
(ReCo)Fuse Your PRC or Lose Security:
Finally Reliable Reconfiguration-based

Countermeasures on FPGAs

Kenneth Schmitz∗[0000−0001−6618−5907], Buse Ustaoglu∗[0000−0002−7469−2260],
Daniel Große∗†[0000−0002−1490−6175], and Rolf Drechsler∗†[0000−0002−9872−1740]

∗Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
†Institute of Computer Architecture, University of Bremen, 28359 Bremen

{kenneth.schmitz,buse.ustaoglu}@dfki.de
{grosse,drechsler}@uni-bremen.de

Abstract. Partial reconfiguration is a powerful technique to adapt the
functionality of Field Programmable Gate Arrays (FPGAs) at run time.
When performing partial reconfiguration a dedicated Intellectual Property
(IP) component of the FPGA vendor, i.e. the Partial Reconfiguration
Controller (PRC), among a wide range of IP components has to be used.
While ensuring the functional safety of FPGA designs is well understood,
ensuring hardware security is still very challenging. This applies in par-
ticular to reconfiguration-based countermeasures which are intensively
used to form a moving target for the attacker. However, from the system
security perspective a critical component is the above mentioned PRC
as noticed by many papers implementing reconfiguration-based counter-
measures against SCA/DPA attacks. In this work, we leverage a new
proposed safety mechanism which creates a container around an IP, to
encapsulate and thereby to protect and observe the PRC of an FPGA.
The proposed encapsulation scheme results in an architecture consisting
of so-called ReCoFuses (RCFs), each capturing a specific protective goal
which have to be fulfilled at any time during PRC operation. The termi-
nology follows the classical electric installation including a fuse box. In
our scheme we employ formal verification to guarantee the correctness
in detecting a security violation. Only after successful verification, the
RCFs are integrated into the ReCoFuse Container. Experimental results
demonstrate the advantage of our approach by preventing attacks on the
PRC of a system secured by reconfiguration.

This work was supported by the German Federal Ministry of Education and Research
(BMBF) within the project SecRec under grant no. 16K1S0606K, the project SELFIE
under grant no. 01IW16001 and by the University of Bremen’s graduate school SyDe,
funded by the German Excellence Initiative.

1 Introduction

Substantial progress for both, Application Specific Integrated Circuits (ASICs) and
Field Programmable Gate Arrays (FPGAs) has been achieved over the last decade.
In particular, the programmable nature of FPGAs allows for great flexibility, and
the strong feature of partial reconfiguration pays off in many application fields
today. Practical examples include increasing fault tolerance [1], power-aware
reconfiguration [2, 3], and area reduction by time division multiplexing [4].

Although the realization of partial reconfiguration varies depending on the
FPGA model, it commonly relies on vendor specific proprietary library cells
and Intellectual Property (IP). Due to the black box characteristic of these IP
blocks, the internal operation (i.e. source code) can not be examined, tested or
verified by the user. As a consequence, integrating these components in a system
requires trust in the test and verification methodologies of the respective IP
vendor and – in worst case – jeopardizes the system’s stability. Hence, several
approaches to overcome this problem have been proposed. Unfortunately, many
of these approaches require some knowledge of the design sources, which is
impractical for the aforementioned scenario. For this reason, the encapsulation of
an IP component has been thoroughly investigated in the past. The behavior of
the encapsulated component is then monitored, controlled or even fixed by the
surrounding logic at runtime. For example, in [5] a “shield” is synthesized which
continuously monitors input/output of the design and corrects its erroneous
outputs. A more general approach has been proposed in [6, 7]. The paper presents
the notion of a “container”, in which the IP component is instantiated. The
concept was applied in order to monitor and fix bus protocol glitches by automatic
synthesis of correction logic from a property specification language. This way the
container protects both, the IP and the surrounding system respectively. A similar
principle was also applied on a hardware level by implementing a instruction
replacement scheme for a modern RISC-V processor IP to circumvent errata
and design flaws [8]. In [9] a similar technique has been proposed. Hardware
sand boxes are employed for secure integration of non trusted IPs in modern
System-On-Chips (SoCs). Only permissible interactions between the IP and the
rest of the system are allowed by exposing the IP interface to isolated virtual
resources and checking IP signals’ correctness at run time.

Coming back to partial reconfiguration, the safe and secure operation of the
overall system heavily depends on the Partial Reconfiguration Controller (PRC)
of the FPGA which typically initiates the reconfiguration process in the design. In
particular, reconfiguration-based countermeasures forming a “moving target” for
the attacker may completely collapse, if the underlying IP-based reconfiguration
fails or is attacked.

Contribution: In this work, we leverage the container principle – originally
proposed as safety mechanism – to the security domain. We present a tailored
encapsulation scheme for the PRC. The new architecture consists of individual
ReCoFuses. Each ReConfigurationFuse (abbreviated as RCF) captures one
specific protective property. During PRC operation (i.e. reconfiguration) all

properties have to hold at any given time. To guarantee the correctness of each
ReCoFuse, we require the formal verification of its behavior, i.e. to formally
capture which PRC communication is “good” or “bad” and what will be the
resulting action in the respective case. Overall, the ReCoFuses are integrated
into the ReCoFuse Container.

For demonstrating the proposed scheme, we consider systems which use
reconfiguration-based countermeasures and by this implementing the above
mentioned moving target principle. Mentens et al. showed in [10] that introducing
temporal jitter based on reconfiguration improves side channel attack resistance
significantly. In their work, the importance for securing the reconfiguration control
(i.e. the PRC) has already been recognized, but was not targeted there (as well
as in many following papers). In the case study of this paper, we present two
initial ReCoFuses to tackle two major vectors of attacks against the system via
the PRC, i.e. to attack

1. the timing of the reconfiguration by keeping one single reconfiguration active
for an extended period of time and

2. by disturbing the diversity of individual reconfigurations, such that (in the
worst case) the same reconfiguration is used permanently.

In both cases, the moving target becomes a static one making reconfiguration-
based countermeasures against physical attacks useless.

Related work: The Partial Reconfiguration Controller (PRC) is an IP compo-
nent of the respective FPGA vendor. Besides this black box realization, researchers
have implemented their own PRC with the focus on higher performance [11],
better timing wise predictability during reconfiguration [12] and even fault tol-
erance [13]. Dedicated protection of the PRC has not been considered in these
works.

The authors of [14] proposed the secure reconfiguration controller (SeReCon).
Semantically, it also provides an additional barrier to the partial reconfiguration
infrastructure. This effectively forms an additional anchor of trust in terms of
a gateway to the reconfiguration infrastructure in the design, granting more
reliability in the case of IP core based reconfigurable FPGA systems. However,
the aforementioned work primarily focuses on authentication of IP cores (in this
context bit streams for partial reconfiguration).

Recently, Xilinx announced a security monitor based on a IP soft core which
allows monitoring the partial reconfiguration process [15]. To the best of our
knowledge, no non-IP-based protection of the PRC for reconfiguration-based
countermeasures is offered.

Outline: The paper is structured as follows: First, Section 2 describes the
adversary model we consider in this work. In Section 3 the preliminaries of partial
reconfiguration and formal verification are reviewed. Our proposed encapsulation
scheme for the PRC, implemented as ReCoFuse Container, is introduced in
Section 4. Then, Section 5 presents a case study demonstrating the advantages
of our scheme for a reconfiguration-based encryption system. The experimental

evaluation, i.e. fault injection and resource utilization, is reported in Section 6.
Finally, the paper is concluded in Section 7.

2 Adversary Model

The proposed architecture provides increased protection against attacks targeting
reconfiguration-based countermeasures. Adversaries are derived from assumptions
made in [10] and [16], allowing passive and semi invasive attacks. The malicious
user desires to extract confidential information from the system by exploiting
available attack measures to circumvent the security mechanisms.

Differential Power Analysis (DPA) represents a passive attack scenario where
the malicious user can obtain – possibly a very large number – power consumption
measurements of the attacked system over time. Since activity in the design’s
circuitry correlates to its power draw, DPA allows attacks based on statistical
methods (e.g. Welch’s t test [17]) to successfully extract cryptographic secrets.
These attacks can be carried out with relatively small investments, since computer
based oscilloscopes are readily available at decreasing price points.

For semi-invasive attacks, we assume an adversary, who can disturb (or
deactivate) the reconfiguration procedure, thus leaving the system vulnerable to
the aforementioned DPA-based passive attacks. Only on die attacks are assumed
for this scenario. If mitigation against DPA is based on partial reconfiguration,
directly attacking the PRC is most rewarding, since failing reconfiguration will
leave the system unprotected. Where a single attack was sufficient in the past,
the attacker must now attack at least two places at the same time to break the
reconfiguration-based protection.

In practice, injecting faults into multiple wires or positions in the FPGA fabric
increases the cost of an attack. Multiple instances of the proposed protection
scheme allow mitigation (i.e. out scale) of attackers, by employing n modular
redundancy in terms of ReCoFuses1.

A second vector of attack is offered from black box IP cores in the design.
As motivated in the introduction, malfunctions, flaws or malicious intents can
jeopardize the system’s stability. Even Trojans in cryptographic hardware blocks
were reported in the literature [18]. If the IP core in the design is considered an
adversary, it has direct access to signal lines inside the circuitry (e.g. stalling a
shared bus). This scenario was reported to be realistic as demonstrated in [19].
The authors demonstrated an on chip power monitor based on ring oscillators to
observe the power consumption of other modules on the FPGA. Furthermore, it
allowed a DPA attack against an on chip (i.e. same FPGA) RSA crypto module,
as well as side channel attacks against the CPU of the host system (PCIe based
FPGA). The proposed RCFs must be capable to capture malformed communica-
tion with the surrounding system and reliably detect malicious behavior during
operation (i.e. skipped reconfigurations in this particular use case).

1 Please note that we advise to distribute (place) the ReCoFuses evenly in the FPGA,
while attaching them to different clock buffers or PLLs.

3 Preliminaries

In this section we briefly review the basics of partial reconfiguration of FPGAs.
Afterwards, an overview on formal verification as used later in order to verify
the behavior of the ReCoFuses is provided.

3.1 Basics of Partial Reconfiguration

Partial reconfiguration is implemented with highly proprietary means inside the
FPGA depending on the FPGA model. Different manufacturer achieve partial
reconfiguration with different components. In the course of this work, we will
focus on the specific implementation of partial reconfiguration from Xilinx [20],
but our approach is also applicable for other FPGA vendors.

Fig. 1 presents the essential components of the partial reconfiguration infras-
tructure:

FPGA

MEM

ICAP

PRC

RP0

RM

RP1

RM

RP2

RM

RP3

RM

RP4

RM

RP5

RM

RP6

RM

RP7

RM

RP8

RM

RP9

RM

RP10

RM

RP11

RM

Fig. 1: Overview of partial reconfiguration infrastructure

– Reconfigurable Partition (RPs) describe the area and position in the FPGA,
where Reconfigurable Modules (RMs) are placed (see RP0...11 in Fig. 1).

– Reconfigurable Modules (RMs) represent the actual implementation which
serves as replacement at runtime (see dashed squares in Fig. 1). For each
additional RM a new partial bitfile is generated which is stored in the memory
to be accessed by the PRC. (see MEM in Fig. 1)

– The partial bitfile represents the actual configuration data for the RM in
the FPGA. This data is stored in on or off chip memory and it contains
the configuration of the logic primitives (e.g. LUTs, DSPs, RAMs) and the
connections in the RMs. For reconfiguration, such a bitfile is fed to the
Internal Configuration Access Port (ICAP) by the PRC at runtime.

1 property check_req_ack ;
2 // Assume part Prove part
3 t ##0 req == 1 implies t ##3 ack == 1) ;
4 endproperty

Listing 1.1: Example property

– The ICAP implements the access to the partial reconfiguration infrastructure
(see ICAP connecting the PRC to the RPs in Fig. 1). It is treated as a regular
primitive in the tool flow during development, synthesis and place and route.

– The PRC is necessary to control the reconfiguration process in the FPGA. It
is attached to the memory (e.g. via AXI4), holding the (partial) bitfiles, as
well as to the aforementioned cell primitive. Depending on the manufacturers,
different options are available, such as internal or external triggers to perform
the reconfiguration.

3.2 Formal Verification

Formal verification as used in this work is the task of checking whether a circuit
implementation satisfies its specification or not. The specification is thereby
expressed with temporal properties. Several standardized property specification
languages are available. In this work, we use SystemVerilog Assertions (SVA) in
combination with Timing Diagram Assertion Library (TiDAL) for SVA which
comes with the commercial property checking of OneSpin. TiDAL allows one to
specify the temporal properties in a very intuitive way, i.e. (a) the time points
when an expression is evaluated can be explicitly defined and (b) the properties
follow a logic implication style.

A simple property example is presented in Listing 1.1. This property states
that if request is 1 at timepoint t + 0 (assume part), then three clock cycles
later, i.e. t+ 3, the acknowledge should be 1 (prove part). Such properties can
be verified on the circuit. If a property fails, a counter example is provided, i.e. a
wave trace which can be simulated which shows the violation of the property.

In case of larger numbers of properties the time, spent for verification, will
increase. However, due to impracticality of full re-verification, our proposed
approach still provides a significant advantage.

4 ReCoFuse Container

This section presents our encapsulation-scheme for the Partial Reconfiguration
Controller (PRC) of a FPGA which implements reconfiguration-based counter-
measures against physical attacks. The scheme is based on two main components:
(1) A “container” encapsulating the PRC, and (2) individual ReCoFuses to monitor
and react on untrusted communication with the PRC which would compromise
the security of the reconfiguration-based countermeasure.

In the following, we first introduce the overall architecture of the ReCoFuse
Container. Then, we detail the interfacing of the PRC and the ReCoFuse Container
which hosts the individual ReCoFuses. Finally, the required formal verification of
ReCoFuse behavior is described.

4.1 Architecture of ReCoFuse Container

Reconfiguration
Memory

Partial
Reconfiguration

Controller (PRC)

ICAP-Primitive

AXI4

ICAP

Trigger

Config

Reset

Cfg.-Reg.

Error

RCF0

RCF1

RCFn

· · ·

Reconfiguration
Memory

Partial
Reconfiguration

Controller (PRC)

ICAP-Primitive

AXI4

ICAP

Trigger

Config

Reset

Original Protected

Fig. 2: Original PRC Architecture vs Proposed ReCoFuse Container Architecture

The left part of Fig. 2 depicts the original unprotected PRC architecture. On
the right of Fig. 2 the proposed architecture realizing our encapsulation-scheme
for the PRC is shown. As can be seen the ReCoFuse Container has several “slots”
for individual ReCoFuses (details see next section). The ReCoFuses are denoted
as RCF0...n in Fig. 2. Moreover, all outgoing data connections between the main
components, i.e. Reconfiguration Memory, PRC and ICAP, are now also fed
into the ReCoFuses. Furthermore, a configuration register has been added which
allows the user to dynamically enable or disable each RCF.

4.2 Interfaces and ReCoFuses

Listening on all reconfiguration interfaces allows to monitor the reconfiguration
operations requested by the reconfiguration-based countermeasures. In Fig. 2,
these are the AXI4 and ICAP interfaces. The ICAP protocol follows a valid/ac-
knowledge scheme where the header of each partial bitfile can be analyzed during
data communication. For more details, we refer to the Xilinx 7 Series partial
reconfiguration user guide [21].

As can be seen in the architecture, the observed input data is sent to the
ReCoFuses. A ReCoFuse essentially implements a Finite State Machine (FSM),
and hence performs state transitions based on the observed data. Reaching a
predefined “good” or “bad” state determines whether the usage of the PRC is
considered as trusted or untrusted. The output signal of a ReCoFuse (e.g. in this
work an error signal) allows each ReCoFuse to communicate untrusted behavior.
As a consequence emergency actions can be executed, for instance to shut down

1 property r a i s e_e r r o r ;
2 (t ##0 enter_bad_state ()
3 implies
4 t ##1 ra i s e_e r ro r_s i gna l ()) ;
5 endproperty

Listing 1.2: ReCoFuse Signal Bad State Property

the system. For simplicity, in Fig. 2 on the right we have just ORed all the error
signals from each ReCoFuse.

4.3 Verification of ReCoFuses

To guarantee the correctness of each ReCoFuse, we require the formal verification
of its behavior. Hence, temporal properties describing the state transitions of a
ReCoFuse have to be specified by the user. In other words, these properties are
used to prove which PRC communication with the control of the reconfiguration-
based countermeasures is untrusted and what will be the resulting action in that
case. Typically, a ReCoFuse observes the communication over several clock cycles
and finally reaches a “bad” state. An example property for this last proof step
basically states the following: If a ReCoFuse enters the bad state, the associated
action must be taken in the next clock cycle. The corresponding property is
shown in Listing 1.2.

In the next section we demonstrate our proposed scheme on a concrete case
study.

5 Case Study

This section demonstrates the proposed encapsulation-scheme for the PRC. As a
case study we selected an encryption system using AES. The system implements
the moving target principle via reconfiguration by switching between different
implementations of the AES. By this, the attacker is not faced with static logic
in the FPGA, but permanently changing one and hence physical attacks become
much harder.

In the following, we first describe two major attack vectors. Then, we present
the ReCoFuse Container and the two ReCoFuses. Finally, we consider their
verification.

5.1 Attack Vectors

Breaking the reconfiguration-based moving target characteristic of a cryptographic
system, allows attackers to extract secret information via side channel leakage.
In order to attack a specific area (e.g. the PRC) in a FPGA, electromagnetism
and fault injection based attacks have both been reported to be effective [22] and
are viable methods for disturbing the reconfiguration procedure. We identified
two major attack vectors on the PRC – viable for both adversaries:

1 property advance_timer ;
2 disable i f f (r s t) (
3 t ##0 (cnt !=TIMEOUT and RP_active)
4 implies
5 t ##1 (cnt==$past (cnt)+1)
6) ;
7 endproperty
8
9 property detect_error ;
10 disable i f f (r s t) (
11 t ##0 (cnt==TIMEOUT and RP_active)
12 implies
13 t ##1 (e r r o r)
14) ;
15 endproperty

Listing 1.3: Example properties for timer

1. Time-out attack: Forcing the PRC to keep the same reconfiguration active
for a too long time, would result in no protection. It removes the moving
target characteristic of the design and makes it vulnerable to side channel
attacks.

2. Replay attack: Forcing the PRC to chose a single reconfiguration continuously
(or more often) removes the moving target characteristic as well.

This list, however, is not exhaustive and can must be extended by the respective
adopters needs. The next section presents how the proposed ReCoFuse Container
helps in protecting against the two attacks.

5.2 ReCoFuse Container

We encapsulated the PRC in a ReCoFuse Container. It instantiates the PRC
and provides connection to the configuration memory via AXI and the ICAP
primitive as described in Section 4. ReCoFuses are integrated inside the ReCoFuse
Container to achieve countermeasures against the time out and replay attack.
The concrete ReCoFuse are presented in the following two sections.

5.3 Timeout ReCoFuse

Functionality: The timeout ReCoFuse (RCF0) basically keeps track of the time
between two consecutive reconfigurations. Hence, after a successful reconfigu-
ration, a timer is started. If this timer expires before a new reconfiguration
procedure is initiated, the timeout ReCoFuse signals an error. Keeping a specific
reconfiguration active for an extended period of time – rendering the moving
target principle ineffective – can be detected reliably by this ReCoFuse.

Interface Events: The counter of the time-out ReCoFuse is started by a
RP_active, which is derived from several signals, provided by the proprietary
reconfiguration infrastructure. Alternatively, the sync word in combination with
the bitfile length could serve for the same purpose.

Verification: In Listing 1.3, a subset of the properties for verifying the timeout
ReCoFuse RCF0 are shown. The first property advance_timer (Line 1 – Line 7)
states that the counter (which realizes the timer) advances with each time step
after the previous reconfiguration is done. Here, TIMEOUT (Line 3) defines the
allowed active duration of one Reconfiguration Module (RM), i.e. a concrete AES
implementation. The RP_active (Line 3) signal is derived from multiple signals
from the reconfiguration infrastructure and captures whether the Reconfigurable
Partition (RP) is active, i.e. no reconfiguration is currently performed. In Line 5,
the $past() statement is used to refer to the previous time point.

detect_error names the second verification property (Line 9 – Line 15 in
Listing 1.3). It ensures that RCF0 enters the “bad” state (i.e. raising error),
when the respective RM was not reconfigured in time (i.e. before cnt reaching
TIMEOUT) (Line 11).

5.4 Replay ReCoFuse

Functionality: The replay ReCoFuse (RCF1) contains an individual counter for
each Reconfiguration Module (so, different AES implementations in our case
study), i.e. functional alternative which is swapped in. Based on the individual
counter values the distance of the Least Frequently Used (LFU) RM as well as
the Most Frequently Used (MFU) RM is determined. This distance indicates
whether the usage of the available RMs is uniform. Hence, this forms an effective
measure to detect if a specific RM is preferred or used continuously, since the
corresponding counter will advance faster. To illustrate the developed uniformity
check, Fig. 3 shows a reconfiguration procedure over 13 reconfigurations (i.e.
steps) in form of a bar chart, choosing from four different RMs. In Fig. 3, the y
axis shows the four different RMs (i.e. different AES implementations). The x
axis shows the frequency, how often the RMs were reconfigured. For example,
after 2 time steps only RM1 and RM2 have been reconfigured both once; after 6
time steps this changes to respective frequencies of (1, 2, 2, 1) (for RM1, RM2,
RM3, RM4).

A challenge when implementing this ReCoFuse in hardware, was that the
logic (i.e. the counters) should not become too costly. The solution was the
implementation of a shift window operation which essentially “cuts” all counters
(similar to a histogram) at the bottom. As a consequence, the least frequently
used counter is zero aligned. Fig. 3 depicts this “cutting” in terms of the shift
window operation in the left (highlighted gray), while preserving the distance
between the LFU and MFU RM, i.e. shift window reduces the counters from
(1, 2, 2, 1) to (0, 1, 1, 0) after step6.

For the example at hand, we allow a distance of 6 between the least frequently
used RM and the most frequently used RM. Assuming an attack (e.g. a replay
attack) resulting in a more frequent reconfiguration of RM1 is depicted in the
figure: In step13 we see a violation of our security condition of MFU − LFU =
7− 0 = 72 and hence an error is signaled by the ReCoFuse.
2 The gray boxes have been removed by the shift window operation, so the counters
are (7, 1, 1, 0).

step13step12step11step10step9step8step7step1

step3step2

step5step4

step6

maximum allowed difference between LFU and MFU

shifted max. allowed distance

RM4

RM3

RM2

RM1

shift-
window

shift-
window

RCF1 error signal

set to ’1’

LFU MFU

Fig. 3: Uniformity check and shift window operation

1 property decrease_counter ;
2 disable i f f (r s t) (
3 t ##0 (s t a t e==SHIFT_WINDOW and RM_seen==ALL_RM)
4 implies
5 // omitted technicality
6 t ##1 (s t a t e==SYNQ and RM_seen==NO_RM
7 and cnt==$past (cnt)-1)
8) ;
9 endproperty
10
11 property detect_error ;
12 disable i f f (r s t) (
13 t ##0 (d i s t==MAX and s t a t e==CHECK_ERR)
14 and t ##1 (s t a t e==CHECK_ERR)
15 implies
16 t ##1 (e r r o r)
17) ;
18 endproperty

Listing 1.4: Example properties for uniformity check

Interface Events: The uniformity check of the replay ReCoFuse is applied
between reconfiguration memory and PRC in the AXI communication. A unique
identifier of the individual RMs can be derived from the Frame Address Register
(FAR) value together with its address in the configuration memory. To increment
a specific counter, the replay ReCoFuse scans the transmissions on the AXI
interface for its respective identifier which can be observed when the respective
bitfile is loaded by the PRC.

Verification: In Listing 1.4, a subset of the properties to verify the behavior
of the replay ReCoFuse are shown. Please note that the shown 2 properties
are checked for each RM since the replay ReCoFuse has per RM an individual
counter as explained above. The decrease_counter property is central to the
shift window (state==SHIFT_WINDOW) operation in hardware. It is ensured that all
counters are decreased (i.e. previously mentioned “cutting”, cnt==$past(cnt)-1)
when all RMs were active at least once (RM_seen==ALL_RM). In order to imme-
diately capture new reconfigurations, the underlying FSM must transition to

the SYNQ state, where it screens the AXI communication for the RM identifier.
RM_seen is reset (RM_seen==NO_RM) in the next step to allow continuous counter
cutting.

The second property in Listing 1.4 is called detect_error starting from Line
11. Following the idea from Listing 1.3, the ReCoFuse must raise its error signal,
when the maximum allowed distance (dist==MAX) is exceeded. A dedicated error
checking state (CHECK_ERR) in the FSM checks this violation (Line 13 + 14) and
raises the error signal in the next cycle (Line 16). The FSM remains in this error
state (i.e. the “bad” state).

In the following section, we present an experimental evaluation of our approach
for our case study.

6 Results

All experiments have been conducted on a Xilinx Zync-7000 Series FPGA, more
precisely our evaluation platform is a Zedboard featuring a XC7Z020-CLG484-1
FPGA component. More recent FPGA generations feature the same reconfigura-
tion interface, thus our approach maintains applicability in the future. Enhanced
capabilities, such as better encryption and authentication however can help to
increase the difficulty of attacks further. Our encryption system implements
the moving target principle by switching between different implementations of
the AES core “tiny_AES” from https://opencores.org/project/tiny_aes
via reconfiguration. A dedicated controller in the FPGA (called SYSCTRL) initi-
ates the random (i.e. uniform) replacement of a Reconfiguration Module (RM),
i.e. between the different AES implementations.

We have synthesized the encryption system using Vivado 16.04. The partial
bitfiles are copied from the SD card to the on board DDR3 memory (serves as
partial bitfile memory), using a bare metal executable which runs on the ARM
core of the FPGA. To access from the programmable logic of the FPGA, we
switched the DDR3 memory to AXI slave mode. The PRC is directly attached to
the AXI slave DDR3 memory in the design and instantiates the ICAP primitive as
well. A ReCoFuse Container encapsulates the PRC as presented in Section 4. The
two ReCoFuses time out (RCF0) and replay (RCF1), as described in Section 5.2,
are integrated in the ReCoFuse Container to protect against the two attacks as
introduced in Section 5.1.

6.1 Injecting faults

As mentioned above, the controller SYSCTRL for reconfiguring between the
different AES implementations initiates the random (i.e. uniform) replacement
of a RM and for this communicates with the PRC. During normal operation
SYSCTRL replaces the current RM with a random successor before the timer of
RCF0 expires, such that no ReCoFuse raises an error. To run the experiments, we
attacked the reconfiguration process by injecting faults in the encryption system
in order to disturb the operation of the PRC. This was achieved by additional

0 960

error 1

ctr 0..63 0..63 0..63 . . .

RM RM1 RM2 RM3 RM4

[ms]

0 639

Fig. 4: Behavior of RCF0 (time-out)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

error 1

RM1 0 1 0 1 2 3 4 5 6 7

RM2 0 1 2 1

RM3 0 1 2 1

RM4 0 1 0

[step]

Fig. 5: Behavior of RCF1 (replay)

logic on the FPGA. Essentially, we disable the initiation of the replacement at
runtime or alternatively remove the randomness from the RM selection. The
following results have been obtained when using the Xilinx Integrated Logic
Analyzers (ILAs):

Time-out Attack Fig. 4 illustrates the functionality of RCF0 for the time-out
attack. The timer must expire, if a RM is kept active longer than acceptable; we
set the TIMEOUT to 10 time steps. For demonstration we captured the activity
for 960 milliseconds (i.e. 15 time steps). After 64ms, RM1 is loaded, followed
by, RM2 and RM3 (each active for 1 time step (64ms)). RM4 is kept active
indefinitely (10 time steps), which exceeds the acceptable period (640ms), such
that the error signal is raised, when the counter value (ctr) reaches 640. The
error signal indicates a violation of the time-out requirement.

Replay Attack Fig. 5 shows a sequence of the reconfigurations after 15 steps.
We have for different RMs. The maximum allowed distance of the RMs is set to 6
as in Fig. 3. In step 7, the occurrence of RM4 decreases all counters by the shift
window operation, resulting in a zero alignment of all counters. At this point,
the PRC is attacked (i.e. internally triggered faults are injected). In the 15th
step, loading RM1 will activate the error signal of the RCF1. Since the difference
between the most and least frequently used RM exceeds the allowed limit.

In summary, both experiments based on injecting faults demonstrated the
effectiveness of our approach. In the next section, we report the resource utilization
of our ReCoFuse Container for the encryption system.

6.2 Resource Utilization

Table 1 shows the utilization of the FPGA after implementation in Vivado.
All synthesis runs and P&R runs were executed with the same settings. The

Table 1: Hardware Resource Utilization
“Moving target AES”: Original ReCoFuse protected

Elements Usage Usage Increase

Slices 2976 3036 2.02%
LUT as Logic 10520 10620 0.95%
LUT as Memory 203 203 0.00%
LUT FF Pairs 4367 4409 0.96%

first column elements of the table presents the respective resource. The second
column Original shows the our encryption system employing reconfiguration
based on different tiny_AES cores and the Xilinx reconfiguration infrastructure
following the moving target principle. Three different AES cores and a blank
module (Xilinx recommendation for system initialization) have been included
and are randomly chosen for reconfiguration by the SYSCTRL. The third column
ReCoFuse protected: Usage contains the resource utilization for the encryption
system protected with the introduced ReCoFuse Container. Finally, the fourth
column ReCoFuse protected: Increase shows the negligible overhead, caused by
our solution.

7 Conclusion and Future Work

In this work, we leveraged an originally proposed safety mechanism which creates
a container around an IP, to encapsulate and protect the PRC of an FPGA. We
introduced ReCoFuses inside our encapsulation-scheme, each capturing a specific
property of interest which has to be fulfilled at any time during PRC operation.
Formal verification was employed to guarantee the correctness in detecting a
security violation. For evaluation of our scheme, we have created a reference
design, which we attacked by injecting faults. The experiments showed that the
implemented measures – leveraging the proposed scheme – realize an effective and
cost efficient protection for reconfiguration-based secured designs. Our flexible
architecture allows adding more ReCoFuses (e.g. CRC, additional encryption,
hash-based finger printing etc.) easily. The protective measures are dependent
on the required degree of protection. Possibly, a full catalog of fuses can be
maintained in the future. In summary, this work closes the gap of vulnerable
reconfiguration infrastructure as identified in [10] by Mentens et al.

References

1. J. Emmert, C. Stroud, B. Skaggs, and M. Abramovici, “Dynamic fault tolerance in
FPGAs via partial reconfiguration,” in FCCM, 2000, pp. 165–174.

2. K. Paulsson, M. Hübner, S. Bayar, and J. Becker, “Exploitation of run-time partial
reconfiguration for dynamic power management in xilinx spartan III-based systems.”
in ReCoSoC, 2007, pp. 1–6.

3. J. Noguera and I. O. Kennedy, “Power reduction in network equipment through
adaptive partial reconfiguration,” in FPL, 2007, pp. 240–245.

4. S. Trimberger, D. Carberry, A. Johnson, and J. Wong, “A time-multiplexed fpga,”
in FCCM, 1997, pp. 22–28.

5. R. Bloem, B. Könighofer, R. Könighofer, and C. Wang, “Shield synthesis: - runtime
enforcement for reactive systems,” in TACAS, 2015, pp. 533–548.

6. R. Drechsler and U. Kühne, “Safe ip integration using container modules,” in ISED,
2014, pp. 1–4.

7. A. Chandrasekharan, K. Schmitz, U. Kühne, and R. Drechsler, “Ensuring safety
and reliability of ip-based system design – a container approach,” in RSP, 2015, pp.
76–82.

8. K. Schmitz, A. Chandrasekharan, J. G. Filho, D. Große, and R. Drechsler, “Trust
is good, control is better: Hardware-based instruction-replacement for reliable
processor-ips,” in ASP-DAC, 2017, pp. 57–62.

9. F. Hategekimana, T. J. Whitaker, M. J. H. Pantho, and C. Bobda, “Secure integra-
tion of non-trusted ips in socs,” in AsianHOST, 2017, pp. 103–108.

10. N. Mentens, B. Gierlichs, and I. Verbauwhede, “Power and fault analysis resistance
in hardware through dynamic reconfiguration,” in CHES, 2008, pp. 346–362.

11. K. Vipin and S. A. Fahmy, “ZyCAP: Efficient partial reconfiguration management
on the xilinx zynq,” ESL, vol. 6, no. 3, pp. 41–44, 2014.

12. L. Pezzarossa, M. Schoeberl, and J. Sparsø, “A controller for dynamic partial
reconfiguration in FPGA-based real-time systems,” in ISORC, 2017, pp. 92–100.

13. M. Straka, J. Kastil, and Z. Kotasek, “Generic partial dynamic reconfiguration
controller for fault tolerant designs based on FPGA,” in NORCHIP, 2010, pp. 1–4.

14. K. Kepa, F. Morgan, K. Kosciuszkiewicz, and T. Surmacz, “Serecon: a secure
reconfiguration controller for self-reconfigurable systems,” IJCCBS, vol. 1, no. 1-3,
pp. 86–103, 2010.

15. Xilinx, “Monitor ip-core product brief,” 2015, https://www.xilinx.com/support/
documentation/product-briefs/security-monitor-ip-core-product-brief.pdf.

16. K. Lemke-Rust and C. Paar, “An adversarial model for fault analysis against
low-cost cryptographic devices,” in FDTC. Springer, 2006, pp. 131–143.

17. T. Schneider and A. Moradi, “Leakage assessment methodology,” JCEN, vol. 6,
no. 2, pp. 85–99, 2016.

18. S. Bhasin, J.-L. Danger, S. Guilley, X. Ngo, and L. Sauvage, “Hardware trojan
horses in cryptographic IP cores,” in FDTC, 2013, pp. 15–29.

19. M. Zhao and G. E. Suh, “Fpga-based remote power side-channel attacks,” in S&P,
May 2018, pp. 229–244.

20. Xilinx, “Xilinx official website - user guide – partial reconfiguration,” Jan.
2018, https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_
1/ug909-vivado-partial-reconfiguration.pdf.

21. ——, “User guide – 7 series fpgas configuration,” Mar. 2018, https://www.xilinx.
com/support/documentation/user_guides/ug470_7Series_Config.pdf.

22. H. Li, G. Du, C. Shao, L. Dai, G. Xu, and J. Guo, “Heavy-ion microbeam fault
injection into sram-based fpga implementations of cryptographic circuits,” IEEE
Transactions on Nuclear Science, vol. 62, no. 3, pp. 1341–1348, 2015.

