
Combining Symbolic Computer Algebra and Boolean Satisfiability
for Automatic Debugging and Fixing of Complex Multipliers

Alireza Mahzoon1 Daniel Große1,2 Rolf Drechsler1,2
1Faculty of Mathematics and Computer Science, University of Bremen, Germany

2Cyber-Physical Systems, DFKI GmbH, Bremen, Germany
{mahzoon,grosse,drechsle}@informatik.uni-bremen.de

Abstract—If verification of a digital circuit fails, then debug-
ging and fixing become the major subsequent tasks. Arithmetic
units are among the most challenging circuits for debugging
because of a wide variety of architectures and high design
complexity. A prominent example are multipliers. Since existing
automatic methods fail for these circuits, both tasks are per-
formed manually which is typically very time-consuming.

In this paper, we propose a complete debugging flow based
on the combination of Symbolic Computer Algebra (SCA) and
Boolean Satisfiability (SAT). Complete means that our method
targets the complete loop until the arithmetic circuit is guaran-
teed to fulfill its specification. For this, our approach consists
of the three phases verification, localization, and fixing. In the
experimental evaluation, we demonstrate the applicability of our
approach for the most complex multiplier architectures.

I. INTRODUCTION

Nowadays, arithmetic circuits play a crucial role in many
computation intensive applications (e.g. signal processing and
cryptography) as well as in upcoming AI architectures (e.g. for
machine learning and deep learning). At the heart of these
arithmetic circuits integer multipliers and adders are the
dominant building blocks. Due to the growing importance
of power, speed, and area in digital circuits, designers have
proposed a large variety of different integer multiplier and
adder architectures to meet the pressing requirements. These
architectures are usually extensively parallel and hence very
complex. This makes them prone to design errors.

Since the famous Pentium bug back in 1994, a lot of
effort has been put in the development of suitable verification
methods. Ensuring the correctness in a mathematical sense
became possible by formal verification. However, it is very
well known that non-trivial arithmetic, and in particular integer
multiplication at the gate level, is still one of the biggest
challenges for formal methods. Looking from the methods
perspective on formal verification, essentially five directions
can be distinguished: (a) Decision Diagrams (DDs) (such
as BDDs or *BMDs), (b) Boolean Satisfiability (SAT) and
Satisfiability Modulo Theories (SMT), (c) reverse engineering
techniques, (d) term rewriting, and (e) Symbolic Computer
Algebra (SCA).

Considering an advanced gate level multiplier circuit as a
representative input for each method, we can observe: DDs
suffer from an exponential blow-up, SAT/SMT stuck for input
datawidth greater than 15 bits, reverse engineering approaches
using Arithmetic Bit-Level (ABL) representations [1], [2] can
only handle simple multiplier architectures, and term rewriting
techniques [3], [4] suffer from incompleteness and may fail
to prove the correctness of the circuit because of insufficient
lemmas. In contrast, SCA uses a polynomial representation
for the problem. To be more precise, the circuit specification
is represented as a single polynomial pspec and the circuit is

This work was supported by the German Federal Ministry of Education and
Research (BMBF) within the project SELFIE under grant no. 01IW16001, by
the University of Bremen’s graduate school SyDe funded by the German Ex-
cellence Initiative, and by the German Academic Exchange Service (DAAD).

captured as a set of polynomials G. Then, the verification is
done by testing the membership of the specification polyno-
mial in an ideal with generators in G. This membership test
corresponds to a series of divisions of pspec by the circuit
polynomials G (also known as Gröbner basis reduction). In
the recent years, there was a renewed interest in SCA because
these algebraic techniques have been applied successfully on
large Galois Field arithmetic circuits [5], [6] as well as large
(but architectural simple) integer multipliers [7], [8]. Recently,
SCA has been shown to be very successful also for complex
integer multipliers [9], [10], i.e. highly parallel architectures
with up to 256 output bits. Basically, the authors of [9] have
presented a logic reduction rewriting scheme consisting of
XOR-rewriting and common-rewriting. This scheme allows
for cancellation of so-called vanishing monomials (monomials
which finally reduce to zero) in an efficient way before their
blow-up during division. However, when verification fails,
debugging and fixing the gate level arithmetic circuit are the
next two major tasks. Hence, the designer has to (1) find the
exact location of the bug and (2) determine a concrete fix.

In this paper, we propose an approach for automatic
debugging and fixing of complex gate-level arithmetic
circuits combining SCA and SAT. At first, we define the fault
model. Subsequently, we show the limitations of a pure SCA-
based method for debugging and fixing of complex arithmetic
circuits. Then, we introduce our approach which employs an
combination of SCA and SAT to successfully debug and fix
arithmetic circuits. Our approach consists of three phases:
verification, localization, and fixing. In each phase we employ
SAT and SCA for individual subtasks as both have pros and
cons. We explain the underlying decisions wrt. the chosen
method which are also confirmed in the experiments. Finally,
we show in the experimental evaluation on a very large set of
multiplier circuits – ranging from simple to the most complex
architectures – that automatic debugging and fixing is possible
in practical time.

II. RELATED WORK

Automated debugging using SAT has been initially pre-
sented in [11]. The approach introduces abnormal predicates
into the netlist and allows to compute a list of suspicious loca-
tions (gates). Several improvements based on iterative analysis,
abstraction, incremental SAT-solving, and better accuracy have
been developed, see e.g. [12], [13], [14], [15]. However, these
approaches can only be used for the localization step in the
considered setting, since SAT/SMT is not able to perform
the proof of correctness for complex arithmetic circuits, and
therefore the verification of a fix fails.

Only a few debugging approaches using SCA have been
proposed. In [16] the circuit is cut into levels and then
based on the polynomial modeling backward and forward
rewriting is performed simultaneously to identify differences.
In contrast, the authors of [17] use the remainder of Gröbner
basis reduction to find the location of the bug. However, both



methods are limited to simple arithmetic circuits and they
fail if vanishing monomials appear in the final remainder, or
the bug is close to the Primary Outputs (POs). The proposed
method in [18] is an extension of [17] and tries to debug faults
close to POs. It uses partitions of the primary inputs’ space
of the design and performs incremental equivalence checking
using Gröbner basis reduction. However, it still suffers from
the vanishing monomial problem; we provide more details
on this problem in Section IV-B. In summary, the existing
approaches are not suitable for automated debugging and
fixing of complex arithmetic circuits. Hence, in this paper
we propose a combination of SCA and SAT to overcome the
described limitations.

III. PRELIMINARIES

In this section, first the concepts of SCA are described.
Then, the process of verifying arithmetic circuits using SCA
is reviewed.
A. Notations and Definitions

Definition 1: A Monomial is the product of variables in the
following form

xα = xα1
1 xα2

2 . . .xαn
n (1)

Definition 2: A Polynomial is the finite combination of
monomials with coefficients in k

f =
∑
α

aαx
α, aα ∈ k (2)

The set of all polynomials with coefficients in k is denoted by
k[x1, . . . , xn].

The monomials of a polynomial are ordered based on the
ordering of the variables and their powers. We use A > B
to show that A is in a higher order than B. For example, if
there is P = x2y3z2 + x3yz2 + y5z2, and the ordering of
variables is x > y > z, then the ordering of monomials would
be x3yz2 > x2y3z2 > y5z2. The first monomial after ordering
is called Leading Monomial, and denoted by LM(P ).

Definition 3: A subset I ⊂ k[x1, . . . , xn] is an ideal if:
• 0 ∈ I .
• if f, g ∈ I , then f + g ∈ I .
• if f ∈ I and h ∈ k[x1, . . . , xn], then hf ∈ I .

Consequently, if f1, . . . , fs are polynomials in k[x1, . . . , xn],
then an ideal is generated by them in the following form

I =< f1, . . . , fs >= {
s∑
i=1

hifi : h1, . . . , hs ∈ k[x1, . . . , xn]} (3)

where f1, . . . , fs are called Generators of the ideal.
Ideal Membership is one of the well-known problems in

SCA. In this problem, a polynomial f ∈ k[x1, . . . , xn] and an
ideal I =< f1, . . . , fs > are given, and the task is to determine
if f ∈ I . In order to prove that f ∈ I , the remainder of
dividing f by f1, . . . , fs independent of division order should
be always equal to zero.

Theorem 1: Let g1, . . . , gs be the generators
of an ideal I . The remainder of dividing f by
the generators is always unique, if LM(g1), . . . ,
LM(gs) are relatively prime. In other words, there should
be no common variable in the leading monomial of the
generators. The set of generators with this property is called
Gröbner basis [19].

Note that Theorem 1 is already a special case of defining
a Gröbner basis which facilitates the process of identifying
a Gröbner basis in the context of circuits (for general case
we refer to. [20]). Now, assume that G = {g1, . . . , gs} is
a Gröbner basis. Thus, the remainder r of dividing f by
g1, . . . , gs is uniquely determined, and the condition r = 0
is equivalent to membership in the ideal I =< g1, . . . , gs >.

a1 b1 a0 b0

w1 w2 w3

w4

Z2 Z1 Z0

g4 g5 g6 g7

g2 g3

g1

(a) bug-free

w1 w2 w3

w4

Z2 Z1 Z0

a1 b1 a0 b0

g6 g7

g2 g3

g1

g5g4

(b) buggy at gate g4

w1
w2 w3

w4

Z2 Z1 Z0

1 0 0 0

g6 g7

g2 g3

g1

p1 p2 p3s1 s2 s3

x1 x2 x3

g5

p4s4

s5 p5

x4

x5

g4

(c) inserted XORs
Fig. 1. 2-bit adder circuit

The division is denoted by f
G−→ r. For example, if f = xz,

g1 = x+ y, and g2 = yz then xz
g1−→ −yz g2−→ 0. To perform

the division of xz by g1, first g1 is multiplied by z to create the
same leading monomial xz as f , so g1 × z = xz + yz. Then,
the subtraction is performed, i.e. we compute f − (g1 × z) =
xz−(xz+yz) = −yz, which is the result of the first division.
Finally, this result is divided by g2 to obtain the remainder 0.

B. Verification using SCA
In verification of gate level arithmetic circuits, the speci-

fication polynomial of the circuit and a gate level netlist are
provided as inputs, and the goal is to formally prove that they
are equivalent. The specification polynomial of an arithmetic
circuit determines the function of circuit based on its inputs
and outputs. For example, for the 2-bit adder in Fig. 1a the
specification polynomial is F := 4Z2 + 2Z1 + Z0 − (2a1 +
a0+2b1+b0) where Z = 4Z2+2Z1+Z0 shows 3-bit output,
and 2a1 + a0 + 2b1 + b0 indicates addition of 2-bit inputs.

Furthermore, each logical gate can be presented by a poly-
nomial with coefficients in Z determining the relation between
its inputs and output. The polynomials of basic Boolean gates
are

z = ¬a =⇒ g := z − 1 + a z = a ∨ b =⇒ g := z − a− b + a× b

z = a ∧ b =⇒ g := z − a× b z = a⊕ b =⇒ g := z − a− b + 2a× b
(4)

For example, if the variables in the 2-bit adder of Fig. 1a are
ordered based on the reverse topological order of the circuit
(from outputs toward inputs), the gates polynomials are

g1 := Z2 − w1 − w4 + w1w4

g2 := w4 − w2w3

g3 := Z1 − w2 − w3 + 2w2w3

g4 := w1 − a1b1
g5 := w2 − a1 − b1 + 2a1b1
g6 := w3 − a0b0
g7 := Z0 − a0 − b0 + 2a0b0

(5)

The leading monomial of all gates polynomials are rela-
tively prime. Therefore, based on Theorem 1 the set of gates
polynomials is a Gröbner basis. Consequently, the problem of
proving equivalency of the specification polynomial and the
gate level netlist can be translated to a membership testing
problem. In other words, if F (specification of a circuit) is
a member of < g1, . . . , gs > where g1, . . . , gs are the gates
polynomials of the the circuit, then the circuit is bug-free. The
steps of dividing F by g1, . . . , g7 in the 2-bit adder of Fig. 1a
is shown in (6). Due to the fact that the final remainder is
equal to zero, the adder is correct.
F

g1−−→ F1 := 4w1 + 4w4 −4w1w4 + 2z1 + z0 − (2a1 + a0 + 2b1 + b0)

F1
g2−−→ F2 := 4w1 + 4w2w3 −4w1w2w3 + 2z1 + z0 − (2a1 + a0 + 2b1 + b0)

F2
g3−−→ F3 := 4w1 −4w1w2w3 + 2w2 + 2w3 + z0 − (2a1 + a0 + 2b1 + b0)

F3
g4−−→ F4 := 4a1b1 − 4a1b1w2w3 + 2w2 + 2w3 + z0 − (2a1 + a0 + 2b1 + b0)

F4
g5−−→ F5 := −4a1b1(a1 + b1 − 2a1b1)w3 + 2w3 + z0 − (a0 + b0)

F5
g6−−→ F6 := 2a0b0 + z0 − (a0 + b0)

F6
g7−−→ r := 0 (6)



Please note that all variables in polynomials are Boolean,
hence a term like xn can be replaced by x. The process of
dividing F by g1, . . . , g7 is called backward rewriting.

The monomials in the dashed boxes in (6) are called vanish-
ing monomials. These monomials appear in the intermediate
steps of backward rewriting. However, they reduce to zero in
the next steps. For example, the vanishing monomial −4w1w4
is generated in the first step of backward rewriting in (6). It
reduces to zero after five steps of division. Recall that the
early cancellation of these vanishing monomials is crucial for
scaling to large non-trivial multiplier architectures.

IV. AUTOMATIC DEBUGGING AND FIXING

In this section the proposed approach for automatic debug-
ging and fixing of gate-level arithmetic circuits is introduced.
At first, we define the fault model. Then, the limitations of a
pure SCA-based method for debugging and fixing are shown.
Subsequently, we give an overview of the three phases of the
proposed method. Finally, each phase is detailed.

A. Fault Model
In this paper we target complex gate-level arithmetic circuits

with a particular focus on integer multipliers as these are
known to be very hard in both design and formal verifica-
tion. As a consequence, we consider gate misplacement as
our fault model. This well known fault model changes the
functionality of the design by a wrong gate [21], [16], [17].
Such faults are likely to occur, for example, when a synthesis
tool makes a mistake when optimizing the circuit. Another
prominent example of introducing such kind of faults is a
bug in a multiplier generator tool which are used to create
a dedicated multiplier architecture (under given constraints).
To be somewhat more precise, when looking on the overall
structure of a multiplier it can be seen that a multiplier consists
of three stages, i.e. Partial Product Generator (PPG), Partial
Product Accumulator (PPA), and Final Stage Adder (FSA). In
our experiments later we will consider faults in each of these
stages and the effect on debugging and fixing.

B. Limitations of SCA for Debugging
As has been shown in recent papers, SCA-based method

can be used to prove the correctness of large and complex
arithmetic circuits [9], [10]. However, SCA-based approaches
suffer from two major limitations when employed for debug-
ging:

1) Vanishing Monomials in Remainder: In a bug-free gate
level circuit, vanishing monomials are generated during back-
ward rewriting and they reduce to zero after some division
steps. Early cancellation of vanishing monomials based on the
reported logic rewriting scheme is the major reason for scaling
to complex multipliers in [9], [10]. However, in a buggy
arithmetic circuit, it is possible that the vanishing monomials
propagate to the remainder because of a bug. To illustrate this
phenomenon, we show the backward rewriting process for a
buggy 2-bit adder (cf. Fig. 1b):
F

g1−−→ F1 := 4w1 + 4w4 −4w1w4 + 2z1 + z0 − (2a1 + a0 + 2b1 + b0)

F1
g2−−→ F2 := 4w1 + 4w2w3 −4w1w2w3 + 2z1 + z0 − (2a1 + a0 + 2b1 + b0)

F2
g3−−→ F3 := 4w1 −4w1w2w3 + 2w2 + 2w3 + z0 − (2a1 + a0 + 2b1 + b0)

F3
g4−−→ F4 := 2a1 + 2b1 − 4a1b1 −4(a1 + b1 − a1b1)w2w3 + 2w2 + 2w3 + z0

− (a0 + b0)

F4
g5−−→ F5 := 4a1 + 4b1 − 8a1b1 −4(a1 + b1 − 2a1b1)w3 + 2w3 + z0 − (a0 + b0)

F5
g6−−→ F6 := 4a1 + 4b1 − 8a1b1 −4(a1 + b1 − 2a1b1)a0b0 + 2a0b0 + z0

− (a0 + b0)

F6
g7−−→ r := 4a1 + 4b1 − 8a1b1 −4(a1 + b1 − 2a1b1)a0b0 (7)

The final remainder r of backward rewriting (result of the
division of F6) is not equal to zero. Therefore, the circuit
is buggy. The generated remainder consists of two parts.
The first part 4a1 + 4b1 − 8a1b1 = 4 × (a1 + b1 − 2a1b1)
is composed of three monomials which originate from the
difference in the buggy and correct gate polynomials at gate g4
(see Fig. 1a and Fig. 1b): Pbuggy−Pcorrect = POR−PAND =
a1 + b1 − 2a1b1. However, the second part of the remainder
−4(a1 + b1 − 2a1b1)a0b0 (shown in the dashed box) is a
part of vanishing monomial propagated to the remainder due
to the bug presence. If we apply the approach from [16] to
the just discussed example it fails. The reason is that for the
vanishing monomials there will be no counterpart monomials
when executing the forward rewriting and backward rewriting
as presented in [16]. Furthermore, also the SCA-based method
from [17] fails. This method extracts the difference polynomial
per gate and compares it with the remainder. However, this is
not possible if a vanishing monomial appears. Finally, note that
all experiments in both papers only consider simple adder and
multiplier architectures, i.e. carry save adders are used and
hence no vanishing monomials occurs.

2) Blow-up during Verification of Buggy Circuits: If there
is a bug close to POs of a large arithmetic circuit, a blow-up
happens in the number of monomials during backward rewrit-
ing and hence the SCA-based verification method fails. The
reason is that a buggy gate adds several monomials, i.e. the
difference between buggy and correct gate polynomials, to
the process of backward rewriting. Despite other monomials,
these monomials do not cancel and grow exponentially in the
subsequent steps of the division when moving towards the
inputs.

To overcome these limitations, we take advantage of both
SAT and SCA in our approach. An overview is presented in
the next section.

C. Overview of Proposed Method
Algorithm 1 shows the pseudo-code of our proposed ap-

proach. Before we go into the details, it can be seen that our
approach consists of three phases: Verification, Localization,
and Fixing. In each phase we employ SAT and SCA for
individual subtasks as both have pros and cons. We explain
the underlying decisions wrt. the chosen method. We provide
a summary up-front in Table I. The first column gives the
name of the phase. The second column shows the subtask, if
applicable. The third column distinguishes per phase/subtask
between SCA and SAT. The fourth to seventh column defines
whether the circuit is bug-free or not. In case of a bug, we
subdivide the circuit into three regions: I, II, III which just
defines the depth of the bug seen from the inputs (so III
means a deep bug near to the POs). Note that ’+’ means
that the respective method gives a result, and ’-’ that it fails.
Finally, in the rightmost column we show the conclusion that
can be drawn; which also has been finally implemented in
our approach. In the following sections we describe now each
phase in more detail.

D. Phase 1: Verification
The first phase of our proposed approach is verification (see

Line 1 – Line 2 in Algorithm 1). For a complex gate level
arithmetic circuit we want to determine whether the circuit
is correct or not. As already explained in the introduction
and confirmed later in the experiments in Section V, we can
observe that SAT is very fast in disproving, i.e. to show that the
circuit is buggy. However, SAT fails (time out) when the circuit
is correct. In contrast, SCA is one of the best approaches
for verifying a bug-free arithmetic circuit, especially when



TABLE I
APPLICABILITY OF SCA AND SAT IN DIFFERENT PHASES OF DEBUGGING

Phase Subtask Method
Bug level

ConclusionBug-free I II III

verification SCA + + - - Using SAT and SCA in parallel (SAT for buggy
SAT - + + + and SCA for correct circuits)

Localization

Extracting Initial Suspicious Gates SCA + - - Using SATSAT + + +

Generating Test-vectors SCA + - - Using SATSAT + + +

Refining Suspicious Gates SCA ++ ++ ++ Using SCA because it is fasterSAT + + +

Fixing SCA +/+* +/- +/- Using SAT and SCA in parallel (SAT when fix does not
(correct fix/incorrect fix) SAT -/+ -/+ -/+ work and SCA for proving correctness)

+: Applicable ++: Applicable and fast -: Not applicable
*The sign before the slash (after the slash) describes the applicability of the method when the fix at the candidate location is correct (incorrect).

Algorithm 1 Proposed method for Debugging and Fixing
Input: Arithmetic circuit C, Golden circuit CG

Output: Correct circuit
1: VerifyWithParallelSAT SCA (C,CG) . Verification
2: if C is bug-free then return C
3: else
4: SG← ExtractSGWithSAT (C, CG) . Localization
5: i← 0; v ← ∅
6: while Size(SG) > 1 and i < 10 do
7: v ← GenerateTestvectorWithSAT (C, CG, v)
8: CX ← InsertXOR (C, SG, v)
9: SG← RefineSGWithSCA(CX )

10: if SG has not changed then i← i + 1
11: else i← 0
12: end if
13: end while
14: CF ← FixWithParallelSAT SCA (C, CG, SG) . Fixing
15: end if
16: return CF

advanced rewriting techniques are employed, for instance
XOR-rewriting and common-rewriting [9], [10].

Nevertheless, its performance is poor when there is a bug
close to the POs (see previous discussion in Section IV-B). In
order to take advantages of both SAT and SCA, we run them
in parallel in our approach. When we obtain a result from one
of the methods, we terminate the other one. As a result, buggy
and bug-free circuits can be verified in acceptable time.
E. Phase 2: Localization

The second phase of our proposed method is localization
(see Line 4 – Line 13 in Algorithm 1). The goal of this phase is
to extract candidates for the location of the bug in the circuit.
In the first step of localization, an initial list of suspicious
buggy gates are extracted (Line 4). Next, a test-vector is
generated for the buggy circuit (Line 7). Subsequently, XOR
gates are inserted just after each suspicious gate and the test-
vector is applied to the primary inputs (PIs) (Line 8). Finally,
the list of suspicious gates is refined by backward rewriting
and evaluating remainder (Line 9). This process continues
iteratively until the size of the set of suspicious gates SG
reduces to 1 or the SG does not change after 10 iterations. In
following we detail each step and explain for which subtask
we employ which method, i.e. SCA or SAT (remember to see
also Table I for a summary).

1) Extracting Initial Suspicious Gates: Complex arithmetic
circuits usually consist of many logical gates. Therefore, if
there is a bug in the circuit, the size of the search space (i.e. the
number of suspicious gates) will be large (number of gates).
Thus, a pre-process to reduce the size of the search space is
essential. To this end, the following method is proposed:

1) Use formal to identify outputs which are affected by the
bug (i.e. there is an input vector such that the golden
and buggy circuit differ)

2) Create cones for these outputs based on the gates which
are connected

3) Determine the gates that are in the intersection of all
cones; they form the initial set of suspicious gates

This task can be mapped to a MITER circuit for each output
bit. In different studies (not reported) we observed that SAT
performed very well and an SCA-based solution only gave
results for bugs in the circuit region I, i.e. bugs near to the
PIs.

Coming back to the 2-bit adder example in Fig. 1b. The
only affected output is Z2. The cone for Z2 is C2 =
{g1, g2, g4, g5, g6}, which is also the initial suspicious gates
list. Please note that if there are more than one affected
output, then the intersection of output cones creates the initial
suspicious gate list.

2) Generating Test-vectors: After the verification of the
arithmetic circuit, a counter-example is available from the
SAT-solver (SAT-solver result from Phase 1: Verification). This
counter-example can be used as the initial test-vector because
it presents the input values resulting in a “wrong” output value.
However, we usually need more test-vectors to localize the bug
in the design. To this end, we use blocking clauses and run
the SAT-solver again to obtain a new test-vector.

3) Insertion of XORs: The faulty gate in the circuit is
among the gates in the set of suspicious gates SG. Assume that
t is a generated test-vector which exhibits the fault. Then, the
bug has been activated in the circuit by t. In other words, the
faulty gate has generated a “wrong” value at its output which
is the negation of the correct gate value – this assumption is
valid, since we consider the gate misplacement fault model.
This “wrong” value is propagated through gates in the output
cone of the faulty gate, and leads to the “wrong” value at
the PO(s) of the circuit. Changing the output value of the
faulty gate results in the correct value at the output of the
circuit. Hence, the problem can be formulated as finding gates
where negating their outputs corrects the final result. As the
XOR gate fulfills this property, we use it as follows: Assume
that g1, . . . , gn are the suspicious gates, and t is a test-vector.
We apply t to the primary inputs of the circuit, and insert
x1, . . . , xn which are XOR gates just after the suspicious
gates. One of the inputs of each XOR gate is connected to the
output of the each suspicious gate, and the other XOR input
becomes a new free input. We name all these inputs s1, . . . , sn
and call them selectors in the following. The problem is now
to find a selector by setting it to 1 (all other to 0), such that
the final output of the circuit becomes correct.

Consider again the buggy 2-bit adder circuit in Fig. 1b. Re-
call that the initial set of suspicious gates is {g1, g2, g4, g5, g6}.
If t1 = 1000 (i.e. a1 = 1, b1 = 0, a0 = 0, b0 = 0) is a
test-vector, the new circuit after applying t1 to the PIs and
inserting XOR gates just after each suspicious gate can be
seen in Fig. 1c.

4) Refining Suspicious Gates: To goal of this subtask is
to refine the set of suspicious gates SG. In the following
we give an SCA-based method for this subtask, since it is
faster than the SAT-based formulation (empirically shown in
the experiments).



Based on the given test-vector t, we recompute the speci-
fication polynomial as follows: We have now concrete input
values from t which are applied to the original specification
polynomial. Please note that the input of the new circuit
(current problem instance) are only the selectors. The gate
polynomials of the buggy 2-bit adder with the previously
inserted XORs and the test-vector t1 = 1000 are:

x5 := Z2 − s5 − p5 + 2s5p5

g1 := p5 − w1 − w4 + w1w4

x4 := w4 − s4 − p4 + 2s4p4

g2 := p4 − w2w3

g3 := Z1 − w2 − w3 + 2w2w3

x1 := w1 − s1 − p1 + 2s1p1

x2 := w2 − s2 − p2 + 2s2p2

x3 := w3 − s3 − p3 + 2s3p3

g4 := p1 − 1

g5 := p2 − 1

g6 := p3 − 0

g7 := Z0 − 0

(8)

Now, backward rewriting is performed. The resulting re-
mainder is different from 0 and only depends on the selector
variables. Before showing backward rewriting for the concrete
example, two important points should be noticed: 1) the terms
containing sm×sn (i.e. multiplication of selectors) are reduced
to 0 during backward rewriting, because only one of the
selectors should be equal to 1; 2) due to the fact that we are
dealing with a 2-bit adder, the specification polynomial and
subsequently all the polynomials during backward rewriting
should be modulo 22+1, because the maximum output size
for addition of two n-bit numbers gives n+ 1 bits.

For our running example we get:
F

x5−−→ F1 := 4s5 + 4p5 + 2z1 + z0 − 2

F1
g1−−→ F2 := 4s5 + 4w1 + 4w4 − 4w1w4 + 2z1 + z0 − 2

...

F10
g6−−→ F11 := 4s1 − 2s2 − 2s3 + 4s5 + z0 + 4

F11
g7−−→ r := 4s1 − 2s2 − 2s3 + 4s5 + 4 (9)

To correct the 2-bit adder circuit, the remainder 4s1−2s2−
2s3+4s5+4 should become 0. So, we should find all possible
combinations for the selectors (one-hot encoding) such that
r = 0. We get:

s1 = 1, s2 = 0, s3 = 0, s4 = 0, s5 = 0 =⇒ r=8 mod 8 = 0

s1 = 0, s2 = 1, s3 = 0, s4 = 0, s5 = 0 =⇒ r = 2

s1 = 0, s2 = 0, s3 = 1, s4 = 0, s5 = 0 =⇒ r = 2

s1 = 0, s2 = 0, s3 = 0, s4 = 1, s5 = 0 =⇒ r = 4

s1 = 0, s2 = 0, s3 = 0, s4 = 0, s5 = 1 =⇒ r=8 mod 8 = 0
(10)

As can be seen, when setting s1 or s5 to 1, the remainder be-
comes 0. Hence, the suspicious gates list is reduced to {g4, g1}
whose outputs are connected to x1 and x5, respectively. In
the next iteration, XOR gates are inserted only after these
two suspicious gates, and another test-vector is applied to PIs
and suspicious gates are refined. Nevertheless, in this concrete
example the suspicious gates list cannot be further reduced
even after applying all test-vectors. In large arithmetic circuits,
the number of test-vectors are extremely large. Therefore, in
order to avoid repeating subtasks 2, 3, and 4 for all existing
test-vectors, we use a termination criteria of 10 iterations for
the while-loop in Algorithm 1. In other words, if the size of
suspicious gates list does not change after 10 iterations, then
the suspicious gates list is sent to fixing phase.

F. Phase 3: Fixing
The final phase of our proposed method is Fixing (see

Line 14 – Line 16 in Algorithm 1). Based on the extracted
candidates in the bug localization phase, we can create a list
of potential gate replacements. For example, if we assume that
the used library for creating arithmetic circuits consists of the
basic logical gates {AND,OR,XOR,NOT}, then there are
two possible gate replacements for each candidate. To find the
correct gate replacement, we first choose one of the changes

from the list, and apply it to the circuit. Then, we perform
parallel verification using SCA and SAT (see Section IV-D).
Therefore, after gate replacement, if the circuit is still buggy
the SAT-based verification returns a counter-example and we
continue with the next possible replacement. Otherwise, if the
circuit can be fixed with the current gate replacement, the
SCA-based verification successfully proves this.

Considering again the running 2-bit buggy adder example
of Fig. 1b, from the localization phase we know that g4 and g1
are the final suspicious gates. The corresponding list of gate
replacements which may fix the bug is therefore {g4(OR)→
g4(XOR), g4(OR) → g4(AND), g1(OR) →
g1(XOR), g1(OR) → g1(AND)}. First, g4 is converted
to an XOR gate, and the circuit is verified. Because the
circuit is still buggy, a counter-example is returned. When
applying the second change and verifying the circuit, the final
remainder of SCA-based verification becomes 0 and hence
we have found the fix.

V. EXPERIMENTAL RESULTS

We have implemented our approach in C++. For SCA we
implemented Gröbner basis reduction including the rewriting
techniques proposed in [9]. The experiments have been carried
out on an Intel(R) Core(TM) i5-4300M CPU 2.60 GHz with 16
GByte of main memory. In order to evaluate the efficiency of
our combined SCA and SAT approach, we consider different
complex multiplier architectures generated by the Arithmetic
Module Generator [22]. These multipliers are in the form
of RTL Verilog code. Thus, we run Yosys [23] (commands:
read verilog; proc; opt; write verilog) to synthesize them to
a gate-level netlist. The generated multipliers consist of three
stages: 1st) Partial Product Generator (PPG), 2nd) Partial
Product Accumulator (PPA) which is a multi-operand adder,
and 3rd) Final Stage Adder (FSA) which is a two-operand
adder. All the benchmarks are named based on the type of
the used architecture in the different stages (this includes for
instance Booth encoding and Carry look-ahead adders in the
respective stages); see details in the legend below the result
table later. We also used MiniSat v1.14 [24] for SAT-solving
in our experiments.

In Table II, we report the results of applying debugging
methods to different types of multipliers. Please note that the
Time-Out (TO) has been set to 24 hours. The first column of
Table II shows the type of the multiplier (see below the table
for the abbreviations). The second column I/O bits gives the
number of input and output bits. The third column Bug lists
whether the circuit is bug-free, or the stage where the bug has
been inserted randomly.

The results of the verification phase are reported in the
fourth column Verification, which consists of the five fol-
lowing subcolumns: While SCA and SAT refer to our SCA-
implementation and MiniSat, respectively, Comm. reports the
results of the commercial formal verification tool OneSpin.
Next, our integrated approach is given in subcolumn Ours,
and finally Imp. presents the improvement of our approach
compared to the commercial tool. As can be seen pure SCA-
based verification only works when there is no bug in the
circuit or the bug is in the first stage (i.e. PPG) of the design.
In contrast, pure SAT-based verification times-out for bug-free
circuits already for the multipliers with only 16/32 I/O bits.
The commercial tool also times-out for bug-free multipliers
bigger than 16/32 I/O bits. In contrast, our integrated verifi-
cation method (Section IV-D) can verify bug-free multipliers,
and also buggy circuits when the bug is in any stage of the
design. Our verification method is up to 641 times faster than
the commercial tool.



TABLE II
RESULTS OF DEBUGGING DIFFERENT TYPES OF MULTIPLIERS (RUN-TIMES IN SECONDS)

Benchmark
I/O Bug

Verification Localization Fixing Overall SOTA
post-synth. SCA SAT Comm. Ours Imp. SAT [11] Ours Imp. SCA SAT Ours Ours [16] [17]

BP-CT-BK 16/32*

Bug-free 0.29 TO 218.00 0.34 641.18x 0.3
Stage 1 0.31 0.03 0.06 0.03 2.00x 13.1 5.0 2.62x 0.66 TO 0.44 5.5 F F
Stage 2 TO 0.02 0.05 0.02 2.50x 14.9 3.7 4.03x TO TO 0.41 4.1 F F
Stage 3 TO 0.03 0.07 0.03 2.33x 10.7 3.6 2.97x TO TO 0.46 4.1 F F

SP-WT-CL 32/64

Bug-free 9.09 TO TO 10.70 - 10.7
Stage 1 10.42 0.20 0.38 0.22 1.73x 115.6 61.5 1.88x 19.51 TO 10.95 72.7 F F
Stage 2 TO 0.16 0.41 0.20 2.05x 1208.0 108.5 11.13x TO TO 11.10 119.8 F F
Stage 3 TO 0.12 0.35 0.14 2.50x 165.4 40.1 4.12x TO TO 10.87 51.1 F F

BP-AR-RC 32/64

Bug-free 3.79 TO TO 4.54 - 4.5
Stage 1 4.37 0.14 0.24 0.15 1.60x 208.7 37.7 5.54x 8.29 TO 4.63 42.5 F F
Stage 2 TO 0.10 0.31 0.13 2.38x 89.3 25.7 3.47x TO TO 4.93 30.8 F F
Stage 3 TO 0.08 0.30 0.09 3.33x 60.8 24.7 2.46x TO TO 4.81 29.6 F F

BP-WT-CL 32/64

Bug-free 11.59 TO TO 13.84 - 13.8
Stage 1 12.51 0.08 0.23 0.08 2.87x 291.2 67.5 4.31x 24.23 TO 13.93 81.5 F F
Stage 2 TO 0.11 0.27 0.12 2.25x 228.2 105.3 2.17x TO TO 14.20 119.6 F F
Stage 3 TO 0.45 0.32 0.56 0.57x 148.1 43.7 3.39x TO TO 15.66 59.9 F F

SP-WT-CL 64/128

Bug-free 161.78 TO TO 192.14 - 192.1
Stage 1 184.30 1.14 12.66 1.22 10.38x 1107.4 343.3 3.23x 348.48 TO 193.52 538.0 F F
Stage 2 TO 3.86 77.00 4.14 18.60x 1745.6 250.6 6.97x TO TO 212.84 467.6 F F
Stage 3 TO 0.57 4.46 0.63 7.08x 1047.9 518.5 2.02x TO TO 192.78 711.9 F F

SP-CT-BK 64/128

Bug-free 67.04 TO TO 79.24 - 79.2
Stage 1 73.30 1.79 42.47 1.91 22.24x 1192.3 704.3 1.69x 140.94 TO 81.25 787.5 F F
Stage 2 TO 0.42 22.05 0.46 47.93x 677.7 265.6 2.55x TO TO 79.73 345.8 F F
Stage 3 TO 0.88 9.56 0.94 10.17x 3612.0 349.8 10.33x TO TO 80.31 431.1 F F

BP-WT-CL 64/128

Bug-free 226.65 TO TO 271.93 - 271.9
Stage 1 255.82 0.94 2.05 0.99 2.07x 1323.1 388.0 3.41x 489.47 TO 274.90 663.9 F F
Stage 2 TO 0.43 2.61 0.53 4.92x 1669.0 514.5 3.24x TO TO 272.99 788.0 F F
Stage 3 TO 2.28 14.85 2.40 6.19x 698.6 241.1 2.90x TO TO 274.44 517.9 F F

Stage 1 ⇒ SP: Simple partial product generator BP: Booth partial product generator TO: Time-Out F: Failed
Stage 2 ⇒ AR: Array WT: Wallace tree CT: Compressor tree *Due to page limitation we only report results
Stage 3 ⇒ RC: Ripple carry adder CL: Carry look-ahead adder BK: Brent-kung adder for one 16/32 I/O bits complex multiplier.

The fifth column Localization shows the run-times of the
localization phase. We have compared our method against
SAT-based localization [11]. While SAT-based localization
is able to compute the set of fault candidates for all three
stages, our method is faster on all benchmarks. The respective
improvement is listed in the third subcolumn. As can be seen
we achieve improvements of up to a factor of 11.

The experimental results for the fixing phase are reported
in the sixth column Fixing. As can be seen, the pure SCA-
based fixing method is only able to fix bugs in the first stage
(PPG) of the multiplier. SAT-based fixing fails for all the cases
because when a correct gate replacement is considered, this
method cannot verify the bug-free circuit. The experimental
results confirm that our fixing method can fix the bugs in any
stage of the design.

The overall run-time of our proposed method is reported in
the seventh column Overall. It gives the sum of the run-times
of each phase, i.e. verification, localization, and fixing.

The eighth column shows the results using the State-Of-The-
Art (SOTA) SCA-based methods [16] and [17]. However, both
methods fail to debug the considered complex multipliers due
to appearance of vanishing monomials in the final remainder
(see discussion and example in Section IV-B).

A final remark on the relevance of vanishing monomials
for the considered multiplier architectures: On average when
running our proposed approach for the benchmarks 135,498
vanishing monomials have been canceled during the divisions.
This number has been calculated running the complete flow,
i.e. all three phases per benchmark.

VI. CONCLUSION

In this paper, we have introduced a novel approach based
on the combination of SCA and SAT for automatic debugging
and fixing complex arithmetic circuits. The proposed approach
consists of three phases. First, the arithmetic circuit is verified.
Then, a list of candidates for the location of the bug is
extracted. Finally, the design is fixed. The experimental results

showed that our approach allows for debugging and fixing
of complex arithmetic circuits while other state-of-the-arts
methods fail.

REFERENCES
[1] D. Stoffel and W. Kunz, “Equivalence checking of arithmetic circuits on the arithmetic

bit level,” TCAD, vol. 23, no. 5, pp. 586–597, 2004.
[2] E. Pavlenko, M. Wedler, D. Stoffel, O. Wienand, E. Karibaev, and W. Kunz, “Model-

ing of custom-designed arithmetic components in ABL normalization,” in FDL, 2008,
pp. 124–129.

[3] S. Vasudevan, V. Viswanath, R. W. Sumners, and J. A. Abraham, “Automatic verifica-
tion of arithmetic circuits in rtl using stepwise refinement of term rewriting systems,”
TC, vol. 56, no. 10, pp. 1401–1414, 2007.

[4] D. Kapur and M. Subramaniam, “Mechanical verification of adder circuits using
rewrite rule laboratory,” Formal Methods in System Design: An International Journal,
vol. 13, no. 2, pp. 127–158, 1998.

[5] J. Lv, P. Kalla, and F. Enescu, “Efficient Gröbner basis reductions for formal verifica-
tion of Galois field multipliers,” in DATE, 2012, pp. 899–904.

[6] ——, “Efficient Gröbner basis reductions for formal verification of Galois field
arithmetic circuits,” TCAD, vol. 32, no. 9, pp. 1409–1420, Sept 2013.

[7] F. Farahmandi and B. Alizadeh, “Gröbner basis based formal verification of large
arithmetic circuits using gaussian elimination and cone-based polynomial extraction,”
MICPRO, vol. 39, no. 2, pp. 83–96, 2015.

[8] M. Ciesielski, C. Yu, D. Liu, W. Brown, and A. Rossi, “Verification of gate-level
arithmetic circuits by function extraction,” in DAC, 2015, pp. 52:1–52:6.

[9] A. Sayed-Ahmed, D. Große, U. Kühne, M. Soeken, and R. Drechsler, “Formal
verification of integer multipliers by combining Gröbner basis with logic reduction,”
in DATE, 2016, pp. 1048–1053.

[10] D. Ritirc, A. Biere, and M. Kauers, “Column-wise verification of multipliers using
computer algebra,” in FMCAD, 2017.

[11] A. Smith, A. G. Veneris, and A. Viglas, “Design diagnosis using boolean satisfiabil-
ity,” in ASP-DAC, 2004, pp. 218–223.

[12] B. Le, H. Mangassarian, B. Keng, and A. G. Veneris, “Non-solution implications using
reverse domination in a modern SAT-based debugging environment,” in DATE, 2012,
pp. 629–634.

[13] B. Keng and A. G. Veneris, “Path-directed abstraction and refinement for SAT-based
design debugging,” TCAD, vol. 32, no. 10, pp. 1609–1622, 2013.

[14] A. M. Gharehbaghi and M. Fujita, “A new approach for debugging logic circuits
without explicitly debugging their functionality,” in ATS, 2016, pp. 31–36.

[15] H. Riener and G. Fey, “Exact diagnosis using boolean satisfiability,” in ICCAD, 2016.
[16] S. Ghandali, C. Yu, D. Liu, W. Brown, and M. Ciesielski, “Logic debugging of

arithmetic circuits,” in ISVLSI, 2015, pp. 113–118.
[17] F. Farahmandi and P. Mishra, “Automated test generation for debugging arithmetic

circuits,” in DATE, 2016, pp. 1351–1356.
[18] ——, “Automated debugging of arithmetic circuits using incremental gröbner basis

reduction,” in ICCD, 2017, pp. 1–6.
[19] D. A. Cox, J. Little, and D. O’Shea, Ideals Varieties and Algorithms. Springer, 1997.
[20] W. W. Adams and P. Loustaunau, An Introduction to Grobner Bases. American

Mathematical Society, 1994.
[21] A. Veneris and I. N. Hajj, “Design error diagnosis and correction via test vector

simulation,” TCAD, vol. 18, no. 12, pp. 1803–1816, 1999.
[22] “Arithmetic module generator based on acg,” available at www.aoki.ecei.tohoku.ac.

jp/arith/, 2015.
[23] C. Wolf, “Yosys open synthesis suit,” available at http://www.clifford.at/yosys/, 2015.
[24] N. Eén and N. Sörensson, “Minisat,” available at http://minisat.se/, 2008.


