
PolyCleaner: Clean your Polynomials before Backward
Rewriting to Verify Million-gate Multipliers

Alireza Mahzoon
1

Daniel Große
1,2

Rolf Drechsler
1,2

1
Institute of Computer Science, University of Bremen, Germany

2
Cyber-Physical Systems, DFKI GmbH, Bremen, Germany

{mahzoon,grosse,drechsle}@informatik.uni-bremen.de

ABSTRACT
Nowadays, a variety of multipliers are used in different computa-

tionally intensive industrial applications. Most of these multipliers

are highly parallelized and structurally complex. Therefore, the

existing formal verification techniques fail to verify them.

In recent years, formal multiplier verification based on Symbolic

Computer Algebra (SCA) has shown superior results in comparison

to all other existing proof techniques. However, for non-trivial ar-

chitectures still a monomial explosion can be observed. A common

understanding is that this is caused by redundant monomials also

known as vanishing monomials. While several approaches have

been proposed to overcome the explosion, the problem itself is still

not fully understood.

In this paper we present a new theory for the origin of vanishing

monomials and how they can be handled to prevent the explosion

during backward rewriting. We implement our new approach as

the SCA-verifier PolyCleaner. The experimental results show the

efficiency of our proposed method in verification of non-trivial

million-gate multipliers.

1 INTRODUCTION
Arithmetic circuits are an inseparable part of many designs. They

are getting even more attention due to the high demand for com-

putationally intensive applications such as signal processing or

cryptography. Integer multipliers are one of the most dominant

components in arithmetic circuits. Designers have proposed a vari-

ety of multiplier architectures to satisfy the community demands

for high speed, low power, and low area designs. These multipli-

ers are usually highly parallelized and structurally complex which

makes their verification a challenge for formal methods.

The evaluation of formal methods efficiency in verification of

gate-level multipliers shows: (a) Decision Diagrams (DDs) (such as

BDDs and *BMDs) suffer frommemory blow-upwhen themultiplier

is large, (b) Boolean Satisfiability (SAT) and Satisfiability Modulo
Theories (SMT) experience exponential run-times as the bit-width

of multiplier increases, (c) reverse engineering approaches [13, 8]

using Arithmetic Bit-Level (ABL) representations can handle struc-

turally simple multipliers, however they fail to verify non-trivial

designs, and (d) term rewriting techniques [5, 14] rely on a database

of rewrite rules to support a wide range of architectures, however

for non-existing implementations a manual update of the database

is requiredwhichmakes it not fully automated. In contrast, Symbolic

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICCAD ’18, November 5–8, 2018, San Diego, CA, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5950-4/18/11. . . $15.00

https://doi.org/10.1145/3240765.3240837

Computer Algebra (SCA) methods have shown very good results in

comparison to the just mentioned methods (see e.g. [2, 11, 12, 9, 7]).

In SCA-based verification, the specification is represented as a sin-

gle polynomial SP describing the function of the circuit based on

its inputs and outputs. The gate-level circuit is also captured as a

set of suitably derived polynomials PG employing the theory of

Gröbner basis. Finally, the membership of SP in the ideal generated

by PG is tested. In other words, SP is step-wise divided by PG to

determine the remainder. The whole division process is called back-

ward rewriting since the process is performed from the outputs to

the inputs. Having the final division result, a zero remainder proves

the correctness of the gate-level circuit.

In recent years, SCA has been successfully employed to verify

finite field multipliers [6], as well as large but structurally simple

integer multipliers [2, 4, 16, 9]. However, verification of non-trivial

multipliers is still a big challenge for SCA methods as an explosion

happens in the number of monomials during backward rewriting.

A common understanding is that this explosion is caused by redun-

dant monomials known as vanishing monomials. These monomials

are generated during verification of a non-trivial arithmetic circuit,

and reduce to zero after several steps. However, the huge number

of vanishing monomials before cancellation causes a blow-up in

computations. While there have been several recent attempts to

attack this blow-up (for details see the related work section), the

problem is still not fully understood and a global solution is missing.

In this paper, we propose PolyCleaner, an approach to clean
polynomials from vanishing monomials before global back-
ward rewriting. A driving force behind our approach comes from

results of several conducted experiments: We raised the architec-

tural complexity of multipliers step-by-step to clearly show the

effect of vanishing monomials and hence the limits of the state-of-

the-art SCA-verifiers. After analysis of the intermediate results of

the divisions during backward rewriting, we come up with a new

theory for the origin of vanishing monomials. In essence, the origin

of vanishing monomials are gates where both output paths from

a Half Adder (HA) converge. At these gates a monomial is formed

when performing backward rewriting, which creates many new

(vanishing) monomials in each following division step. They all last

long and even worse make the current polynomial larger and larger

with each new division step until the HA is reached.When substitut-

ing both gates of the HA, all these vanishing monomials reduce to

zero. Our proposed SCA-verifier PolyCleaner finds all such converg-

ing gates and locally removes the vanishing monomials. Thus, the

global backward rewriting process becomes vanishing-free and no

explosion happens during backward rewriting. The experimental

results confirm that PolyCleaner can verify non-trivial million-gate

multipliers which was not possible before.
1

Summarizing, the major contributions of this paper are:

1
We make our tool PolyCleaner and all benchmarks available at

https://github.com/amahzoon/PolyCleaner

https://doi.org/10.1145/3240765.3240837
https://github.com/amahzoon/PolyCleaner

• Presentation of the limits of SCA-based backward rewriting

in verification of non-trivial multipliers

• Introduction of a new theory for vanishing monomials

• Presentation of the SCA-verifier PolyCleaner for local can-

cellation of vanishing monomials and global vanishing-free

backward rewriting

• Verification of a wide range of different non-trivial multiplier

architectures with up to 1.6 million gates

2 RELATEDWORK
For verification of integer multipliers several SCA-based meth-

ods have been introduced. The authors of [2] and [16] proposed

a method to capture the gate-level netlist as a set of polynomi-

als, then substituting these polynomials step-by-step following the

reverse topological order of the circuit into the specification poly-

nomial. The work of [4] identifies fanout-free cones on the netlist

and extracts polynomials for each of theses cones. By this, more

monomials can be canceled in comparison to the initial introduced

backward rewriting. The technique presented in [17, 10] finds half

adders and full adders in an And-Inverter Graph (AIG) represen-

tation of the multiplier. However, the technique can only verify

arithmetic circuits where the detection of adder-trees is possible.

In summary, all mentioned approaches have reported very good re-

sults for simple multiplier architectures, but fail to verify non-trivial

multipliers. The reason is that they have no solution for the growing

number of vanishing monomials during backward rewriting.

Some works aim to attack the vanishing monomial explosion

during backward rewriting. The method of [11] groups gates into

cones based on XOR gates. Then, common and XOR rewriting for

the cone polynomials are performed which removes some of the

vanishing monomials near to HAs. The method works for some

non-trivial architectures, but is not robust since it misses many

vanishing monomials.

[9] introduced a column-wise method for multipliers with visible

adder-trees. The method cuts the circuit into slices based on the

column-structure and then verifies these slices incrementally. The

method removes the product of HA’s outputs whenever they appear

during backward rewriting. While the paper contains clear theory

for using Gröbner basis, the method is not able to verify any non-

trivial multiplier as neither the origin of vanishing monomials is

identified, nor are the effects of them handled.

3 PRELIMINARIES
In this section, the basic concepts of SCA and the verification pro-

cess of an arithmetic circuit using SCA are explained.

Definition 1. AMonomial is the power product of variables in
the following form:

t = xα1
1
xα2
2

. . .xαnn with αi ∈ N0 (1)

A monomial with a coefficient is called a Term.

Definition 2. A Polynomial is a finite sum of monomials with
coefficients in field k :

f =
∑
j
c j tj with c j ∈ k (2)

A polynomial has a monomial order which facilitates the poly-

nomial manipulations. This order is specified based on the ordering

of variables and their powers. We use A > B to show that A is

in a higher order than B. For example, in f = y4z + y2z2 + xy, if
we assume that the ordering of the variables is x > y > z, then
the monomial order will be xy > y4z > y2z2. The first monomial

a1 b1 a0 b0

w1 w2 w3

w4

Z3 Z2 Z1 Z0

g1 g2

g3 g4

g5 g6 g7 g8

(a) 2-bit multiplier

SP := 8Z3 + 4Z2 + 2Z1 + Z0 − (4a1b1 + 2a1b0 + 2a0b1 + a0b0)

SP
pg1−−→ SP1 := 8w1w4 + 4Z2 + 2Z1 + Z0 − (4a1b1 + 2a1b0 + 2a0b1 + a0b0)

SP1

pg2−−→ SP2 := 4w1 + 4w4 + 2Z1 + Z0 − (4a1b1 + 2a1b0 + 2a0b1 + a0b0)

SP2

pg3−−→ SP3 := 4w1 + 4w2w3 + 2Z1 + Z0 − (4a1b1 + 2a1b0 + 2a0b1 + a0b0)

SP3

pg4−−→ SP4 := 4w1 + 2w2 + 2w3 + Z0 − (4a1b1 + 2a1b0 + 2a0b1 + a0b0)

SP4

pg5−−→ SP5 := 2w2 + 2w3 + Z0 − (2a1b0 + 2a0b1 + a0b0)

SP5

pg6−−→ SP6 := 2w3 + Z0 − (2a0b1 + a0b0)

SP6

pg7−−→ SP7 := Z0 − (a0b0)

SP7

pg8−−→ r := 0

(b) Backward rewriting steps

Figure 1: 2-bit multiplier and backward rewriting steps

and the first term after ordering are called leading monomial and
leading term and are denoted by LM(f) and LT (f), respectively.

In SCA, division is denoted by p
F
−→ r , where F is a set of polyno-

mials and r is the remainder. For example, if p = xy, f1 = x −z, and

f2 = yz, then xy
f1
−→ yz

f2
−→ 0. To perform the division of xy by f1,

first f1 is multiplied by y to produce the same leading monomial xy
as p, so f1y = xy − yz. Subsequently, the subtraction is performed,

i.e. p − (f1y) = xy − (xy − yz) = yz, which is the result of the first

division. Finally, yz is divided by f2 to get remainder 0.

In SCA-based verification of arithmetic circuits, the gate-level

netlist and the specification polynomial are given as inputs, and the

task is to formally prove that the specification polynomial and the

arithmetic circuit are equivalent. The specification polynomial is a
polynomial determining the function of an arithmetic circuit based

on its inputs and outputs. For example, the specification polynomial

for the 2-bit multiplier of Fig. 1a is SP = 8Z3 + 4Z2 + 2Z1 + Z0 −
(2a1 + a0)(2b1 +b0) where 8Z3 + 4Z2 + 2Z1 +Z0 describes the 4-bit
output, and (2a1 + a0)(2b1 + b0) indicates the multiplication of the

2-bit inputs.

The gates of an arithmetic circuit can be modeled as polyno-

mials determining the relation between output and inputs. The

polynomials of basic Boolean gates are as follows:

z =¬a ⇒ pд := z − 1 + a, z = a ∨ b ⇒ pд := z − a − b + ab,

z =a ∧ b ⇒ pд := z − ab, z = a ⊕ b ⇒ pд := z − a − b + 2ab (3)

The polynomials in (3) are in the form of pд = x −tail(pд)where
x is the gate’s output, and tail(pд) is a function based on the gate’s

inputs.

The gate polynomials for the 2-bit multiplier of Fig. 1a are:

pд1 := Z3 −w1w4

pд2 := Z2 −w1 −w4 + 2w1w4

pд3 := w4 −w2w3

pд4 := Z1 −w2 −w3 + 2w2w3

pд5 := w1 − a1b1
pд6 := w2 − a1b0
pд7 := w3 − a0b1
pд8 := Z0 − a0b0

(4)

Assume that the signals of an arithmetic circuit are ordered

based on the reverse-topological order (i.e. from outputs toward

inputs). The specification polynomial SP and the gate-level netlist

are equivalent, iff the remainder of dividing SP by gate polynomials

becomes zero. This division is known as Gröbner basis reduction.

For the theory of Gröbner basis and its application to verification

of arithmetic circuits we refer to [3, 9].

The steps of dividing SP by pд1 , . . . ,pд8 for the 2-bit multiplier

of Fig. 1a are shown in Fig. 1b. The final remainder of the division

is equal to zero, hence the multiplier is bug-free. Please note that

all variables in the polynomials are Boolean. Thus, xn can be re-

placed by x . Furthermore, for integer arithmetic circuits, dividing

SPi by a gate polynomial pдi = xi − tail(pдi) is equivalent to sub-
stituting xi by tail(pдi) in SPi . For example, to obtain the result of

the first division step in Fig. 1b, Z3 can be substituted byw1w4 in

SP . The process of dividing the specification polynomial by gate

polynomials (or equivalently substituting gate polynomials in the

specification polynomial) is called backward rewriting.

4 LIMITS OF SCA-BASED BACKWARD
REWRITING

In this section we provide experimental evidence for the limits of

SCA-based backward rewriting for multiplier circuits.

To achieve this goal, we first briefly review the general architec-

ture of an integer multiplier. A multiplier consists of three stages:

Partial Product Generator (PPG), Partial Product Accumulator (PPA),
and Final Stage Adder (FSA). The PPG stage generates partial prod-

ucts from themultiplicand input andmultiplier input. Then, the PPA

stage performs multi-operand addition for all the generated partial

products and computes their sum. Finally, this sum is “converted”

to the corresponding binary output at the FSA.

For industrial multiplier designs, trading of area and performance

leads to several options for the implementation of each stage. For

example, in the PPG stage partial products can be computed in a

straight forward way, or Booth encoding can be used to reduce

the overall stages of the multiplier. Then in the PPA stage different

alternatives to accumulate the partial products are available, rang-

ing for example from simple adders formed in an array to different

tree-like structures. Again, in the final FSA stage different choices

to use parallelism can be made ranging from ripple carry adders to

carry look-ahead adders. In the following we will use the notation
[α ◦ β ◦γ] to refer to a multiplier consisting of the stages: PPG α ,
PPA β and FSA γ .

Coming back to SCA-based verification, we now run the follow-

ing experiment: Perform backward rewriting as introduced in the

previous section for

(i) a trivial multiplier architecture, i.e. [simple partial product
generator ◦ array ◦ ripple carry adder]

(ii) a non-trivial architecture, i.e. [simple partial product genera-
tor ◦ wallace tree ◦ carry look-ahead adder]

Results for different multiplier sizes (number of input bits per

operand) are shown in Fig. 2a, Fig. 2b, and Fig. 2c, respectively.

In the figures we plot the number of monomials in the consecutive

substitution steps of backward rewriting. For the trivial multipliers

(blue lines), the number of monomials remains almost constant

during backward rewriting, and at a certain substitution step the

number of monomials starts to decrease until it finally becomes

one.
2
In contrast, during verification of the non-trivial multipliers

(red lines) we can see after a few number of substitutions for each

of them a sudden increase in the number of monomials. For ex-

ample, the number of monomials during verification of the 4-bit

(8-bit) non-trivial multiplier grows to 2.5x (10,000x) compared to

the initial number of monomials. However, the situation is even

worse for the 16-bit non-trivial multiplier. As can be seen in Fig. 2c,

the number of monomials explode after about 50 substitution steps.

In general, this exponential growth makes the verification of non-

trivial multipliers with input bit-width larger than 8-bit practically

impossible.

In the last three years, some papers have been proposed to over-

come this monomial explosion problem. As a common understand-

ing so-called vanishing monomials (redundant monomials which

2
All multipliers considered here are correct, hence the final result is the zero polynomial

which means we have one monomial which is 0.

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40 45 50

N
u

m
b

er
 o

f
m

o
n

o
m

ia
ls 4-bit trivial mult

4-bit non-trivial mult

Subs�tu�on step

(a) 4-bit multipliers

1

10

100

0 50 100 150 200 250

N
u

m
b

e
r

o
f

m
o

n
o

m
ia

ls 8-bit trivial mult

8-bit non-trivial mult

10,000,000

1,000,000

100,000

10,000

1,000

Subs�tu�on step

(b) 8-bit multipliers

70 4 bit t i i l lt

1

10

100

0 100 200 300 400 500 600 700
N

u
m

b
er

 o
f

m
o

n
o

m
ia

ls 16-bit trivial mult

16-bit non-trivial mult

10,000,000

1,000,000

100,000

10,000

1,000

Subs�tu�on step

(c) 16-bit multipliers

Figure 2: Number of monomials at each step of substitution

finally reduce to zero after several substitution steps; illustrating

example see next section) have been identified as the root cause

of the explosion [11, 9]. As already discussed in the related work

section, the previous approaches either consider large but trivial

architectures where no vanishing monomials appear, or carry out

rewriting of the polynomials before performing backward rewrit-

ing but do not provide true inside into the vanishing monomial

problem (which also becomes evident by their non-robustness).

In this paper we present a new theory for the origin of van-
ishing monomials and how they can be handled to prevent the

explosion during backward rewriting. The core idea is to iden-

tify gates in the multiplier netlist where both output paths from a

HA converge. At these gates a monomial is formed which creates

many new monomials in each following substitution step. How-

ever, most of these new monomials can be canceled but this only

when reaching the HA during backward rewriting after again many

substitution steps (the vanishing monomial situation).

5 POLYCLEANER
In this section we first give an illustrative example for vanishing

monomials in SCA-based backward rewriting of a non-trivial mul-

tiplier. Then, we make the general case of vanishing monomials,

i.e. we come up with the basic theory for the origin of vanishing

monomials. Next, we present the overview of our SCA-verifier

PolyCleaner which overcomes polynomial explosion during back-

ward rewriting. Finally, we discuss each phase of PolyCleaner in

detail.

5.1 Vanishing Monomials Example
As a circuit example we consider a 3-bit non-trivial multiplier

of type [simple partial product generator ◦ wallace tree ◦ carry
look-ahead adder]. A subset of it’s gate-level netlist is shown in

SP := 32Z5 + 16Z4 + 8Z3 + 4Z2 + 2Z1 + Z0 − (4A[2] + 2A[1] +A[0])× (4B[2] + 2B[1] +B[0])

SP
g1⇒Z5=w21+w22−w21w22−−−−−−−−−−−−−−−−−→ SP1 := 32(w21 + w22 − w21w22) + 16Z4 + 8Z3 + 4Z2 + 2Z1 + Z0 − (4A[2] + 2A[1] +A[0])

× (4B[2] + 2B[1] +B[0]) = 32w21 + 32w22 − 32w21w22 + 16Z4 + 8Z3 + 4Z2 + 2Z1 + Z0 − (4A[2] + 2A[1] +A[0])

× (4B[2] + 2B[1] +B[0])

. . .

SP13
g14⇒Z2=w9+w13−2w9w13−−−−−−−−−−−−−−−−−→ SP14 := 4w9 + 4w13 + 32w10 + 16w11 + 8w3 + 8w4 + 8w12 − 8w4w12 + 2Z1 + Z0

+32w4w9w10w11w12w13−32w3w9w10w11w13−32w4w9w10w11w13 − 32w9w10w11w12w13 − 32w3w10w11w12︸ ︷︷
7 monomials

−32w3w4w10w11 + 32w3w4w10w11w12︸−(4A[2] + 2A[1] +A[0])× (4B[2] + 2B[1] +B[0])

SP14
g15⇒w10=w1w2−−−−−−−−−−→ SP15 := 32w1w2 + 16w11 + 8w3 + 8w4 + 8w12 + 4w9 + 4w13 − 8w4w12 + 2Z1 + Z0

+32w1w2w4w9w11w12w13 − 32w1w2w3w9w11w13 − 32w1w2w4w9w11w13−32w1w2w9w11w12w13 − 32w1w2w3w11w12︸ ︷︷
7 monomials

−32w1w2w3w4w11 + 32w1w2w3w4w11w12︸−(4A[2] + 2A[1] +A[0])× (4B[2] + 2B[1] +B[0])

SP15
g16⇒w11=w1+w2−2w1w2−−−−−−−−−−−−−−−−−→ SP16 := 32w1w2 + 16w1 + 16w2 − 32w1w2 + 8w12 + 8w4 + 8w3 + 4w13 + 4w9 − 8w4w12 + 2Z1

+ Z0 +32w1w2w4w9w12w13+32w1w2w4w9w12w13−64w1w2w4w9w12w13+ . . .+32w1w2w3w4w12+32w1w2w3w4w12︸ ︷︷
21 monomials

−64w1w2w3w4w12︸−(4A[2] + 2A[1] +A[0])× (4B[2] + 2B[1] +B[0])

= 16w1 + 16w2 + 8w12 + 8w4 + 8w3 + 4w13 + 4w9 − 8w4w12 + 2Z1 + Z0 − (4A[2] + 2A[1] +A[0])× (4B[2] + 2B[1] +B[0])

. . .

Figure 3: Backward rewriting of 3-bit non-trivial multiplier
Z2Z3Z4Z5

g1 g2

g3 g4 g5

g6 g7 g8 g9

g15 g16

g10 g11

g13 g14

w1 w2

w16 w17

w18

w21

w19

w22

g17 g18

g12

Z1 Z0

A[0]A[1]A[2]B[0]B[1]B[2]

w3 w4 w5 w6 w7

w10 w11
w12 w13

w14 w15

w20

w23

w8 w9

Logic

Figure 4: 3-bit non-trivial multiplier

Fig. 4. As can be seen in the figure, the inputs of the multiplier

are B = B[2]B[1]B[0] and A = A[2]A[1]A[0], while the output is
Z = Z5Z4Z3Z2Z1Z0. To increase the readability in the following, we
are using different notations in referring to the inputs and output

bits, respectively.

Also an excerpt of the substitution steps when performing back-

ward rewriting for this multiplier is depicted in Fig. 3:

(a) SP is the specification polynomial for the 3-bit multiplier at

hand. Performing backward rewriting in reverse topological

order, i.e. dividing/substituting SP by the gate polynomi-

als of the multiplier implementation of Fig. 4 will finally

produce the remainder zero, since the considered gate-level

implementation is correct.

(b) In the first step of backward rewriting, Z5, which is the

output of the OR gateд1, is substituted byw21+w22−w21w22

(cf. OR gate polynomial in (3)). The result after substitution

is shown as the new polynomial SP1. Since the coefficient of

Z5 is 32, we have to perform this multiplication.

(c) The next 12 steps of backward rewriting are omitted due to

page limitation.

(d) In Step 14, substitution of Z2 (output of д14) in SP13 is exe-
cuted and as result the new polynomial SP14 is generated.

(e) The next two steps result in substitution of w10 (output of

д15) andw11 (output of д16), respectively. The final result of
both steps is SP16, cf. bold line.

As can be seen, we have marked several monomials in red. The

reason is that they finally reduce to zero, i.e. after the division of

д15 and д16 they are canceled out completely. Hence, we call them

vanishing monomials. Before we explain why these red monomials

together form vanishing monomials, we provide some numbers:

We find 7 red monomials (34 variables) in Step 14, 7 red monomials

(41 variables) in Step 15, and 21 red monomials (102 variables) as

intermediate result in Step 16. These numbers clearly illustrate an

explosion in backward rewriting of a non-trivial multiplier. Please

note when performing backward rewriting for the complete netlist

much more vanishing monomials appear.

Now two major questions arise:

(1) Why do the red monomials finally reduce to zero in SP16?
(2) What is the origin of the red monomials?

For answering (1), just take a look on all 7 red monomials in SP14.
They all contain the productw10w11. In the next two substitution

steps this product is substituted by (w1w2)(w1 +w2 − 2w1w2) based
on the respective gate polynomials д15 and д16. Please note this
product equals zero as can be seen here:

w1w2(w1 +w2 − 2w1w2) = w1w2 +w1w2 − 2w1w2 = 0 (5)

In addition, this is in line with the following observation:w10 and

w11 are the outputs of a HA (see gates д15 and д16 in Fig. 4). Now

computing the AND of these two HA outputs, we also get result 0:

w10 ·w11 = (w1 ·w2) · (w1 ⊕ w2) = 0 (6)

In summary, this is the reasonwhy the redmonomials finally vanish

in SP16.
Now, we give an answer for (2): As just discussed in SP14 each

red monomial contains the product w10w11. Traversing back all

substitution steps (i.e. moving in the direction of the outputs on the

netlist) this product originates from the multiplication ofw21w22,

formed via the substitution for gate д1 as can be seen in the re-

sult SP1. Interpreting this observation on the netlist means that

there are two paths
3
starting from the two HA outputs – herew10

andw11 – and these paths finally converge at a gate (here the OR

gate д1 with output Z5).
Overall, we conclude from this illustrating example that the

origin of vanishingmonomials is a gate where HA outputs converge,

while the cancellation happens much later only after substitution

of both HA gate polynomials.

In the next section, we provide the underlying theory of van-

ishing monomials. We will show that these vanishing monomials

can be handled efficiently such that raising the complexity of the

multiplier architecture does not increase the maximal size of the

current polynomial SPi .

5.2 Basic Theory of Vanishing Monomials
We now generalize the observation from the illustrating example

of the previous section. Therefore, we formulate the following

theorem:

Theorem 1. Assume that x and y are the outputs of a HA. The
product of x andy appears during backward rewriting of an arithmetic
circuit, if at least one path from x and one path from y converge to a
gate GC and GC is not part of another HA.
3
Path 1: д15, д3, д1 ; Path 2: д16, д7, д4, д1

a

b

GX

G1
GA

G2
Gn

G'1 G'2 G'm
GC

x

y

w1
w2 wn

w'1 w'2 w'm Z

i

j

(a) General case

a

b

GX

G1
GA

Gn

G'1 G'm

x

y

w1
wn

w'1
w'm

gxor

gand

Z

C

j

i

(b) Converging to HA

Figure 5: Converging paths
Proof. Fig. 5a shows two paths starting from the HA outputs x

and y converging to GC with the output Z . The first path starting

from x is a chain of gates which contains G1,G2, . . . ,Gn ,GC . The
second path starting from y consists of G ′

1
,G ′

2
, . . . ,G ′m ,GC . Based

on (3), we know that the polynomial of all 2-input gates contains

the product of its inputs. Therefore, the polynomial ofGC can be

written as:

GC ⇒ Z = f (i, j) + ci j (7)

where f (i, j) is equal to i + j (for OR and XOR) or zero (for AND),

and c is a coefficient. The functions for i and j can be extracted

by substituting the polynomials of the gates located on the paths.

Since one path depends on x and the other on y we get after the

substitutions:

i =f ′(w1, w2, . . . , wn, x),

j =f ′′(w ′
1
, w ′

2
, . . . , w ′m, y) (8)

Based on (7) and (8), we conclude:

GC ⇒ Z = f (i, j) + cf ′(w1, w2, . . . , wn, x)f ′′(w ′1, w
′
2
, . . . , w ′m, y)

= f (i, j) + cxyT ′
1
+ cxyT ′

2
+ · · · + cxyT ′r + cT1 + cT2 + · · · + cTs︸ ︷︷ ︸
comes from the product i j

(9)

where cxyT ′h denotes the monomials containing the product of x
and y. Note that this xy product is generated because we multiply

two polynomials one depending on x and the other on depending

on y. On the other hand, assume the current polynomial SPi before
substituting Z by the GC polynomial is:

SPi := ZX ′1 + ZX
′
2
+ · · · + ZX ′l + X1 + X2 + · · · + Xq (10)

where ZX ′i denotes the monomials which contain Z . Now, we dis-
tinguish between the two cases:

(1) GC is part of another HA (see Fig. 5b): Assume GC is the

XOR (also holds for the AND), and the polynomials for the

HA’s gates are дxor ⇒ Z = i + j − 2ij and дand ⇒ C = ij,
respectively. Because of the functionality of the HA where

GC is part of, in SPi one of the Xk monomials of (10) is 2C ,
so after substituting дxor and дand polynomials in SPi the
result is:

SPi = Z + 2C + X1 + · · · + Xq

SPi
дxor
−−−−→ SPi+1 := i + j − 2i j + 2C + X1 + · · · + Xq

SPi+1
дand
−−−−−→ SPi+2 := i + j −��2i j +��2i j + X1 + · · · + Xq

= i + j + X1 + · · · + Xq (11)

As can be seen, since the product ij is not contained any-

more in SPi+2, we can conclude that the product xy is not

generated in the following steps of backward rewriting.

(2) GC is not part of another HA: Then, the product of ij remains

as part of SPi in (10) when substituting (9) and hence xy
appears in the upcoming steps of backward rewriting.

□

Based on this theorem we make the following definitions.

Definition 3. Let GC be a gate fulfilling Theorem 1. Then GC is
called a converging gate.

Definition 4. LetGC be a converging gate. Then, the monomials
containing the product of the HA’s outputs originating from GC are
vanishing monomials as they are reduced to zero after HA’s gates
substitution.

For managing the size of the current polynomial SPi during back-
ward rewriting, it is essential to prevent the inclusion of vanishing

monomials because for non-trivial architectures explosion occurs.

Hence, the goal is to determine a vanishing-free polynomial repre-

sentation for each converging gate. In other words, we are looking

for the cones starting from a converging gate and ending in the

related HA outputs. Such a cone is called Converging Gate Cone
(CGC) in the rest of the paper (see also red area in Fig. 5a).

In the next section, we present our SCA-verifier PolyCleaner

which finds all CGCs and locally removes the vanishing monomials.

Thus, the global backward rewriting becomes vanishing-free and

large non-trivial multipliers can be verified.

5.3 Overview of PolyCleaner
To alleviate the vanishing monomials explosion problem during

backward rewriting of non-trivial multipliers, we propose our new

verification method PolyCleaner. The core idea of the method is to

locally remove the vanishing monomials generated by each con-

verging gate before backward rewriting.

In our proposed method, first all CGCs are identified and the

polynomial for each CGC is extracted by the substitution of the

gate polynomials in the cone. The CGC polynomial determines

the output of the cone (i.e. output of the converging gate) based

on its inputs. We know that a vanishing monomial contains the

product of HA’s outputs, and these outputs are the inputs of CGCs.

Therefore, the vanishing monomials appear in the extracted CGC

polynomials. Local removal of vanishing monomials from these

polynomials leads to a set of vanishing-free polynomials. Now

the global backward rewriting can be performed by substituting

vanishing-free polynomials in the specification polynomial without

appearance of any new vanishing monomial.

Algorithm 1 shows the pseudo-code of PolyCleaner. In the first

step, gates are put in the different levels. This levelization is done

based on the distance from the primary inputs (PIs). It means that

each gate should have the minimum possible distance from PIs. The

main advantage of the levelization is that the gates with the same

inputs would be always in the same levels which facilitates also HA

detection. In the next step, HAs are identified. Then, the converging

gates are found in the circuit (see Line 3). Subsequently, the CGCs

are extracted based on the converging cones and the corresponding

HAs. The rest of the gates, which are not part of any CGC, are

grouped based on the fanout-free regions as it increases the chance

of monomials cancellation during global backward rewriting. This

technique is well-known and these cones are called fanout free

Algorithm 1 PolyCleaner

Input: MultiplierC , Specification polynomial SP
Output: TRUE if the circuit is bug-free, and FALSE otherwise

1: CL ← Levelization (C) ▷ CL is the levelized circuit

2: H ← FindHAs (CL) ▷ H is the set of HAs

3: CG ← FindConvergingGates (H ,CL) ▷ CG is the set of converging gates

4: CN ← FindCones (CG , H ,CL) ▷ CN is the set of cones

5: F ← ExtractPolys (CN) ▷ F is the set of cone polynomials

6: F ← RemoveVanishingMonomials (F , H)

7: if SP
F

−→ 0 then ▷ Backward rewriting

8: return TRU E
9: else
10: return FALSE
11: end if

cones [4, 11]. In the next step, the polynomial for each cone is ex-

tracted by substitution, and the vanishing monomials are locally

removed. Finally, the global backward rewriting is done by substi-

tuting extracted polynomials in the specification polynomial. If the

final remainder is equal to zero, the circuit is bug-free, otherwise it

is buggy (see Line 7 – Line 11).

In the next three sections, we explain finding of CGCs, local

vanishing monomials removal, and global backward rewriting in

detail.

5.4 Finding CGCs
Algorithm 2 shows the proposed algorithm for identifying the con-

verging gates and finding CGCs in the multiplier. The algorithm

receives the multiplierC and the set of half adders H as inputs, and

returns set of converging gates SG and set of converging gate cones

SC as outputs. First, for each HA in H all the paths from the AND

and XOR output to the primary outputs (POs) are extracted and

stored in PAND and PXOR (see Line 3 – Line 4 in Algorithm 2). In

fact, PAND and PXOR contain all the possible gates’ chains con-

necting the output of AND and XOR gates to POs. Then, the paths

in PAND and PXOR are checked to find out whether there are paths

in PAND and PXOR which lead to a common gate (i.e. converge;

see Line 5 – Line 7). If so, the first common member (i.e. GC) is a
converging gate candidate because it is the first place where a path

from an XOR gate and a path from an AND gate converge (see Line

8). Therefore, based on Theorem 1, ifGC is not a part of a HA, then

GC is a converging gate and is added to the set of the converging

gates SG (see Line 9 – Line 10). In order to determine the CGC

for the corresponding converging gate GC , the union of two paths

(pAND∪pXOR) are subtracted by their intersection (pAND∩pXOR)
and GC is added to the result to obtain all the gates from HA’s

outputs to the converging gate (see Line 11 – Line 12). This process

is repeated for all HAs to achieve the complete set of converging

gates and CGCs.

Consider the 3-bit non-trivial multiplier of Fig. 4. There are

four HAs in the circuit which are h1 = {д15,д16}, h2 = {д13,д14},
h3 = {д10,д11}, and h4 = {д8,д9}. Based on Algorithm 2, first the

paths from д15 and д16 output to POs are extracted. p1 = {д3,д1} is
the only path for д15, and p

′
1
= {д6,д3,д1} and p

′
2
= {д7,д4,д1} are

the paths for д16. After calculating the intersection of the paths, we

observe p1 ∩p
′
1
, ∅, therefore the first common member, i.e. д3, is a

converging gate. Based on Line 11, the corresponding CGC would

be v1 = {д3,д6}. The members of a CGC are sorted based on the

reverse topological order of the circuit. Hence, the first member of a

CGC is always the converging gate. After applying Algorithm 2, the

complete list of CGCs would be v1 = {д3,д6}, v2 = {д1,д3,д4,д7},
v3 = {д1,д3,д6,д4,д7} and v4 = {д5,д8} where the two first CGCs

are related toHAh1, and the rest is related toHAh2. The converging

Algorithm 2 Finding CGCs

Input: MultiplierC , Set of HAs H
Output: Set of converging gates SG , set of converging gate cones SC
1: SC ← ∅, SG ← ∅
2: for each h ∈ H do
3: PAND ← Find all paths from hand to PO

4: PXOR ← Find all paths from hxor to PO

5: for each pand ∈ PAND do
6: for each pxor ∈ PXOR do
7: if pand ∩ pxor , ∅ then
8: GC = First common member of pand and pxor
9: if GC < H then
10: SG ← SG ∪ {GC }
11: CGC ← [(pand ∪ pxor) − (pand ∩ pxor)] ∪ {GC }
12: SC ← SC ∪ {CGC }
13: end if
14: end if
15: end for
16: end for
17: end for
18: return SG , SC

gates are shown in gray in Fig. 4. Please note that if the converging

gates of two different CGCs are the same (i.e. two different HAs

converge to the same gate), instead of two CGCs, the union of both

cones is considered as a new single CGC. For example, the first

member (i.e. converging gate) of v2 and v3 are the same, and hence

the new CGC is v ′
2
= v2 ∪v3 = {д1,д3,д6,д4,д7}.

5.5 Local Removal of Vanishing Monomials in
CGCs

In order to facilitate the local removal of vanishing monomials, we

first propose a theorem which allows further optimization for a

special type of converging gates.

Theorem 2. If all members of a CGC except the converging gate
GC are AND gates, the product of the GC inputs is zero.

Proof. Assume that ij is the product of theGC inputs in Fig. 5a.

This product can be substituted by the gate polynomials in CGC:

i j = f (w1, w2, . . . , wn, x)f ′(w ′1, w
′
2
, . . . , w′m, y) (12)

All gates in CGC are AND gates, and the polynomial of an AND

gate is just the product of its inputs. Therefore, f and f ′ can be

shown as product of their inputs:

i j = [w1w2 . . .wnx][w ′1w
′
2
. . .w ′my] (13)

where x and y denote the outputs of the HA. Due to appearance of

xy in (13), it can be concluded that the product ij equals zero. The
converging gate whose product of inputs is zero is called M-zero
gate. □

After finding CGCs as discussed in the previous section, first

M-zero gates are identified based on Theorem 2. Subsequently, the

monomials containing the product of inputs polynomials for the

M-zero gate are removed. For example, if the M-zero gate is an

XOR, its polynomial will be Z = i + j −��2ij = i + j. Based on

Theorem 1, the product of the converging gate inputs (i.e. ij) is the
source of the vanishingmonomials in backward rewriting. However,

for M-zero gates the monomial containing this product is already

removed. Therefore, we do not need to find the polynomial and

remove vanishing monomials for the CGC if its converging gate is

an M-zero gate. In Fig. 4, д3 and д5 are M-zero gates because the

corresponding CGCs after excluding converging gates , i.e.v1−{д3}
and v4 − {д5}, are made of just AND gates. Thus, their polynomials

become д3 ⇒ w21 = w10 +w18 and д5 ⇒ w23 = w16 +w20.

For the rest of CGCs which do not contain any M-zero gate, the

polynomials are extracted by substitution. Then, the monomials

containing the product of HAs’ outputs (i.e. vanishing monomi-

als) are locally removed. For v ′
2
= {д1,д3,д6,д4,д7} the steps of

polynomial extraction and local vanishing monomials removal are:

Z
5
= w

21
+w

22
−w

21
w
22

w
21
= w

10
+w

18
=⇒ Z

5
= w

10
+w

18
+w

22
−w

10
w
22
−w

18
w
22

w
22
= w

15
w
19
=⇒ Z

5
= w

10
+w

18
+w

15
w
19
−w

10
w
15
w
19
−w

15
w
18
w
19

w
18
= w

11
w
16
=⇒ Z

5
= w

10
+w

11
w
16
+w

15
w
19
−w

10
w
15
w
19
−w

11
w
15
w
16
w
19

w
19
= w

11
w
17
=⇒ Z

5
= w

10
+w

11
w
16
+w

11
w
15
w
17
−w10w11w15w17 −w11w15w16w17

= w
10
+w

11
w
16
+w

11
w
15
w
17

(14)

The red monomials containw10w11 andw16w17 which are the

product of HAs’ outputs in Fig. 4. As a result, they are removed at

the end of the substitution.

The rest of the gates which are not part of a CGC are grouped into

fanout-free cones. This grouping increases the chance of monomial

cancellation during backward rewriting. For example, {д2,д5,д8}
creates a fanout-free cone in Fig. 4. Then, the polynomials for these

fanout-free cones are extracted by substitution. Finally, at the end

of this step, we have a set of polynomials which are completely

vanishing-free.

5.6 Global Vanishing-free Backward Rewriting
The final step of verification is substituting the just determined

vanishing-free polynomials for the CGCs and fanout-free cones in

specification polynomial. As a consequence, the global backward

rewriting process is vanishing-free and no explosion happens. In

the following experiments we show the advantages of our approach.

In particular we provide verification data which confirms the effec-

tiveness of our methods for removing vanishing monomials.

6 EXPERIMENTAL RESULTS
PolyCleaner has been implemented in C++. The experiments have

been carried out on an Intel(R) Core(TM) i5-4300M CPU 2.60 GHz

with 16 GByte of main memory. In order to evaluate the efficiency

of PolyCleaner in verification of different trivial and non-trivial

multipliers, we consider a variety of multiplier architectures gen-

erated by Arithmetic Module Generator [1] known as AOKI. The

multipliers are named in the order of the three stages PPG, PPA,

and FSA (see details in the legend below Table 1). The generated

multipliers are in RTL Verilog format. We use Yosys [15] to convert

them to a flattened gate-level Verilog netlist. Since AOKI cannot

generate multipliers with more than 64 input bits for one input

operand, we generated larger multipliers using Yosys.
Table 1 reports the run-times of different verification methods

for the various multipliers. Please note that the Time-Out (TO) has
been set to 200 hours. The first column of the table shows the type

of multiplier (see below the table for abbreviations). The second

column Size gives the size of multiplier based on the input bits.

The run-time (in seconds) of our proposed method is reported

in detail in the third column PolyCleaner, which consists of five

subcolumns: Parsing & Levelization reports the required time for

parsing the gate-level netlist, converting it to the internal data

structure, and finally levelizing the gates. Finding Cones refers to
the time which is needed for finding CGCs and fanout-free cones,

so Algorithm 2. Local Van. Removal presents the consumed time

for generating the polynomials for each cone and removing the

vanishing monomials. Global backward rewriting time is reported

in Glob. Backw. Rewriting. Finally, the overall run-time of Poly-

Cleaner which is the sum of four previous subcolumns is presented

in Overall. The numbers show that Finding Cones phase time is

51% of total verification time in average, and therefore the most

time-consuming phase of PolyCleaner. But as can be seen, this time

investment pays off since PolyCleaner can verify all benchmarks.

The forth column State-of-the-art methods of Table 1 reports
the run-times of the state-of-the-art verification methods. This

column consists of five subcolumns: Commercial refers to the run-

time of commercial formal verification tool OneSpin, while the

remaining subcolumns report the run-times of the most recent SCA-

based verification approaches. As can be seen the commercial tool

verifies multipliers up to 16 input bits. The proposed methods [4],

[17], and [9] are capable of verifying the trivial multipliers (i.e. SP ◦
AR ◦ RC and BP ◦ AR ◦ RC) where no vanishing monomials are

generated during backward rewriting. However, these methods

return time-out in verification of even small non-trivial multipliers.

The proposed method in [11] can verify some of the non-trivial

multipliers as the authors presented a heuristic to detect and remove

some of the vanishing monomials. Nevertheless, the verification

method [11] is not robust as can be seen in column [11]: it fails for 12

non-trivial multipliers. Moreover, for the benchmarks where it was

successful, the run-time is considerably larger than the run-time of

PolyCleaner (sometimes event two orders of magnitudes).

Table 2 presents the verification data reported by PolyCleaner

and by this gives very interesting insights. The first and the second

column of the table show the type and size of the multiplier, respec-

tively. The third column #Gates reports the number of gates in the

multiplier. The via Yosys generated multiplier with 512 bits per in-

put, which consists of approximately 1.6 million gates, is the largest

multiplier in our experiments. The number of the converging gates

is reported in the forth column #Converg. For non-trivial multipli-

ers, the number of the converging gates varies based on the type of

the architecture. The fifth column #Cones reports the number of

CGCs and fanout-free cones in total. The number of the canceled

vanishing monomials is shown in the sixth column #Van. In trivial

multipliers, no vanishing monomial are generated, thus no cancel-

lation happens. In contrast, in case of non-trivial multipliers, more

than 2 million vanishing monomials have to be removed before

global backward rewriting. Finally, the seventh column #maxPoly
reports the maximum size of the current polynomial SPi during
backward rewriting by counting the number of monomials. Now

consider a group of multipliers of the same size (column Size): The

maximum polynomial size of trivial multipliers is approximately

equal to that of the non-trivial multipliers, for example around

600 for the 16 × 16 multipliers. This result clearly demonstrates

that PolyCleaner efficiently kills all vanishing monomials before

backward rewriting.

7 CONCLUSION
In this paper, we have introduced the SCA-verifier PolyCleaner

which allows formal verification of non-trivial million-gate multi-

pliers. Based on a new theory for the origin of vanishing monomials,

our approach allows for local cancellation of vanishing monomials

in converging gates cones starting from half adders. As a conse-

quence global vanishing-free backward rewriting can be performed

by PolyCleaner. The experimental results showed the efficiency of

PolyCleaner in verification for non-trivial million-gate multipliers

where the other state-of-the-art methods failed.

ACKNOWLEDGMENTS
This work was supported by the University of Bremen’s graduate

school SyDe funded by the German Excellence Initiative, and by

the German Academic Exchange Service (DAAD).

Table 1: Run-times of verifying different types of multipliers (run-times in seconds)

Benchmark
Size

PolyCleaner State-of-the-art methods
Parsing & Finding Local Van. Glob. Backw.

post-synth. levelization cones Removal Rewriting Overall Commercial [4] [17] [9] [11]

SP◦AR◦RC

16×16

0.20 0.23 0.07 0.09 0.59 63.00 0.38 0.01 1.49 3.01

SP◦CT ◦BK 0.06 0.19 0.08 0.10 0.43 53.00 TO TO TO 4.00

SP◦DT ◦LF 0.07 0.27 0.15 0.10 0.58 44.00 TO TO TO 3.21

SP◦WT ◦CL 0.10 0.47 0.34 0.11 1.01 50.00 TO TO TO 7.63

BP◦AR◦RC

16×16

0.14 0.20 0.07 0.10 0.50 74.00 0.32 0.01 TO 6.34

BP◦CT ◦BK 0.06 0.14 0.08 0.10 0.37 44.00 TO TO TO 10.47

BP◦DT ◦LF 0.05 0.18 0.14 0.10 0.46 44.00 TO TO TO 11.50

BP◦WT ◦CL 0.09 0.36 0.35 0.10 0.90 68.00 TO TO TO TO

SP◦AR◦RC

32×32

1.25 3.94 0.74 1.19 7.12 TO 3.72 0.02 39.73 55.60

SP◦CT ◦BK 0.40 2.74 0.86 1.39 5.38 TO TO TO TO 81.09

SP◦DT ◦LF 0.51 4.34 1.65 1.34 7.82 TO TO TO TO 68.28

SP◦WT ◦CL 1.01 8.73 5.24 1.44 16.43 TO TO TO TO 1105.44

BP◦AR◦RC

32×32

0.95 2.50 0.57 1.11 5.13 TO 2.90 0.02 TO 56.71

BP◦CT ◦BK 0.31 1.63 0.65 1.15 3.75 TO TO TO TO 247.17

BP◦DT ◦LF 0.31 2.23 1.24 1.09 4.86 TO TO TO TO 265.08

BP◦WT ◦CL 0.80 5.95 5.75 1.35 13.86 TO TO TO TO TO

SP◦AR◦RC

64×64

12.98 67.59 10.44 18.41 109.43 TO 49.91 0.14 TO 846.23

SP◦CT ◦BK 3.55 42.99 11.22 21.66 79.44 TO TO TO TO 1,952.06

SP◦DT ◦LF 6.99 72.40 20.53 20.84 120.76 TO TO TO TO 2,273.64

SP◦WT ◦CL 16.21 210.41 84.59 24.48 335.70 TO TO TO TO TO

BP◦AR◦RC

64×64

9.21 38.45 6.95 15.84 70.43 TO 37.18 0.09 TO 911.07

BP◦CT ◦BK 1.99 23.23 7.29 16.01 48.52 TO TO TO TO 1,796.42

BP◦DT ◦LF 2.66 32.68 13.07 15.11 63.53 TO TO TO TO TO

BP◦WT ◦CL 9.78 112.73 83.64 16.51 222.66 TO TO TO TO TO

yosys_mult 128×128 105.52 1,445.77 183.39 650.05 2,384.73 TO TO TO TO TO

yosys_mult 192×192 538.15 8,360.23 951.12 3,759.72 13,609.22 TO TO TO TO TO

yosys_mult 256×256 1,324.88 20,325.90 2,344.55 8,664.24 32,659.57 TO TO TO TO TO

yosys_mult 320×320 3,269.63 53,332.48 5,964.00 24,602.92 87,169.02 TO TO TO TO TO

yosys_mult 384×384 10,150.71 137,212.26 17,032.26 66,466.43 230,861.66 TO TO TO TO TO

yosys_mult 448×448 12,301.13 221,666.97 22,706.62 105,182.33 361,857.05 TO TO TO TO TO

yosys_mult 512×512 21,041.23 385,253.07 37,795.14 190,075.10 634,164.54 TO TO TO TO TO

Stage 1 ⇒ SP: Simple partial product generator BP: Booth partial product generator TO: Time-Out

Stage 2 ⇒ AR: Array CT: Compressor tree DT: Dadda tree WT: Wallace tree

Stage 3 ⇒ RC: Ripple carry adder BK: Brent-Kung adder LF: Lander-Fischer adder CL: Carry look-ahead adder

Table 2: Verification data for different types of multipliers
Benchmark

post-synth. Size #Gates #Converg #Cones #Van #maxPoly

SP◦AR◦RC

16×16

1,856 0 736 0 540

SP◦CT◦BK 1,722 31 808 273 627

SP◦DT◦LF 1,924 66 789 1,587 646

SP◦WT◦CL 2,633 276 852 6,708 652

BP◦AR◦RC

16×16

1,691 0 588 0 1,004

BP◦CT◦BK 1,540 34 577 286 1,005

BP◦DT◦LF 1,665 70 553 2,045 1,002

BP◦WT◦CL 2,447 301 604 7,199 1,004

SP◦AR◦RC

32×32

7,808 0 3,008 0 2,108

SP◦CT◦BK 7,130 79 3,225 1,422 2,531

SP◦DT◦LF 8,046 175 3,124 15,200 2,652

SP◦WT◦CL 12,066 1,437 3,353 82,061 2,648

BP◦AR◦RC

32×32

6,314 0 2,063 0 4,050

BP◦CT◦BK 5,766 82 2,015 1,248 4,059

BP◦DT◦LF 6,263 180 1,895 14,498 4,050

BP◦WT◦CL 10,626 1,547 2,098 87,201 4,054

SP◦AR◦RC

64×64

32,000 0 12,160 0 8,316

SP◦CT◦BK 28,737 169 12,707 11,688 10,179

SP◦DT◦LF 32,680 428 12,403 94,805 10,764

SP◦WT◦CL 52,083 6,694 13,050 844,849 10,796

BP◦AR◦RC

64×64

24,442 0 7,727 0 16,290

BP◦CT◦BK 21,872 171 7,187 7,170 16,305

BP◦DT◦LF 24,006 434 6,884 96,023 16,290

BP◦WT◦CL 44,173 6,923 7,482 897,991 16,300

yosys_mult 128×128 99,722 472 66,896 44,237 32,770

yosys_mult 192×192 223,693 726 149,846 149,584 73,730

yosys_mult 256×256 396,997 997 265,747 248,859 131,074

yosys_mult 320×320 619,857 1,234 414,815 1,305,538 204,802

yosys_mult 384×384 891,114 1,489 595,899 817,426 294,914

yosys_mult 448×448 1,211,754 1,745 809,979 2,084,311 401,410

yosys_mult 512×512 1,582,385 1,995 1,057,680 1,253,955 524,290

REFERENCES
[1] Arithmetic module generator based on ACG. www.aoki.ecei.tohoku.ac.jp/arith/.

[2] M. Ciesielski, C. Yu, D. Liu, and W. Brown. Verification of gate-level arithmetic

circuits by function extraction. In DAC, pages 52:1–52:6, 2015.
[3] D. A. Cox, J. Little, and D. O’Shea. Ideals Varieties and Algorithms. Springer, 1997.
[4] F. Farahmandi and B. Alizadeh. Gröbner basis based formal verification of large

arithmetic circuits using gaussian elimination and cone-based polynomial extrac-

tion. MICPRO, 39(2):83–96, 2015.
[5] D. Kapur and M. Subramaniam. Mechanical verification of adder circuits using

rewrite rule laboratory. Formal Methods in System Design: An International Journal,
13(2):127–158, 1998.

[6] J. Lv, P. Kalla, and F. Enescu. Efficient Gröbner basis reductions for formal verifi-

cation of Galois field arithmetic circuits. TCAD, 32(9):1409–1420, Sept 2013.
[7] A. Mahzoon, D. Große, and R. Drechsler. Combining symbolic computer alge-

bra and boolean satisfiability for automatic debugging and fixing of complex

multipliers. In ISVLSI, 2018.
[8] E. Pavlenko, M. Wedler, D. Stoffel, W. Kunz, O. Wienand, and E. Karibaev. Model-

ing of custom-designed arithmetic components in ABL normalization. In FDL,
pages 124–129, 2008.

[9] D. Ritirc, A. Biere, and M. Kauers. Column-wise verification of multipliers using

computer algebra. In FMCAD, pages 23–30, 2017.
[10] D. Ritirc, A. Biere, andM. Kauers. Improving and extending the algebraic approach

for verifying gate-level multipliers. In DATE, pages 1556–1561, 2018.
[11] A. Sayed-Ahmed, D. Große, U. Kühne, M. Soeken, and R. Drechsler. Formal verifi-

cation of integer multipliers by combining Gröbner basis with logic reduction. In

DATE, pages 1048–1053, 2016.
[12] A. Sayed-Ahmed, D. Große, M. Soeken, and R. Drechsler. Equivalence checking

using Gröbner bases. In FMCAD, pages 169–176, 2016.
[13] D. Stoffel and W. Kunz. Equivalence checking of arithmetic circuits on the arith-

metic bit level. TCAD, 23(5):586–597, 2004.
[14] S. Vasudevan, V. Viswanath, R. W. Sumners, and J. A. Abraham. Automatic

verification of arithmetic circuits in RTL using stepwise refinement of term

rewriting systems. TC, 56(10):1401–1414, 2007.
[15] C. Wolf. Yosys open synthesis suite. http://www.clifford.at/yosys/.

[16] C. Yu, W. Brown, D. Liu, A. Rossi, and M. Ciesielski. Formal verification of

arithmetic circuits by function extraction. TCAD, 35(12):2131–2142, 2016.
[17] C. Yu, M. Ciesielski, and A. Mishchenko. Fast algebraic rewriting based on and-

inverter graphs. TCAD, 1(1):1–5, 2017.

www.aoki.ecei.tohoku.ac.jp/arith/
http://www.clifford.at/yosys/

