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Abstract—The increase in digital circuit complexity not only
stems from sophisticated functionality, but also from power
concerns. Power concerns are addressed via the realization of
power intent (the specification for power). Unlike functional
specifications, power intent is generally implicit within an initial
ESL Prototype. For power intent to become explicit, it needs
to be expressed in terms of Power Management parameters.
These parameters are major indicators of the efforts involved
in realizing the power intent.

We introduce an automated method to extract two Power
Management parameters (number of Control Signals and Power
Modes) from ESL prototypes. These parameters are extracted
in a two-step process. First, relevant structural and behavioral
information of the prototype is retrieved and translated into an
activity profile. Following this, an analysis is performed on the
activity profile to extract the power management parameters.
The effectiveness and efficiency of the method is demonstrated
by its application on several ESL benchmarks.

I. INTRODUCTION

The influence of power concerns has grown to such an
extent that Design Space Exploration (DSE) at system level
is now heavily based on power/performance tradeoff [1]. The
architectural choices need to comply with a power budget as
well as with the functional requirements, without increasing
the complexity. One way to approach the challenge posed by
above scenario is through Power Aware Design, which is a set
of methodologies to fully incorporate power concerns into the
design workflow [2].

At the Electronic System Level (ESL), development is
usually done on a SystemC-based Virtual Prototype (VP) [3].
A VP is basically a simulatable model of the described digital
hardware, which allows for an estimation of the impact of
possible design options arising from the DSE process. Within
these design options there are usually different approaches to
manage the power concerns.

It has been shown that reducing the power consumption
of a SoC (to meet the power budget) is easier to achieve at
higher levels of abstraction during initial design phases [4].
Hence, ESL is a natural choice for the evaluation of different
approaches to manage the power concerns. However, the
traditional workflow at the ESL is functionality based, so an
updated power aware workflow is needed.
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Customarily, the DSE process focuses on how power con-
cerns impact an initial functionality focused VP [5], [6].
However, initial functionality also impacts the way power
concerns should be managed. The extent and characteristics of
this latter impact are, unfortunately, implicit within the initial
VP. The power intent (the specification for power) is the means
by which this impact is made explicit.

More precisely, power intent has been referred to as describ-
ing “the partitioning of a design into power domains” as well
as “the control signals that are used to control these power
domains” [7]. Thus, knowing these elements (power domains,
control signals), plays an important role in the architecture
realizing the power intent [8].

The number of Control Signals (CS) and the number of
Power Modes (PM) are the most descriptive power man-
agement parameters. The former control the power domains
(to perform clock/power gating or voltage switching, among
others). The latter indicate the finite states of the system,
(e.g. Normal Mode, Performance Mode, Initialization Mode,
Idle Mode and etc.).

The number of CS and PM typically define the Power
Management Unit (PMU), which realizes the power intent
by managing the switching of the power domains into dif-
ferent states to reach the desired power modes. The PMU
itself is commonly specified following the Unified Power
Format (UPF) standard [9], which offers fully synthesizable
semantics for the power management logic. Therefore the
aforementioned parameters allow designers to estimate the
effort required for the realization of the power intent. To
estimate the effect of realizing the power intent, two main
challenges must be overcome:

o revealing the implicit impact of the VP functionality on

the power intent and

« estimating the effort required to realize the power intent

via the PMU.
The first challenge is addressed by the process of Design Un-
derstanding. The second challenge is overcome by extracting
the power management parameters which have a direct impact
on both the PMU power overhead [10], [11] and the time and
effort that PMU verification will require [12], [13], [14].

In this paper, we present an automated, non-intrusive
method to extract the aforementioned power management
parameters. The method comprises two steps. In the first step,
we take advantage of the GNU Debugger (GDB) to extract the
run-time behavior of the VP and translate it into an activity
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Fig. 1: Flow of the proposed method

profile. In the second step, to make the implicit impact of
functionality on power concerns actually explicit, the activity
profile produced in the first step are analyzed to extract the
number of CS and PM, which will be used for the PMU.

The remainder of the paper is structured as follows. Sec-
tion II briefly discusses the basis for the challenges. Section III
presents the two steps of our method, while Section IV shows
the results of applying the proposed method on several ESL
prototypes. Section V concludes the paper.

II. PRELIMINARIES

At the ESL, the de facto VP modeling language is SystemC
(in essence, a library of classes on top of C++), which
allows the simulation of concurrent events. In addition to
being modeled using SystemC [15], VPs are typically created
(but not always) following Transaction-Level Modeling (TLM)
approach [16]. Regardless of the possible use of TLM, the
inspection of VPs requires a design understanding process to
be conducted on the VP code.

The static and dynamic information of a VP is revealed by
the way its various components have been brought together.
Both the static and dynamic facts of a prototype and their
relation can be condensed into an activity profile. Although,
the activity profile represents the complete structure of a given
VP, it does not provide the designers with relevant information
to unveil the power intent. To unveil the power intent, there
is the need of tools that appropriately parse the VP to extract
power management parameters defining such power intent.

Since the power intent is usually realized through a Power
Management Unit (PMU), the power management parameters
specify the PMU’s structure. These parameters are the number
of Control Signals (CS) and Power Modes (PM) and they are
the major indicators of the required effort to realize they power
intent. It is therefore extremely convenient to extract these
parameters from the VP as early as possible.

Given the convenience derived from knowing the aforemen-
tioned power management parameters, we present a method
to extract them from ESL prototypes in an efficient automated
manner. With our method, power intent is unveiled early in
the design process. Additionally the realization efforts of the
power intent become discernible.

III. THE PROPOSED METHOD

As illustrated in Fig. 1, the proposed method consists of
two steps:

1) generating activity profile from VP design’s simulation
log using GDB and

2) extracting the power management parameters (CS and
PM) by analyzing the generated activity profile.

In the following, each step of the proposed method is
explained in detail and illustrated using a motivating example
Pipe design [3]. The Pipe example is (as it name suggest) a
simple pipelined System C VP with three stages performing
successive algebraic operations (addition, subtraction, division,
exponentiation) on a self generated input. It contains four
modules (numgen, stagel, stage2, stage3) with the
latter three (stagel, stage?2 and stage3) computing the
mathematical operations on the input generated by the former (
numgen). For a closer look at the design, the reader is referred
to Fig. 2, which shows a part of the code for its structure.

A. Extracting Activity Profile

In order to extract the activity profile, we take advantage
of GDB to access the run-time behavior of a given VP
model. This first step is shown in the top part of Fig. 1.
It consists of two input blocks (SystemC VP) and Debug
Symbols), one control file (GDB Script), one application
(GDB) and three output files (Run-time Log, Activity
Diagram and Activity Profile). Our analysis in this
step is inspired by the design understanding approach in [17],
but unlike it, we do not retrieve the whole state of variables
or transactions in the VP, as it is not necessary.

Rather, we program GDB to only retrieve and log the
functions’ activity of all modules’ instances. To do this, we
first analyze the debug symbols (seen on the left of Fig. 1) of
the model to retrieve the static information. This information
includes the modules’ name and their corresponding member
functions and methods. We use this information to program the
debugger (creating a script command file for GDB) in order
to trace its functions’ activities at run-time. This is depicted
in Fig. 1 by the blocks GDB Script and GDB.

The tracing process is performed by setting breakpoints at
the beginning of each module’s function in the DB script file.
During execution of the SystemC VP (represented in Fig. 1) by
the uppermost block of the same name whenever the function
is activated, its corresponding breakpoint stops the execution
and the state of execution (e.g. the root and instance name of
modules that this function belongs to) is logged in the run-
time Log file, which is represented in Fig. 1 by the block of
the same at the right hand side.

Execution is continued and as the next breakpoints are hit,
vast amount of information is extracted. After the execution
of the VP model is completed and the run-time Log file is
generated, it is then translated into a structural model, the
Activity Profile (represented in Fig. 1) by the right hand
side block of the same name), where activities of modules’
functions are presented with regards to the simulation time.



struct stagel
Y2
void stagel::addsub () {
double a, b;
a = inl.read();
b = in2.read();
sum.write (a+b);
diff.write(a-b); }
struct stage2 : sc_module {

: sc_module {
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w0 //...

11 struct stage3 : sc_module {
12 /).

13 void stage3::power () {

14 double a, b, c;

15 a = prod.read();

16 b = quot.read();

17 c = (a>0 && b>0)? pow(a, b) : 0.0;
18 powr.write(c); }

19 struct numgen : sc_module {
20 //...

21 void numgen::generate () {
22 static double a = 134.56;
23 static double b = 98.24;
24 a —=1.5;

25 b -= 2.8;

26 outl.write(a);

27 out2.write(b); }

28 //...

Fig. 2: Part of Pipe design implemented in SystemC

Formally, the function’s activity (FA) of a module in the
Activity Profile is defined as follows:
Definition: FA = (M, I, F,T) in which:

o T is a list of discrete timestamps from 0 to the end of
the execution time of the prototype,

e M is the root name of the module,

o [ is the instance name (or number) of module M and

o I'is the function of the module M being executed.

Finally, to give a better overview of the designs’ behavior,
an activity diagram (rightmost block in Fig. 1) of the entire
system is also generated from Run-time Log.

Fig. 3 and Fig. 4 shows a portion of the activity profile
and diagram of the Pipe design (motivating example), using
the default workload scenario (which provides full functional
coverage), respectively. In Fig. 3, the extracted information is
presented based on set of sequence numbers. Each sequence
includes the information related to the function of module’s
instance that is activated during execution run followed by
name of module and function, instance number of module
and the simulation time stamp. In Fig. 4, the ST and Name
axis show the execution time (simulation time stamps) and
the name active components (including function’s name and
its module’s root and instance number), respectively. As an
instance, it shows that function power of module stage3
with instance number 0x7fffd62 is only activated at the
period of [1000, 2000] and [3000, 4000] during the execution.

Please note that, the activity profile is generated based on
each functionality of the design. The term functionality refers
to the tasks that a given ESL design is supposed to perform.
For example, the entire Pipe design has only one functionality.
It receives the inputs and performs three stages computation
to obtain the final result.

1 Seg-0: [sc_main, NULL, Ons]

2 Seg-1: [numgen::generate, 0x7ff£fd0, Ons]

3 Seg-2: [stagel::addsub, 0x7fffd10’, Ons]

4

5 [stage3::power, '0x7fffd62, 1000ns]
6

Seq-4:
Fig. 3: Part of generated Pipe design’s activity profile

B. Power management parameter (CS,PM) extraction

In this step, the Activity Profile is analyzed via the Dynamic
Analysis block in the lowest half of (Fig. 1, step 2) to extract
the power management parameters (number of CS and PM).
To extract the number of PM, an unique time-based pattern
identification is performed within the activity profile. To obtain
the number of CS, the number of coinciding modules per
identified pattern is retrieved. There are then two algorithms
which we explain in the next paragraphs.In this explanation
we read and refer to the elements of the activity profile on
a module basis (instead of on a function basis) for simplicity
purposes, as there is only one function per module.

To extract the number of PM, the principle guiding the
analysis is unique pattern identification. Looking at the activity
profile in Fig. 4, we notice two distinct and unique time-based
patterns. As mentioned in the previous step, the activity profile
reveals patterns of activity for the modules. As an instance,
we can see in Fig. 4 that modules stagel, stage2 and
numgen share the same active/inactive periods. We name this
pattern PM1. However, stage3 has different activity periods,
starting from simulation time 1000. We name this pattern PM2.

To extract the number of CS, the number of coinciding
modules per identified PM pattern is retrieved. For this re-
trieval, the underlying assumption is that a module is either
active or inactive at any given timestamp. If any two modules
are simultaneously active (or inactive) for each and every
identified time-based pattern, then they can be controlled by
the same CS. From the inspection of Fig. 4, we see that
stage2, stagel and numgen are active for PM1, but not
for PM2. These modules shall be controlled by CS1. Module
Stage3 is active for PM1 and inactive for PM2, which means
it shall be controlled by a different CS (CS2).

The result of applying the algorithm for both CS and PM is
visible in the outer Y and X axis of Fig. 4, respectively. The
parameters CS1 and CS2 are depicted as governing stage3 and
stage2, stagel and numgen, respectively. At timestamp 0, the
PM (shown under the timestamp in the X axis) is PM1, with
stage2, stagel and numgen being active and stage3
inactive. This PM is reached when CS1 is on and CS2 is off.

At timestamp 1000 and at intervals of 2000 units of time
thereafter, the PM is PM2, for which only stage3 is active
(which means that CS1 is off and CS2 is on). At timestamp
2000 and at intervals of 2000 units of time thereafter, the PM
is again PM1. The overall repeating pattern shown in Fig. 4
is repeated throughout the entire execution. Please note that
we eliminate sc_main function form our analysis (since it is a
SystemC artifact and not a true synthesizable module of any
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Fig. 4: Part of the activity profile of the 3-stage Pipe example

given design), which reduces the number of CS retrieved and
simplifies the identification of PM.

A further reduction in the number of CS retrieved can
happen if the corresponding algorithm uses a threshold value
to assess whether modules coincide in each identified PM
pattern. Such a threshold allows for a strict or a lax application
of the process to assess coinciding modules per identified PM
pattern. In essence, when the threshold is O (strict application),
the algorithm will group certain modules under a single CS
only if those modules’ active or inactive status is the exact
same for all time stamps.

IV. EXPERIMENTAL EVALUATION

In this section we present the experimental evaluation
of our proposed method. First, the results of applying the
proposed method to several ESL prototypes are presented
in section IV-A. Second, to illustrate the benefits of the
method, the extracted power management parameters are used
to select the best alternative between two implementations of a
Hamming Encoding/Decoding system in section I'V-B. Finally,
we give briefly discuss the characteristics of the method based
on the obtained results in IV-C.

A. Results for ESL prototypes

Table I shows the experimental results of all case studies
(ESL prototypes). The first two columns list the type and name
of each ESL prototype, respectively. Column LoC presents the
prototypes’ lines of code. Column #Func shows the number
of functions that have been executed for each instance of a
module. Columns #CS and #PM list the number of extracted
control signals and power mode for each design, respectively.
The execution time of the proposed method is reported in
column ET including the extraction of the activity profile ET
(step 1), the extraction of the power management parameters
P2 (step 2) and total execution time T7otal of the method
(the sum of step 1 and step 2) Column CET shows the time
required for the standard compilation (done via GCC) and
execution of the ESL prototype without any of the method’s
steps being applied. In summary, Table I shows that for a
given ESL prototype the proposed method is able to extract
the power management parameters in a reasonable time frame
in comparison to CET. The extracted power management
parameters, together with the activity profile from which they
are extracted, effectively help designers estimate the effort
required for power intent realization of existing or third party
ESL Prototype during the early design phases.

B. Hamming Encoding/Decoding system prototypes: design
alternatives

In this section, we show how the proposed method can be
used for a task in Design Space Exploration task — selecting
the best (having the lowest realization effort) VP between two
alternatives with the same functionality. Both Hamming-comb
and Hamming-seq VPs provide designers with encoding/de-
coding for the (15,4) Hamming code. The difference is that
Hamming-seq is a sequential circuit, while Hamming-comb
is combinational. A part of generated activity diagrams of
both Hamming-seq and Hamming-comb are shown in Fig. 5
and Fig. 6, respectively. Comparing both diagrams shows that
the number of extracted functions and their activities during
execution are different in both VPs. This difference results
in different parameters (depicted in Table I) leading to two
distinct efforts to realize the power intent (i.e. the power
management parameters lead to two different PMUs).

We assume that a designer uses a PMU to realize the power
intent. In such a situation, the number of CS plays an important
role in the realization effort required. At a level like the ESL.
an extra two CS for a given prototype when compared to
another may not seem significant, but it is important as the
power intent is realized via the PMU. The reason for this is that
a Control Signal typically entails more Register Transfer Level
(RTL) management logic, which increases the area overhead
of the PMU, as well as making its verification more time
consuming. These factors underscore the impact that a modest
increase in number of Control Signals in an ESL prototype can
have on the efforts required to realize power intent.

C. Discussion

As our analysis depends on the complete activity of all
design’s functions, the testcases for each VP must provide high
functional coverage. We believe that this assumption is fair
due to the following reason. In practice, very often (functional)
coverage of a VP is measured to ensure that each functionality
has been exercised at least by one testcase. Essentially, high
coverage is an indicator showing the VP works properly. If the
coverage is initially insufficient, more tests need to be added,
either manually or by employing an automated test creator
(which is out of scope of this paper). The activity profile is
generated for each functionality of a design, meaning that we
consider every possible combination of functions’ activities
within the design. Thus, once the number of testcases reaches
this coverage, further increasing the number does not have an
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Fig. 6: Part of the activity profile for Hamming-comb
TABLE I: Experimental Results for all ESL prototypes
Type ESL Design LoC #Func #CS #PM ET (5) CET (s)
Stepl Step2 Total
3-stage Pipe! 211 4 2 2 39 0.1 4 35
Hamming-seq? 368 7 4 5 8 0.1 8.1 4.9
Hamming-comb3 563 8 6 5 9 0.2 9.2 6.9
tarl
SystemC FIR Filter , 834 3 3 4 53 0.5 5.8 4.2
VGA Controller 856 4 3 3 16.8 1.1 17.9 3.8
Packet Switch! 1020 10 10 74 11.4 1.9 13.3 8.5
RISC CPU! 1960 12 7 18 13 2.1 15.1 12.5
Simple Bus! 2100 9 7 8 43 2.6 45.6 5.1
Example-5° 650 21 14 15 49.3 1.2 50.5 2.1
TLM-2.0 Example-6° 713 36 34 152 51.7 1.2 52.9 2.2
’ AT-example® 2942 41 29 19 117.6 33 120.9 21
Locking-two® 3831 42 35 32 1394 3.6 143 24.3

TProvided by [3] Zprovided by [18] 3Provided by [19] TProvided by [20] 5Provided by [16] LoC: Line of Code #Func: number of executed Functions in active instances of
modules #CS: number of Control Signals #PM: number of Power Modes ET: Execution Time Stepl: stepl of the proposed method Step2: step2 of the proposed
method CET: Standard Compilation and Execution Time by GCC without applying the method.

effect on the results of our analysis. Extra testcases will just
cover a given functionality pattern that is already known.

It is also important to highlight that the level of granu-
larity at which the method works (targeting functions within
instances of modules) can be changed. As a rule, for every
coding style (Cycle Accurate, Approximately Timed, Loosely
Timed) used in SystemC designs, the finer the granularity the
more accurate the results yielded by the method. In addition,
the method working with a finer granularity potentially enables
the DSE process to address power concerns in a more sophisti-
cated manner. A finer granularity can, for instance, enable the
use of power reduction techniques such as Dynamic Voltage
Frequency Scaling (DVFS) when realizing the power intent
via the PMU.

V. CONCLUSION

In this paper, an automated method for the extraction of
power management parameters from initial ESL prototypes has
been presented. The extracted power management parameters
are major indicators of the effort required to realize the power
intent from ESL prototypes. The method consists of two
steps that enable designers to make the implicit power intent
of a prototype explicit via the extracted power management
parameters. Several ESL benchmarks have been run to evaluate
the effectiveness of the proposed method.

We plan to extend our research to use the extracted power
management parameters to produce ready to fill templates
for the PMUs. This extension would prove the usefulness of
knowing the parameters in early design stages.
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