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Abstract. With the emergence of more and more powerful quantum
computers, synthesis of quantum circuits that realize a given quantum
functionality on those devices has become an important research topic.
As quantum algorithms often contain a substantial Boolean component,
many synthesis approaches focus on reversible circuits. While some of
these methods can be applied on rather large functions, they often yield
circuits that are far from being optimal. Aiming at better solutions,
evolutionary algorithms can be used as possible alternatives to above
methods. However, while previous work in this area clearly demonstrated
the potential of this direction, it often focuses on a single optimization
objective and employs cost functions that are not very well suited for
quantum-technological implementations of the resulting circuits.

In this paper, we propose a framework for multi-objective synthesis
of quantum circuits based on Genetic Programming that puts a fo-
cus on quantum-specific aspects and can be tuned towards several rel-
evant/related cost metrics. A preliminary evaluation indicates that the
proposed approach is competitive to previous ones. In some cases, the
generated circuits even improve over existing results on all optimization
objectives simultaneously, even though the latter were found by specifi-
cally targeting a single objective.

1 Introduction and Related Work

Quantum computing [I0] is resulted by combining quantum mechanics and clas-
sical information theory which can lead to powerful (and something strange)
effects like superposition or phase shifts that can be exploited for asymptotically
faster algorithms for several important problems. To actually conduct a complex
quantum algorithm on a quantum computer it has to be synthesized from a high-
level description to a quantum circuit composed of elementary quantum gates
that are supported by the specific device. As many quantum algorithms contain
a substantial Boolean component, many synthesis approaches focus on so-called
reversible circuits that realize these components in a quantum-compatible way.

In fact, the design and optimization of reversible and quantum circuits is a
hard problem, due to the high dimension of the search space (the functionality
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is given in terms of exponentially large transformation matrices), the large num-
ber of possible gates and so on. For synthesis of reversible and quantum circuits,
various methods have been presented including matrix decomposition methods
[13], search-based methods using graph theory (DFS and BFS) [], cycle-based
approaches [12], methods based on decision diagrams [I6] or two-level repre-
sentations (e.g., Exclusive Sum of Products, ESOP [0]) etc. The synthesis of
reversible logic circuits using above methods are not optimal in terms of com-
monly applied cost metrics like quantum cost (QC) or gate count (GC) as they
stick into local minima. An optimal synthesis method for reversible circuits has
been proposed by Shende et al. [I4]. However, it only works for small circuits
and fails to provide optimal solutions for larger circuits.

For achieving good solutions for larger circuits in reasonable computation
time, evolutionary algorithms can be used as possible alternatives to above meth-
ods. In these methods, using evolutionary algorithms and especially Genetic Al-
gorithms (GA), the goal has been defined as achieving the desired transformation
matrix fully or with an acceptable percentage of difference. In [7IT1], a simple
GA has been used to design quantum circuits. Although these methods search
the large space of the solutions in the problem, they are very general and do not
consider the cost of the circuit. Other approaches use alternative optimization
techniques like Particle Swarm Optimization (PSO, see e.g. [3]) or Ant Colony
Optimization (ACO, see e.g. [6]). Recently, Abubakar et al. [I] presented a syn-
thesis method based on Genetic Programming (GP) a subfield of evolutionary
computing in which computer programs evolve to solve the studied problem.
While the approach yields quite appealing results, it is strongly focused on and
limited to reversible circuits.

In this work, we also use GP, but in contrast to [I], our used circuit model
is completely different and we put a focus on quantum-specific aspects like the
consideration of equivalence up to global-phase as well as cost metrics that are
more suited for currently considered quantum technologies. Another innovation
of this paper is the use of a two-step fitness function that in the first step
evaluates the accuracy of the circuit, before the cost of the circuit is considered.

The rest of this paper is structured as follows: in Section 2, some background
information about quantum computing and genetic programming is given. The
proposed method is then presented in Section 3. Section 4, discusses some pre-
liminary results, before Section 6 concludes the paper.

2 Background

2.1 Quantum Computation and Circuits

Quantum computation is based on qubits, i.e. two-level quantum systems whose
state |¢) can be described as a superposition of the basis states |0) and 1):
|¢) = a|0) + B|1) for complex-valued amplitudes o, 3 with |a|? +|3]? = 1.

Any quantum operation can be represented by a unitary transformation ma-
trix U, i.e. a complex-valued matrix of dimension 2" x 2™ where n denotes the
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Fig. 1: Basic Quantum Operations

number of qubits in the considered quantum system. Commonly used basic op-
erations (termed as quantum gates) are shown in Fig. |1l Note that all these gates
operate on a single target qubit (except for the SWAP gate which operates on
two qubits). In order to enable more powerful computations, all gates can also
be used in a controlled fashion, i.e. they are only applied to the target qubit(s)
if a set of control qubits is in a predefined state (|1) for positive controls or |0)
for negative controls).

A cascade of such operations/gates G = g1 ...g4 forms a quantum circuit.
The corresponding transformation matrix is computed as the matrix product of
the matrices of the individual gates (in reversed order). Two quantum operations
whose matrices only differ by a scalar factor e*? (i.e. a global phase shift by ¢)
cannot be distinguished physically and are, thus, considered equivalent.

2.2 Genetic Programming

Genetic Programming (GP) [5] plays the role of an evolutionary algorithm dis-
tinctively functioning on a varying-sized chromosome, generally in a tree struc-
ture. The populations of computer programs are genetically developed through
the Darwinian tenet of natural choice and hereditary processes. Individuals in
a GP population act as programs in a hierarchical tree structure, comprised of
primitives such as functions and terminals defined in the problem field.

GP commences by means of a preliminary population of programs randomly
created in most cases. Each individual in this population is, therefore, assessed
via a predefined problem-specific fitness function. The fitness value signifies the
competence of the individual to resolve the problem. Selection utilizes the fit-
ness value in order to recognize the individuals which will replicate and pair off
to yield the following generation. Mutation and crossover simulate the recom-
bination process. These operators intend to decompose the features of parent
individuals to breed distinctive offspring individuals. To this end, as illustrated
in Fig. |2 crossover swaps sub-trees between the parents’ chromosome, while mu-
tation randomly replaces a sub-tree in the parent’s chromosome. The creative
process is reiterated up to when a concluding circumstance is fulfilled.

3 Proposed Approach

In this section, we present detailed information about the proposed multi-objective
synthesis method for quantum circuit synthesis based on Genetic Programming.
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Fig. 2: Genetic operators.

3.1 Genetic Programming Specifics

In order to apply GP for quantum circuit synthesis, we require a way to rep-
resent circuits as chromosomes. However, as the operations (gates) in quantum
circuits can have multiple inputs, the standard representation as a (binary) tree
can hardly be employed here. In contrast to [I], where the internal nodes repre-
sent multiplication and all leaves correspond to individual gates, we rather use
degenerated trees where each node represents an individual gate and has a single
successor (such that the tree depth is one less than the tree size).

In each round of the algorithm, a new population (child population) is gener-
ated from the previous population (parent population). As in [1], the individuals
that serve as parents are selected based on the roulette wheel method [f] Conse-
quently, the expected number of children for each individual is based on its rank
in the population [2], i.e. an individual with high fitness will have more children.
As genetic operations, we employ

— mutation, i.e., the first k gates of a (single) parent circuit are taken and a
randomly generated circuit is appended, and

— crossover, i.e., two parent circuits are split into two parts and the first part
of one circuit is combined with the second part of the other—yielding two
offsprings.

Moreover, the concept of Dynamic Maximum Tree Depth is used [2]. In this
method, a dynamic limit is applied on the depth of the trees allowed in the

4 This method acts as if a roulette with random pointers is spun, and each individual
owns a portion of the roulette which corresponds to its expected number of children.
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population. At first, i.e. when generating the initial population, it is set to a low
value but increased whenever needed to accommodate a new best individual.
For the generation of the initial population we use the Ramped Half-and-Half
method, i.e. half of the trees have the full maximum depth while the remaining
trees have a (randomly chosen) smaller depth.

3.2 Proposed Fitness Function

In order to survey the fitness of a chromosome, i.e. its similarity with the given
unitary matrix to be synthesized, the following two-step fitness function is used.
At first, the similarity of the matrix U¢ of each chromosome C' with the target
unitary matrix S (of dimension 2" x 2™) is calculated as follows:

on
Fitness1(C) = penalty - Z ‘ 1|Uicj — Sij (1)
i,j=

Also, in this step, a penalty value is used to put more significance on the
accuracy of the solutions. Of course, Eqn. does not consider global-phase
equivalence between the target function and the obtained circuit. In order to
evaluate this, we compute

correctness(C) = | tr(STUC)| - 27" (2)

where tr denotes the trace operator and ST denotes the conjugate transpose,
i.e. the multiplicative inverse, of S. If S and U¢ differ only by a complex phase
factor, we have STU = ¢I for some complex number ¢ with |¢| = 1. As a result,
|tr(STU°)| = |2"¢| such that Eq. will evaluate to 1 in this case.

Thus, if Eqn. is equal to zero or Eqn. (2]) equals to one, then the chromo-
some realizes the desired functionality and in the next step other optimization
criteria quantum cost, circuit depth and nearest neighbor cost are considered:

Fitnessz(C) = 14 k1 - QuantumCost(C) + ko - Gates(C) + ks - NNCost(C) (3)

Here, the coefficients ki, ko, and k3 can have arbitrary values between zero and
one according to the significance of the respective cost metric. While quantum
cost (QC) were originally computed based on realizations in terms of the NCV
gate library (consisting of NOT, controlled-NOT and controlled-V gates) and
are only suited for reversible circuits, nowadays other metrics have become more
relevant for quantum circuits, e.g. T-count or T-depth. These are based on the
assumption that the circuits are realized in the fault-tolerant Clifford+T library
where the high cost of T gates dominates the overall execution cost. In con-
trast, the pure gate count (GC)—apparently inspired by conventional circuit
realizations—does not have much significance for quantum circuits as the execu-
tion time of individual gates can differ significantly. Nearest neighbor cost reflect
the fact that multi-qubit operations (e.g. a controlled NOT) can typically only
be applied on adjacent physical qubits. Such topological constraints (so-called
nearest neighbor constraints) apply essentially to all currently investigated tech-
nologies for quantum computation.
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Table 1: Experimental Evaluation

Method [1] | Best Result from [§] | Proposed Approach
Benchmark GC QC | GC QC | GC QC
317 5 11 6 12 3 10
449 12 28 14 28 9 26
hwb5 24 102 | 38 80 | 30 80
nth_prime4_inc 11 26 14 26 8 24
nth_prime5_inc 28 96 29 91 24 82
4b15g_3 14 33| 15 33| 14 33

4 Preliminary Evaluation

In order to evaluate the principal capabilities of the proposed method, it has
been implemented using MATLAB software and the GPLAB toolbox created
for genetic programming by Sara Silva [I5]. In order to have a baseline for
comparison, we applied our method to all benchmarks from [I] (ranging from
three to five qubits) and also used the same cost metrics w.r.t. quantum cost.
For the coefficients k1, ko, k3 in Eq. we used 0.8, 0.6, and 0.4, respectively,
in order to put the main focus on quantum cost while also taking into account
gate count and nearest neighbor costs in a reasonable way. We started with a
population size of 50 individuals and successively increased the population size
up to 500 individuals if no satisfying solution was found.

Due to page limitations, only a small selection of the results is shown in
Table|l|and compared to the corresponding results from [I] and Maslov’s bench-
mark library [8], but we obtained very similar results for all benchmarks. Note
that, in order to allow for a fair comparison, a post-processing has been applied
to identify certain groups of 2-controlled NOT gates and 1-controlled NOT gates
which can be identified as a single gate (the so-called Peres gates) and, thus, lead
to small savings in gate count and quantum cost. The results clearly indicate
that the proposed method is able to compete with previous work. In some cases,
the generated circuits even improve over existing results on all optimization
objectives simultaneously, even though the latter were found by specifically tar-
geting a single objective. More precisely, the numbers listed for GC and QC for
method [I] as well as [§] might refer to different circuits, while the costs listed
for our approach are always realized by a single circuit.

5 Conclusion

In this paper, we proposed a multi-objective synthesis method for quantum cir-
cuits based on Genetic Programming. In contrast to previous work, we put a
strong focus on quantum-related aspects like global-phase equivalence and more
appropriate cost metrics that allow to incorporate technological constraints like
nearest neighbor constraints already during synthesis. Another innovation of the
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method is the use of two-step fitness function that in the first step, the accuracy
of the circuit is evaluated. Then, metrics of quantum cost, circuit depth, nearest
neighbor costs are considered. A preliminary evaluation confirmed that the pro-
posed method is competitive to previous methods when applied in their original
domain of reversible circuits. For future work, we plan to thoroughly investigate
the method’s performance and benefits for real quantum benchmarks (e.g. in
terms of Clifford+T circuits).
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