table 1: Example of SAT-Lancer’s solving process
Step State Variable Status Clause Status Free Literals SC
1 D x1 = 0@1 (T, F, F, F, F) [-, 2, 2, 2, 2] 1

2

D x2 = 0@2 (T, T, T, F, F) [-, -, -, 1, 1] 3

I x3 = 0@2 (T, T, T, T, C) [-, -, -, -, 0] 4

3 R x3 = U@0 (T, T, T, F, F) [-, -, -, 1, 1] 3

4

PP x2 = 1@2 (T, F, F, T, T) [-, 1, 1, -, -] 3

I x3 = 1@2 (T, T, C, T, T) [-, -, 0, -, -] 4

5

R x3 = U@0 (T, F, F, T, T) [-, 1, 1, -, -] 3

PP x2 = U@0 (T, F, F, F, F) [-, 2, 2, 2, 2] 1

6 PP x1 = 1@1 (F, T, T, T, T) [2, -, -, -, -] 4

7 D x4 = 1@3 (T, T, T, T, T) [-, -, -, -, -] 5

State: Decide, Implicate, Resolve Conflict, Post Propagate, Propagate
Variable Status: xi = a@d means xi is assigned to a in decision level d .
If a = U , xi is unassigned (decision level is reset to 0)

Clause Status: True, False or Conflict in the respective clause

Free Literals: - means not relevant since the clause is satisfied, otherwise

i in the respective clause

SC: SAT Count, i.e., total number of satisfied clauses

i.e., if the clause became True, False or Conflicting (for instance,
the assignment x1 = 0@1 makes the first clause (x1 + x4 + x5) true
and, hence, the first entry in the vector (T , F , F , F , F ) becomes T . The
column Free literals reports the number of free literals in the clauses
(using the same assignment x1 = 0@1, the first clause becomes true,
so we mark this one with ’-’ and for all the other clauses the first
literal evaluates to false, so in each of them only 2 free literals are left
and, finally, leading to [−, 2, 2, 2, 2]). The last column SC shows the
SAT count, i.e., the total number of satisfied clauses. We now describe
the solving process for д:
Step 1 SAT-Lancer starts by assigning 0 to x1 at decision level 1 as

described above when introducing the notations.
Step 2 With the assignment 0 to x2 Clauses 2 and 3 become true while

the Clauses 4 and 5 still remain false but have only one free
literal left. As a consequence an implication is performed on
Clause 4 by assigning x3 0, which leads to a conflict on Clause 5
because of the assignments x1 = 0, x2 = 0 and x3 = 0 and,
hence, this clause is false.

Step 3 Due to this conflict, we enter the Resolve Conflict state and,
hence, x3 is unassigned and the number of free literals for
Clause 4 increases again to 2.

Step 4 Now the decision value for x2 is converted to the inverted value
which makes last two clauses true. This leads to an implication
for Clause 2 but also to a conflict occurring in Clause 3.

Step 5 Since x2 has been already tried in both ways, we need to back-
track to x1. Hence, the implication on x3 and then the decision
on x2 are undone. By this the number of free variables are
increased.

Step 6 By flipping the assignment to x1 from 0 to 1, Clause 1 becomes
false and the others are true.

Step 7 After the decision on x4 to 1, all clauses are true and, thus,
SAT-Lancer returns SAT.

4 EXPERIMENTAL RESULTS
This section describes the setup used as an implementation basis.

Furthermore we present and discuss the conducted experimental

results out of several benchmark runs.

SAT-Lancer has been written in Verilog. At first, the claimed

compact character of SAT-Lancer is investigated by comparing the

occupied HW-resources of our design against the implementation

of [12]. Consequently, we implement our design on a Xilinx Virtex-II
Pro FPGA as used in [12]. Our design implementation just occupies



Table 2: Results from SATLIB
Instance #Var #Cls Status Leon3[s] SAT-Lancer [s]
hole6 42 133 UNSAT 5.98 0.06

hole7 56 204 UNSAT 200.30 0.61

hole8 72 297 UNSAT 739.21 7.02

uuf75-1 75 325 UNSAT 0.54 0.34

uuf75-2 75 325 UNSAT 0.55 0.16

uf100-7 100 430 SAT 0.38 0.03

uf100-10 100 430 SAT 0.59 2.80

cbs100-1 100 403 SAT 0.66 6.71

cbs100-10 100 403 SAT 0.55 0.07

ii8e2 870 6121 SAT 0.44 0.25

ii8b4 1068 8214 SAT 0.47 0.40

ii16e2 532 7825 SAT 26.87 6.10

ii32e1 222 1186 SAT 0.39 0.02

Table 3: Results from verification instances
Instance #Var #Cls Status Leon3[s] SAT-Lancer [s]
alu8_and 345 839 UNSAT 0.01 0.42

alu8_or 349 851 UNSAT 0.01 0.34

alu8_orf 349 847 SAT 0.01 0.02

fifo_full 2120 4762 UNSAT 0.05 0.04

b3-26 1850 5236 SAT 0.04 0.47

b12-53 2425 14046 UNSAT 0.04 0.01

s38584-90 5999 15402 UNSAT 0.04 1.34

4% of the Slice LUTs. In contrast to this, [12] requires 20 times

more resources compared to SAT-Lancer, i.e., it occupies 80% of the

overall Slice LUTs. These results clearly show that the proposed

design is suitable for environments with limited HW-resources.

In the actual setup, the whole design of SAT-Lancer has been syn-

thesized on aXilinx ZedBoard Zynqwith an embedded xc7z020clg484
FPGA core. This device consists of two components: a dual-core

ARM Cortex-A9 microprocessor as well as a Programmable Logic

unit - the FPGA as above mentioned. The SAT-instances are emitted

by the host system (PetaLinux) running on the ARM microproces-

sor, which offers a suitable interface to the FPGA. More precisely,

the state-of-the-art Advanced eXtensible Interface (AXI) is utilized
in connection with some self-written middleware to realize all data

communications. The current implementation of SAT-Lancer al-

lows to process instances, which hold up to 65536 clauses and up to

32768 variables in the well-established 3-CNF format, while occupy-

ing 1430 Slice LUTs and 136 BRAM Tiles. In fact, these boundaries

can be even enhanced by increasing defined implementation pa-

rameters, however, further memory has to be allocated. The chosen

parameters lead to an occupation of 2.69% Slice LUTs and 96.79%

BRAM Tiles of the overall FPGA’s resources, respectively.

To evaluate the actual SAT-solving capability of SAT-Lancer, dif-

ferent benchmark sets are considered and the results are shown in

Table 2. In particular, the selected SAT-instances represent a wide

variety of different problem classes including Pigeon Hole (hole),
Uniform Random-3-SAT (uu), Random-3-SATwith Controlled Back-

bone Size (cbs) and Inductive Interference (ii). Besides this, more

application-specific SAT-instances (with respect to the intended do-

main of self-verification) are also investigated and shown in Table 3.

These SAT-instances cover the field of sequential circuit problems

containing a relevant high number of variables (clauses) up to ap-

prox. 6500 (18000). In particular, the unrolling of sequential circuits

is covered, i.e., to determine a certain criteria spread over two (or

more) time frames. In fact, unrolling is one elementary step in the

most of the verification techniques.

To ensure the correctness of the result, all runs have been vali-

dated by the software-based SAT-solver MiniSAT [7] off-chip on a

separate workstation. Besides this, the well-known microprocessor

LEON3 has also been implemented on the FPGA core of the Zed-

Board for comparison. This processor executes a cross-compiled

version of MiniSAT
1
to determine the resulting solving-time. In

fact, this exhaustive microprocessor implementation allocates 7

times more HW-area in terms of Slice LUTs (SAT-Lancer with 2.69%

and LEON3 with 16.93%) than the proposed SAT-Lancer and, fur-

thermore, it takes benefit of the well-engineered MiniSAT solver.

Tables 2 and 3 include the instance name (1
st

col.) for the indi-

vidual benchmark as sketched above, the total number of variables

and clauses (2
nd

& 3
rd

col.) and, finally, the result in sense of

{SAT,UNSAT} (4
th

col.) and the solving-time (5
th

col.) for LEON3

as well as for SAT-Lancer (6
th

col.) in seconds. It can be noted that

the arbitrary SAT-instances of Table 2 are much harder to solve

compared to the application-specific ones in Table 3. SAT-Lancer

mostly finishes within seconds which is, in fact, negligible from a

self-verification point of view.

5 CONCLUSIONS
This paper proposes SAT-Lancer, a complete HW SAT-solver which

allows to solve arbitrary SAT-instances on-chip while occupying

only moderate hardware resources. Furthermore, it utilizes an

scalable memory model such that even on-chip generated SAT-

instances can be processed in a dynamic fashion. Moreover, we have

shown that SAT-Lancer is capable to process arbitrary benchmark

in reasonable run-time. In summary, SAT-Lancer facilitates com-

pletely new application scenarios for functional self-verification,

particularly, in systems with strictly limited resources like e.g. the

rapidly spreading IoT devices.
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