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Abstract—Having in mind its impact on the security of air
flight applications, there is a high demand for robust and reliable
airspeed measurement systems. Thermal flow sensors are a recent
proposal in order to circumvent the critical limitations of classic
airspeed sensors and have the potential to considerably enhance
the security of future aircrafts. This paper is a step towards the
application of these sensors and explores how existing state-of-
the-art reliability techniques can be applied for this new class
of devices. Therefore, a detailed simulation model of a thermal
flow sensors is setup in a redundant manner and widely applied
voting mechanism are added to the system. Using extensive fault
simulations, we explored the applicability of each mechanism for
different fault classes and determined the most reliable solution.
Results indicate that not the most complex but a more simpler
method based on median estimation shows the highest robustness
for this new kind of airspeed sensors.

Index Terms—Air Data System, Robustness, Reliability, Re-
dundancy, Data Acquisition, Airspeed, Thermal flow sensors

I. INTRODUCTION

The movement of an aircraft is determined by the air
characteristics at the current altitude as well by its geometric
shape, its attitude and the relation between flight speed and
airflow. Based on these informations it is possible to determine
aerodynamic forces and momentums generated on the airplane,
which are essential informations for pilots and automatic
aircraft control systems in order to take correct decisions [1].
Having in mind the possible fatalities of an airplane crash,
those measurements must be performed under the highest
reliability constraints.

Air Data Systems (ADS) measure and process airflow in-
formation and provide its results to further instances, enabling
the implementation of complex closed loop control techniques.
In todays aircrafts, airspeed is measured using the so called
pitot tube [2]. However, the main disadvantage of the pitot
tube is that it can freeze during specific conditions such that
all measurements performed by the sensor turn invalid. This
was the reason for several flight accidents, e. g. the crash of
the Air France flight 447 in 2009 with 228 fatalities [3].

Due to the possibility of failures on current airflow mea-
surement systems and the catastrophic consequences of such
a failure, there is a demand to study how to increase the

reliability of these measurements. One possibility is to use
airspeed sensors with operating principles that differ from pitot
tube. This, for example, the case for thermal flow sensors,
which gained attention in recent years [4].

Although the working principles of thermal flow sensors
is already known, there is still the need for further research
before it can be used in commercial applications. This includes
works on its physical implementation as well as on its inte-
gration in airplane systems. Based in these observations, the
objective of this work is the exploration of how this type of
sensors can be integrated in Air Data Systems (ADS) in robust
and reliable manner.

The emphasis of this study is on how the impact of individ-
ual sensors faults on the results of ADS can be diminished.
Therefore, we derived an appropriate model of the final sensors
in order to assure that the final solution is robust against a wide
range of possible faults. Further, we compared state-of-the-art
redundancy techniques in terms of its applicability for thermal
flow sensors.

The remainder of this work is as follows. Section II
describes the state-of-the-art of aircraft speed measurement
systems, thermal flow sensors and voting techniques. The
following Section III presents the chosen methodology, while
Section IV discusses its implementation. Section V shows and
analyses the obtained results. Finally, Section VI concludes
this work.

II. PRELIMINARIES

A. Air Data Systems

A typical commercial ADS integrates multiple sensors and
processing units in order to provide critical air data parameters,
including static and dynamic pressure, altitude, angle of attack
and side slip [5]. Fig. 1 shows a six sensors ADS, each
composed of a pitot tube and a processing unit. The pitot
tube is the transducer that transforms physical quantity into
an electric signal, that in its turn is digitalized and sent to be
processed and consolidated on the Air Data Computer (ADC).
Sensor redundancy is required in order to achieve the required
level of safety on the aircraft operation. International norms



developed by special committees and specific documents is-
sued by government agencies define the process of calculation
and demonstration of required safety levels [6], [7].

Figure 1. Representation of an ADS with six smart sensors and a processing
unit [5].

B. Pitot Tube

The pitot tube is the transducer used in most ADS to convert
physical quantities into electrical signals [2]. It consists of two
concentric tubes held on a short distance from the fuselage of
the aircraft to prevent interference from it in the airflow. The
inner tube contains an opening aligned with the direction of
movement and is responsible for measuring the total pressure
caused by the movement of the body in the air. The outer tube
contains openings perpendicular to the movement and is re-
sponsible for measuring the static pressure of the environment.
At the base of the tubes, transducers convert the pressures
into electrical signals that are then digitized. The difference
between total pressure and static pressure is called dynamic
pressure and is used to calculate the relative velocity between
the air and the pitot tube. The results of this measurement is
called airspeed [1].

Under specific weather and air flow conditions, a pitot tube
can freeze. In this case, the sensor can not measure the
external, total or static pressures, making its measurements
unreliable. In cases like these the pilot must realize that the
speed measurement is wrong and ignore it, navigating through
other instruments and visual points. Doing this is not trivial,
and faults of this kind have caused recent crashes, such as
the aforementioned crash of the Air France flight [3]. Another
restriction of the sensor is that it must be aligned with the
movement flow, within a maximum allowable deviation, to
correctly measure speed. The pitot tube also interferes with
the aerodynamics of the airplane and therefore the quantity
and location of the sensors must be carefully studied in order
to guarantee redundancy and performance.

C. Thermal Flow Sensor

There is an extensive line of research on thermal flow
sensors, as we can see in the bibliographic study of [4]. All
sensors are based on the principle of measuring the velocity of
a fluid through the thermal interaction between this fluid and
the sensor. Despite the common principle, there are several

types of configuration, materials and applications for thermal
flow sensors. Based on the study of [4], a sensor that was close
to the imagined application for this work is described in [8]
and [9]. This sensors was developed in order to operate in the
air, has a large operation range, is capable of measuring speed
and direction of flow, has improvements over a commercial
thermal flow sensor and has a full functioning model. The
thermal flow sensor is depicted in Fig. 2 and consists of four
temperature sensors (thermopile) and four heaters (resistors)
arranged at the edges of a square silicon chip. In addition,
the component contains a diode in the center of the chip that
measures the average temperature of the chip and the control
logic required for sensor operation.

Figure 2. Components of a thermal flow sensor [9].

The asymmetrical cooling effect is considered in each
thermopile in order to measure the speed and the direction
of the air flow through the sensor. As can be seen in Fig. 2,
given a horizontal right-to-left flow, the east-west thermopile
will be cooled asymmetrically by losing more heat at the right
side than at the left side. There are two "ew" sensors placed
in parallel and connected in series in order to increase the
sensitivity of the thermal asymmetry. The same effect happens
when there is a vertical flow, in which the asymmetric cooling
occurs in the north-south components (ns).

A Sigma Delta thermal modulation technique is used to
keep the sensor operating at constant temperature. The thermal
asymmetry detected by the thermopiles is in a closed loop
feeding the choice of which heater should be driven in order
to correct the measured difference. A comparator connected to
the thermopile output creates a series of pulses that turn on or
off the related heaters. For example, if the comparator detects
the east side cooler than the west side then the east heater is
turned on.

This operation technique eliminates the need for an ADC to
obtain system measurement. The output of the speed sensor
is the bit stream representing the power dissipated by each
resistor. The information needed to calculate the speed is the



power difference between the opposing resistors. Thus, the
difference between the power of the resistors "e" and "w" is
called δPew and the difference between the resistors "n" and
"s" is called δPns. The velocity of the flow is proportional to
the sum of the squares of δPew and δPns and the direction
of the flow is obtained by considering the values of δP as
the orthogonal components of the velocity vector. The values
obtained with this sensor have a maximum error of 4% for
speed and 4° for the direction of flow [9].

The equations (1), (2) and (3) determine the flow speed and
direction from δPew and δPns [8]. In these equations, φ is the
flow calculated direction, U is the flow calculated speed; ans
and aew are differences due to thermal asymmetries; Sns and
Sew are proportional factors; εns and εew are phase differences
from the reference on direction guidance; δPns and δPew are
the differences of the heater powers.

φ = tan−1

(
vnscos(εew) − vewsen(εns)

vnssen(εew) + vewcos(εns)

)
(1)

U =
v2ns + v2ew − 2vnsvewsen(εns − εew)

cos2(εns − εew)
(2)

vns =
δPns − ans

Sns
vew =

δPew − aew
Sew

(3)

As can be seen in [9], the thermal flow sensor is protected
from direct contact with the airflow by being secured to a
thin ceramic ceramic disk which separates it from the object
of measurement. This configuration is an advantage in the
aeronautical application because the sensor can be placed in
the most suitable place of the fuselage of the aircraft without
interfering in its aerodynamics.

D. Voting Techniques

Voting techniques are frequently applied for redundant
signal consolidation [10]. There are several implementations
that differ in its complexity and robustness against different
types of faults.

A common solutions is the estimation of the simple mean
of the input signals of the voter. This is the simplest way
to reduce the influence of a failed signal on the consolidated
value of the measure, although it does not remove its influence.
Another technique is to calculate the output as the median of
the input signals. In the case of an odd number of signals
this corresponds to choosing the middle signal to be equal
to the output. In the case of an even number of signals, this
corresponds to making the simple average of the two signals
in the middle.

In addition to these two types, the authors of [10] propose
the majority average voting, in which the difference between
the input signals is compared to a predefined range ∆. When
the differences are less than ∆ the signals are considered

valid and the output is the average of all that have met the
requirement. If the difference of one signal to the others
is greater than the threshold, it is not considered in the
calculation. If the distribution of the signal values is such that
the difference between them is less than the threshold in more
than one subset of signals, then that subset having the most
signals is chosen for the calculation. For example, in case of
four input signals, signals A, B and C may happen to fulfill
the criterion of ∆ and signals C and D as well. In this case,
the subset ABC that contains most of the signals is chosen.

The authors of [11] introduce a variation of the majority
average, where the threshold value is not used. In this tech-
nique, two signals that have the smallest difference between
them are chosen among all the available ones and the output
is the average of them.

A more complex voting algorithm is presented in [12].
This technique differs from the others because it is not a
simple formula for calculating the output, but a series of fault-
detection algorithms that work in parallel, constantly analyzing
the input signals. If no fault has been detected and all input
signals are considered valid, the output is the median of all
input signals. If the algorithm detects a fault in one of the input
signals then the incorrect signal is removed from the voting
and the median is calculated with the remaining signals.

The techniques for detecting signal faults are described
below:

• Compare: If the difference between an input signal and
the voted value of the output in the previous cycle was
greater than a predefined threshold, it is considered to
have a compare fault.

• Range: If the value of an input signal is outside the
predefined operating limits, it is considered to have an
out of range fault.

• Oscillation: If only one of the signals is oscillating within
a predefined frequency range and with an amplitude
greater than a threshold, that signal is considered to have
an oscillating fault.

• Split: If four signals are in a two pair configuration with
close values within the pair but distant values between the
pairs, using preestablished thresholds, they are considered
having a split fault. In this case all signals are considered
to be faulty.

Each fault detection algorithm contains filters to perform
time dynamic analysis of the signals and criteria to consider
a valid signal again after a fault is detected. In addition, the
output is altered in a damped manner at each change in the
number of signals considered to be valid.

III. METHODOLOGY

The objective of this work is the exploration of the ap-
plicability of well established voting methods for an Air
Data System composed of thermal flow sensors. Therefore,
a simulation model of the thermal flow sensor proposed in [8]
was derived and modified for fault simulation. Next, the results



of selected state-of-the-art voting mechanism were compared
[10]–[12].

Among the considered voters, the model of [12] requires
four input values, while the others do not have a fixed number
of inputs. Due to this configuration, the use of a redundancy
system with four thermal flow sensors was chosen to properly
compare all voters.

The test environment is depicted in Fig. 3. The main system
inputs are the values of δPns and δPew (summarized as
power asymmetry), from which the modeled sensors 1 to 4
calculate the airspeed values. The values of the first four
sensors are distributed within a range of ±4%, following from
the experimental results obtained in [9]. A fifth Reference
sensor is used in order to calculate the reference airspeed
value. The input of this sensor has no deviation and its output
is the ideal result of the airspeed measurement.

The faults in sensors 1 to 4 are modeled via modifications
of the parameter ans (shown as Faults in Fig. 3), which
represents the difference due to the thermal asymmetry of each
thermocouple. The insertion of this fault in the model results
in behaviors that are specific to the chosen sensor and allow
the study of the ability of the voting techniques to deal with
this type of faults [9].

The outputs of the sensors 1 to 4 are used as inputs to
the voting algorithm to be tested, which then generates a
consolidated airspeed value. This value is compared to the
reference value of the reference sensor. The difference between
the voted value and the reference value is a measure of the
voter performance on removing fault interference from the
consolidated velocity.

Figure 3. Simulated system components and data flow diagram.

Simulations are done by varying several input parameters,
i. e. shape of the input signal; input value; frequency of the
input signal; type of dependence between fault and input; error
value associated with fault; location and number of faults.

IV. IMPLEMENTATION

We used a Matlab simulation environment in order to
model the thermal flow sensor and to perform the analysis
of voting techniques. The thermal flow sensor model was
constructed based [8]. It is basically the implementation of the
mathematical formula that represents the relationship between

the power differences δPns, δPew, the speed and direction
characteristics of the airflow. The electronic circuit behind the
sensor was not considered in the model. As we have already
described, the fault considered in the sensor is represented via
the parameter ans.

Models of all the described voters were implemented so that
they could be used in the simulations. Due to the complexity
of the voter proposed by [12], was done as follows: (1)
construction of the model; (2) isolated test of each macro-
component described with predefined inputs and outputs; (3)
integrated test of the complete voter with predefined input
signals in order to observe the operation of the system. These
steps were important to ensure extensive model verification
before its use on the target simulation. In addition, this voter
has a number of parameters that modify its operation and
should be chosen for each application. The implementation
process also involved the choice of the most appropriate
parameters for the application of the thermal flow sensor with
its operating characteristics.

The integration of the blocks followed the data flow pre-
sented in the methodology section, with the addition of scripts
to make the input choices, simulation and results analysis.

V. RESULTS

The simulations were performed according to what was
proposed in the methodology section (III). The parameters
were independently varied for each of the entries present
in Table I and Table II, being that the faults were chosen
according to the sensor model [9]. The frequencies were not
independently varied for constant input and ramp due to the
nature of these signals. In total 2880 different simulations were
done.

Table I
INPUT PARAMETERS

Type Value Frequency (Hz)
Constant 1 0,25

Ramp 2 1,25
Sinusoidal 3 2,5
Rotational - 10

- - 25

The constant input type assumes one of the listed values
and has no time variation. The ramp type is a signal that
grows at a constant rate, ranging from 0 to twice the set value
for input. The sinusoidal input has zero constant component
and amplitude and frequency equal to the chosen values. The
rotational input is more peculiar because it represents the
situation in which a constant velocity flow equal to the chosen
value changes the direction in which it passes through the
sensor. This means that this input has different values for
δPns and δPew, varying in time in sinusoidal and co-sinusoidal
form. Since each direction is an orthogonal component of the
velocity of the flow, the velocity amplitude is constant.

Faults are entered into the specified sensor by changing
the value of the parameter ans. The constant type changes



Table II
FAULT PARAMETERS

Type Value Location
Constant 0.5 Sensor 1

Ramp 1 Sensor 2
Proportional 2 Sensor 1 e 2
Derivative 4 Sensor 1 e 4

- 8 -

the parameter to the value chosen by the whole simulation.
The ramp case is similar to the input, with the value going
from 0 to 2 times the specified value. In the proportional case,
the thermal unbalance parameter is equal to the sensor input
multiplied by the chosen value of the fault. In the derivative
case, the same multiplication, but considering the derivative
of the input. Fig. 4 shows exemplary the output of a sensor
for different fault types. The input is of rotational type with
value 2 and frequency of 0.25Hz, the amplitude of the fault
is 2.

Figure 4. Output of the thermal flow sensor for different fault types while
having rotational input at 0.25Hz.

It is possible to compare the voter’s performance by ob-
serving the average and maximum error of each one. For our
analysis, voter 1 means the one proposed by [12]; voter 2 is
the simple median, voter 3 refers to the simple mean; voter 4
the majority average [10] and voter 5 is the mean of the two
nearest signals proposed by [11]. For the first analysis stage of
the data, the results of the simulations were separated by the
location of the faults and the frequency of the input chosen as
0.25Hz.

The average error of voter 2 is significantly smaller than
the other voters for faults only in sensor 1 or only in sensor 2,
remaining less than 2% for these cases. In the case of double
but opposite faults (sensors 1 and 4) voter 2 also performs
better, with an error around 0.1%. In the case of neighboring
double faults (sensor 1 and 2) the average error of voter 2
is very close to voter 3 but both are still the best, falling

below the 4% threshold. These comparisons can be observed
in Fig. 5.

Figure 5. Medium error of the voters for different fault locations.

A similar analysis can be made for the maximum error.
For single or double opposing faults voter 2 is clearly better,
reaching at most error of about 23%. For two neighboring
faults, voter 2 loses the highest-scoring position and reaches
error of 218%. In this particular case, voter 4 and voter 5
have better performance, with maximum errors approaching
63%. Especially voter 1 performs much worse than the others
when we observe the maximum error, reaching 655% in the
worst case. The graph in Fig. 6 summarizes this analysis. It
is important to note that in this figure the graph scale of the
faults in sensor 1 and 2 is different from the others to show
the maximum value.

The analysis of the input frequency influence on the perfor-
mance of the voters is done by observing how the mean error
changes with increasing frequency for faults in sensor 1. This
is depicted in Fig. 7. It can be observed that the average error
of voters 2-5 were not influenced by the frequency. voter 1,
on the other hand, had a large increase in average error with
increasing frequency, reaching the level of 15% at 25Hz. An
analysis of the influence of the frequency on the maximum
error shows a similar behavior, as shown in Fig. 8. Only voter
1 is worse with increasing frequency, reaching an error of
200% at 25Hz.

Considering this analysis it is possible to conclude that
voter 2, whose output is the median of the input signals,
has the best performance if applied in an ADS composed by
four redundant thermal flow sensors. This voter significantly
reduces the influence of simple faults, regardless of location,
and opposing double faults. In the case of neighboring double
errors, voter 2 maintains the lowest average error among
the analyzed methods, but loses the lowest maximum error



Figure 6. Maximum error of the voters for different fault locations.

Figure 7. Medium error of the voters for different frequencies.

position to voter 4 and voter 5, which use the mean of the
nearest signals.

Voter 1 has an irregular performance and was the worst in
several of the analyzed cases. He was expected to have one
of the best performances due to some factors. Its most basic
operating principle is the same as for voter 2, that is, if none of
the parallel error detection techniques are triggered, the output
is the median of the inputs. All of its other error-detection
techniques work in parallel and have very specific goals, which
should increase the scope of the voter. His performance was
expected to be equal to voter 2 in the worst case and better than
it overall. This leads to the conclusion that the error detection
techniques of voter 1 are degrading its performance. Especially

Figure 8. Maximum error of the voters for different frequencies.

when observing the good performance of the voter 2 in simple
faults for the most different types of errors and signal forms,
the complex techniques present in voter 1 are unnecessary in
this case. The ideal would be to use such techniques only to
remove signals from voting on complex faults.

By observing more closely the behavior of voter 1, it
is noted that its performance is worse for oscillatory and
rotational inputs, a fact that was already indicated by its
response to higher frequencies (Fig. 7). This behavior occurs
because of the voter removing and reinserting the signal that
it considers to be wrong. By doing this the fade-out of voter
1 kicks in, causing a significant delay in the voter’s output.
This analysis reinforces our conclusion that the error-detection
techniques of voter 1 worsen its performance for simple errors,
which can be observed in Fig. 9 which compares voter 1 and
voter 2. This graph nicely shows the recurrent error peaks,
each one happening when voter 1 output is faded at a slower
rate than required by the oscillating signals. The output of
voter 2, on the other hand, eliminates the inserted error.

The configuration of faults in sensors 1 and 2 at the same
time is the most complicated to be analyzed and corrected by
the voters. In practice, if a system with four sensors has a
double fault and the values of the faulty sensors are close, it
is impossible to know which pair of signals is closest to the
true value. This is the simulated case that caused the worst
results in the voters, and in which voter 1 was the worst of
all (Fig. 5 and Fig. 6), so this case deserves to be observed
more carefully.

Analyzing the behavior of voter 1, one can see that the
error data does not reveal the whole story of its operation.
Its fault-detection algorithm relies on a "split" detection, as
described in section II. This algorithm works as expected in
the simulated case. It can be seen in Fig. 10 that voter 1 detects



Figure 9. Output and error of voter 1 and voter 2 with oscillatory input
@0.25Hz

the condition "split", and in doing so, freezes the output signal
at the last value considered as valid. As the inputs continue
to rise, the computed error of the voter becomes larger. On
this condition the voter 1 also signalizes that its voted output
is not reliable by setting all signals to false. This behavior
diminishes the impact of an erroneous value as the systems is
informed about this error.

Figure 10. Voting output and validity for constant faults on sensors 1 and 2
and ramp input.

Considering the behavior of the voter 1 for the split case,
we conclude that it would be the most appropriate for the case

of neighboring double faults in the thermal flow sensors.

VI. CONCLUSION

Measurement of airspeed is of great importance for the
safety of aeronautical applications. Thermal flow sensors offer
to circumvent the critical limitations of classic airspeed sensors
and are intended to be the basis of future Air Data Systems. In
view of this development, this work explores how state-of-art
reliability methods can be applied to these new sensors. The
results indicates that an Air Data System using four redundant
thermal flow sensors and a single median-based voter offers
the best performance. It is also possible to conclude that in the
event of a sensor fault, the application of a more sophisticated
voter results in a measurement error greater than for simpler
solutions. However, in the case of similar double faults, a
system using a voter able to detect split condition has an
advantage in being able to catch and report this fault. It can
be concluded that the results of this work are a step towards
the design of Air Data Systems using thermal flow sensors on
high reliability aeronautical systems.
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