
Ensuring Correctness of Next Generation Devices:
From Reconfigurable to Self-Learning Systems

(Invited Paper)

Rolf Drechsler Daniel Große
Institute of Computer Science, University of Bremen, 28359 Bremen, Germany

Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
{drechsle, grosse}@informatik.uni-bremen.de

Abstract—Nowadays electronic systems are small yet powerful
and embedded into their environment. They are adapting to
changes and often operate autonomously. These systems have
reached a level of complexity that opens up new application
areas, like autonomous driving or self-learning robotics, but at the
same time strains the existing design flows in system development.
For two concrete examples we show the importance of ensuring
the correctness: verification of robotic plans, and verified partial
reconfiguration as part of a reconfiguration-based countermeasure
against side-channel attacks.

I. INTRODUCTION

Based on the steady progress in silicon technology endless
possibilities for applying electronic emerged. For instance high-
performance computing allows for new applications ranging from
entertainment, medicine, robotics, AI to the frontiers of scientific
research. Another class of systems are embedded devices which
enabled the Internet of Things (IoT) and paved the way for the
evolution to industry 4.0. Of key importance in this context are
two properties for such kinds of systems: adaptivity and autonomy.
In essence, more and more electronic systems will emerge whose
actions are not explicitly programmed, but these systems have to
make decisions in situations which are previously unknown, and
finally they have to learn from each manged situation.

From a design perspective, realizing such next generation devices
requires self-learning and (hardware) reconfiguration. However, ver-
ification, i.e. to ensure the correctness of such devices, as well as
security is still very challenging.

In this paper, we consider two concrete examples, i.e. the veri-
fication of robotic plans (Section II) and verified partial reconfig-
uration as part of a countermeasure against side-channel attacks
(Section III). In addition, we outline pressing verification challenges
for industry and academia in Section IV.

II. VERIFICATION OF ROBOTIC PLANS

Advances in technology, artificial intelligence and engineering
allowed to build autonomous robots, which are able to perform
tasks in unpredictable environments, to learn, and to adjust their
behavior. However, enabling a robot to perform complex everyday
manipulation activities, like e. g. setting the table or preparing a
meal autonomously, poses several challenges to the development of
the robot control system. Essentially, robots need to be equipped
with cognitive mechanisms, which allow them to deduce what kind
of action is suitable to achieve a desired task goal. This includes,
but is not limited to, applying different grasp types for different
objects and positioning themselves spatially to be able to reach out

to a location. As a consequence, the control programs of cognition-
enabled autonomous robots use high-level behavior specification
languages, which allow to infer control decisions instead of requiring
pre-programmed decisions. Several specialized high-level behavior
specification languages have been developed in the past. Examples
are RPL [1], RMPL [2], and CPL [3]. They all share certain attributes
like their inherent concurrency and the ability to call perception,
navigation, and manipulation tasks.

While non-trivial scenarios of everyday manipulation activities
can be mastered today, the complexity of the plans is steadily
increasing. At the same time, simulation of these plans and even
testing on physical robots reach computational limits. This causes
concern about the safety of autonomous service robots; especially
those interacting with humans or handling potentially dangerous
items. Hence, formal verification techniques are necessary to ensure
the safety of involved humans and the robots themselves.

In the following we review the verification approach presented
in [4]. It is the first approach for verifying plans of cognition-
enabled autonomous robots that perform everyday manipu-
lation activities in human environments. We use the toolbox
Cognitive Robot Abstract Machine (CRAM) [3] for realizing the
cognition-enabled robot control program. In particular, CRAM pro-
vides the CRAM Plan Language (CPL), which captures high-level
plans in Common Lisp. For the CPL, we envision a verification
methodology based on Symbolic Execution (SE) [5], [6] as it has
been shown that SE is a highly effective technique for finding deep
errors in complex software applications. The foundation of our ap-
proach is the new Intermediate Plan Verification Language (IPVL)
which serves as a formal intermediate representation. Our approach
compiles CPL plans down to IPVL and integrates environment mod-
els as well as robot belief states into a single IPVL description. We
additionally devised the Symbolic Execution Engine for Cognition-
Enabled Robotics (SEECER), which is tailored for IPVL. SEECER
allows to check plan correctness with respect to environment models
as well as annotated assumptions and assertions.

A. CRAM Plan Language

We consider control programs for the autonomous robots written
as high-level plans in the CRAM Plan Language (CPL) [3]. Plans
describe desired behavior in terms of hierarchies of goals, rather than
fixed sequences of actions that need to be performed. An architec-
tural overview of the CRAM ecosystem, to which CPL belongs, is
depicted in Fig. 1. A CPL plan receives additional information from
the robots belief state and knowledge base via a query-answer archi-
tecture. It also activates Perception and Manipulation & Navigation
modules, which then get information from or act on the Environment.
These interaction calls happen in the form of designators.

Designators are a common concept employed in several reasoning978-1-7281-2695-1/19/$31.00 © 2019 IEEE

Belief State &
Knowledge Base

CPL Plan

Perception
Manipulation &

Navigation

Environment

query

answer

percepts actions

activation, parametrization
update

update

Fig. 1: Overview of the CRAM stack architecture

1 (defun place-object (?target-pose ?arm)
2 (par
3 (perform (a motion (type looking)
4 (target (a location (pose ?target-pose)))))
5 (perform (an action (type placing)
6 (arm ?arm) (target (a location (pose ?target-

pose)))))))

Listing 1: CPL High-Level Plan

and planning systems. They are often implemented as data types
encapsulating high-level descriptions of entities familiar to humans,
but abstract to robots. Classes of designators available in CPL are for
instance

• location designators: physical locations under constraints like
reachability, visibility, etc.,

• object designators: real world objects on a semantic level like
what they are and what they could be used for,

• human designators: description of a human entity within an
environment, and

• motion and action designators: actions that can be performed
by a robotic agent.

In CPL, an action designator contains the action type to perform
(like perceiving or grabbing) and several parameters. It can be passed
to the perform function, which breaks it down to sub-tasks and
takes care of their execution. The following example illustrates a
typical use of different designators.

Example 1. Listing 1 shows a typical high-level CPL plan using
multiple designators. Designators are generated using the a key-
word. The plan in Listing 1 performs a motion to turn the robot’s
head to look at a specified target position and places the robot’s arm
to the same location in parallel. As can be seen, designators may be
nested, such as the two location designators used by the action and
motion designator.

B. Formal Verification of CPL Plans
In this section, we present our verification approach for plans

of cognition-enabled autonomous robotic agents based on symbolic
execution. We start with an overview and the general idea. We then
go into detail about how we deal with plan-environment-interaction
via an interface. Afterwards, we present our own Intermediate Rep-
resentation (IR) for plan verification and finally close with a detailed
description of symbolic execution on that very representation.

1) Overview: Consider Fig. 2 for an overview. Our goal is to
formally verify that certain safety constraints on a given CPL plan
hold.

We start with compiling the CPL plan into our own IR. For that,
we use a language, which we call IPVL and which we describe in
Section II-B2.

Additionally, we integrate environment models as well as agent
belief states into the IR. Integrating the environment model allows

Compiled
Plan

Belief State
Model

Plan Interface
Mocks

Environment
Model

IR: IPVL
Description

CPL Plan

query /
answer

percept
action
update

update

call /
answer

Verification Engine (SEECER)

+ Verification
Annotations

IR: IPVL
Description

Scheduler

Symbolic
Interpreter

SMT Solver

Init. Symbolic
State

Symbolic
State

SMT Types &
Operations

sym.
state

array of sym.
states

use and
query

transform
into

pass to
scheduler

select
next

compile

Fig. 2: Overview of proposed plan verification approach

reasoning about the agent’s actions. The IR plan accesses these IR
models by means of mocked functions. Essentially, these mocks are
models of the corresponding CPL plan interface functions. They en-
able the IR plan to perform perception, navigation, and manipulation
tasks on the environment model and query the belief state model.1

For verification purposes, symbolic expressions in combination
with assumptions and assertions (verification annotations) are em-
bedded into the IR (see lower left yellow box in Fig. 2). This enables
a comprehensive state space exploration. Finally, the combined IR
description is passed to a verification engine to check for assertion
violations triggered by the plan execution. Our contribution includes
(1) the IPVL to act as an IR, and (2) SEECER, which is tailored for
IPVL. IPVL is compact, yet powerful enough to capture the simu-
lation semantics of cognition enabled robotic plans in combination
with the agent’s belief state and environments. SEECER checks plan
correctness with respect to the environment model and the specified
assumptions and assertions. For modeling plan interface functions
and the environment we refer the reader to [4]. Instead, we describe
IPVL and SEECER in more detail.

2) Intermediate Plan Verification Language: We define the
language features of IPVL in this section. We start with definitions
and examples of IPVL’s core and then introduce compiling Common
Lisp to IPVL by linearization.

Whichever planning language might be used by a robotic system,
one only needs to implement a compiler for translating it to IPVL
in order to get symbolic execution and verification mechanisms with
SEECER on top.

We especially designed the IPVL to make a translation as easy as
possible. IPVL is Turing-complete, dynamically typed (like Com-
mon Lisp and many other languages in robotics), and incorporates
an Assembly-like paradigm.

IPVL code is a sequential list of instructions. Such a representa-
tion is general and at the same time much more manageable for a
verification back-end (e. g. similar concepts are adopted by LLVM
or CBMC). However, it requires to linearize functional languages
like Common Lisp.

IPVL uses simple arithmetical, logical, comparison, and con-
ditional instructions. In combination with variable assignments,
gotos, function calls, and special verification instructions, the
whole language can already be described. The instruction set has
been designed to be as simple as possible to allow a compact verifi-
cation backend. On the other hand it should be complex enough to
express plans written in higher level robotic languages like CRAM.
The IPVL acts as a interface between a verification frontend such
as annotated CRAM and a verification backend like SEECER, and
allows for both parts to be developed independently. The most

1Note that it is possible to exchange the environment model without modifying
the plan; hence, to verify the same plan’s safety in different environments.

common instruction in IPVL is that of an assignment, where the
left-hand-side is a variable name and the right-hand-side is either
a constant or an expression. Expressions of arithmetical, logical, and
comparison type have at most two parameters.

3) Symbolic Execution for IPVL: In this section, we present our
symbolic execution engine SEECER for IPVL, that was mentioned
over the previous sections. The right part of Fig. 2 shows an overview
of SEECER’s architecture. Essentially, SEECER consists of a sched-
uler and a symbolic interpreter. The scheduler manages a set of
symbolic execution states and orchestrates the state space explo-
ration by selecting, which state to consider next. The selected state is
passed to the interpreter for symbolic execution. IPVL instructions
are interpreted one after another while the symbolic execution state
is updated accordingly. The interpreter returns to the scheduler in
one of three cases: (1) the end of the IPVL program is reached, (2) an
unsatisfiable assumption is reached, or (3) a branch instruction with
symbolic condition is executed. In the third case the interpreter will
split the symbolic execution state into two independent states and
return these two states to the scheduler for further processing. The
interpreter employs an SMT solver to check for assertion violations
and check feasibility of symbolic branch instructions. Besides user
specified assertions, our interpreter also checks for generic execution
assertions, e. g. zero divisions.

SEECER starts with a combined IPVL description (which, as
described in Section II-B1, integrates the environment model, the
belief state model, and the actual plan). The IPVL description is
transformed into an initial symbolic execution state, which is then
passed to the scheduler. The scheduler performs a Depth First Search
(DFS). DFS is a common state space exploration strategy that fo-
cuses on each path individually and thus is memory efficient (which
is important in handling large state spaces). SEECER terminates
either after finding a violated assertion or after exploring the whole
state space. In the latter case, the plan is shown to be correct with
respect to the environment model and the specified assumptions and
assertions.

C. Case Study: The Wumpus World

We have implemented our verification approach for plans of
cognition-enabled autonomous robotic agents as the symbolic ex-
ecution tool SEECER and the CPL-to-IPVL compiler in C++. As a
case study, we consider two CPL plans acting on the well known
Wumpus World [7]. Our primary verification objective is to ensure
the safety of the plan execution. All experiments are performed on
a Linux machine with a 3.5 GHz Intel processor using the Z3 SMT
solver [8] (version 4.8.0).

For evaluation, we consider a slalom plan and a column-wise plan
as well as their faulty versions, each in combination with square
Wumpus Worlds of edge lengths 3 to 10 rooms.

Further, we fixed the number of Wumpus’ and gold nuggets to
one, but tried multiple numbers of pits (0, 1, and 5). The agent always
starts in room (0, 0), while the positions of Wumpus, gold and pits
are fully symbolic. This enables a comprehensive plan verification
for all possible environment configurations within these boundaries.

We observed, that SEECER has been highly effective in finding
the bugs in both faulty plan versions. For each combination of
plan and environment setup (i. e. size of the Wumpus World and
the number of included pits) SEECER found a counterexample
demonstrating the bug on the CPL plan leading to unsafe behavior in
less than a second. In the following, we focus on the more interesting
results, namely proving safety of the bug-free plans.

TABLE I: SEECER plan verification results

Slalom Plan: safe version
pits 3× 3 4× 4 5× 5 6× 6 7× 7 8× 8 9× 9 10× 10

0 T 1s 3s 7s 14s 27s 46s 1m 2m
#P 10 22 38 58 82 110 142 178

1 T 2s 5s 14s 32s 1m 2m 3m 6m
#P 13 31 55 85 121 163 211 265

5 T 2s 7s 26s 1m 3m 5m 9m 16m
#P 4 19 43 73 109 151 199 153

Column-wise Plan: safe version
pits 3× 3 4× 4 5× 5 6× 6 7× 7 8× 8 9× 9 10× 10

0 T 1s 4s 11s 26s 54s 2m 3m 4m
#P 6 13 22 33 46 61 78 97

1 T 5s 40s 3m 12m 34m 1h33m 3h39m 7h56m
#P 21 102 306 722 1464 2670 4502 7146

5 T 1s 1m 21m 3h49m TO TO TO TO
#P 2 115 1319 10357 — — — —

T: execution time (s=seconds, m=minutes, h=hours)
#P: number of symbolic execution paths, TO: Timeout (8h)

Table I shows the results for the safe versions of the Slalom plan
(upper half of Table I) and Column-wise plan (lower half of Table I).
We report the execution time T and the number of paths#P for each
combination of plan and environment setup. In order to prove desired
behavior (i. e. none of the assertion classes is violated), SEECER
needs to explore the complete symbolic state space.

It can be observed, that the verification time correlates with the
environment complexity. This is to be expected, as the environment
model has a direct influence on the state space size. Furthermore, the
verification time also depends on the actual plan. While SEECER
is able to handle the Slalom Plan with increasing environment
complexity, it can be observed that the verification runtimes grow
exponentially for the Column-wise Plan. This can be explained with
the significantly larger branching logic in the Column-wise Plan,
which in turn leads to a much larger number of symbolic execution
paths (#P) and SMT solver queries. Symbolic state merging should
be a viable technique to increase the scalability of SEECER on such
problem instances.

Nonetheless, despite currently missing state-of-the-art optimiza-
tions in the symbolic execution engine, the evaluation already
demonstrates the applicability and effectiveness of our approach
in verifying cognition-enabled robotic plans and indicates that the
general approach can be a suitable foundation to deal with larger
and more complex environments and plans.

III. VERIFIED PARTIAL RECONFIGURATION FOR SECURITY

Partial reconfiguration is a powerful technique to adapt the func-
tionality of Field Programmable Gate Arrays (FPGAs) at run-time.
When performing partial reconfiguration a dedicated Intellectual
Property (IP) component of the FPGA vendor, i.e. the Partial Recon-
figuration Controller (PRC), among a wide range of IP components
has to be used. While ensuring the functional safety of FPGA de-
signs is well understood, hardware security is still very challenging.
This applies in particular to reconfiguration-based countermeasures
which are intensively used to form a moving target for the attacker.
However, from the system security perspective a critical component
is the above mentioned PRC as noticed by many papers implement-
ing reconfiguration-based countermeasures.

In this section we review [9]. This work leverages the container
principle [10]–[12] – originally proposed as safety mechanism –
to the security domain, and by this protect the PRC of an FPGA.
The proposed encapsulation-scheme results in an architecture con-
sisting of so-called ReCoFuses (RCFs), each capturing a specific
property of interest which has to be fulfilled at any time during PRC

Reconfiguration
Memory

Partial
Reconfiguration

Controller (PRC)

ICAP-Primitive

AXI4

ICAP

Trigger

Config

Reset

Cfg.-Reg.

Error

RCF0

RCF1

RCFn

· · ·

Reconfiguration
Memory

Partial
Reconfiguration

Controller (PRC)

ICAP-Primitive

AXI4

ICAP

Trigger

Config

Reset

Original Protected

Fig. 3: Original PRC vs Proposed ReCoFuse Container Arch.

operation. The terminology follows the classical electric installation
including a fuse box. In our scheme we employ formal verification
to guarantee the correctness in detecting a security violation. Only
after successful verification, the RCFs go live via integration into
the ReCoFuse Container.

A. ReCoFuse Container

This section presents our encapsulation-scheme for the Partial
Reconfiguration Controller (PRC) of a FPGA which implements
reconfiguration-based countermeasures against physical attacks. The
scheme is based on two main components: (1) A “container” encap-
sulating the PRC, and (2) individual ReCoFuses to monitor and react
on untrusted communication with the PRC which would compro-
mise the security of the reconfiguration-based countermeasure.

In the following, we first introduce the overall architecture of the
ReCoFuse Container. Then, we detail the interfacing of the PRC
and the ReCoFuse Container which hosts the individual ReCoFuses.
Finally, the required formal verification of ReCoFuse behavior is
described.

1) Architecture of ReCoFuse Container: The left part of Fig. 3
depicts the original unprotected PRC architecture. On the right of
Fig. 3 the proposed architecture realizing our encapsulation-scheme
for the PRC is shown. As can be seen the ReCoFuse Container has
several “slots” for individual ReCoFuses (details see next section).
The ReCoFuses are denoted as RCF0...n in Fig. 3.

Moreover, all outgoing data connections between the main com-
ponents, i.e. Reconfiguration Memory, PRC and ICAP, are now also
fed into the ReCoFuses. Furthermore, a configuration register has
been added which allows the user to dynamically enable or disable
each RCF.

2) Interfaces and ReCoFuses: Listening on all reconfigura-
tion interfaces allows to monitor the reconfiguration operations
requested by the reconfiguration-based countermeasures. In Fig. 3,
these are the AXI4 and ICAP interfaces. The ICAP protocol follows
a valid/acknowledge scheme where the header of each partial bitfile
can be analyzed during data communication. For more details, we
refer to the Xilinx 7-Series partial reconfiguration user guide [13].

As can be seen in the architecture, the observed input data is
sent to the ReCoFuses. A ReCoFuse essentially implements a Finite
State Machine (FSM), and hence performs state transitions based
on the observed data. Reaching a predefined “good” or “bad” state
determines whether the usage of the PRC is considered as trusted or
untrusted. The output signal of a ReCoFuse (e.g. in this work an error
signal) allows each ReCoFuse to communicate untrusted behavior.
As a consequence emergency actions can be executed, for instance
to shut down the system. For simplicity, in Fig. 3 on the right we
have just ORed all the error signals from each ReCoFuse.

3) Verification of ReCoFuses: To guarantee the correctness
of each ReCoFuse, we require formal verification of its behavior.
Hence, temporal properties describing the state transitions of a
ReCoFuse have to be specified by the user. In other words, these
properties are used to prove which PRC communication with the

1 property a d v a n c e _ t i m e r ;
2 d i s a b l e i f f (r s t) (
3 t ##0 (c n t !=TIMEOUT and R P _ a c t i v e)
4 i m p l i e s
5 t ##1 (c n t == $pas t (c n t) + 1)
6) ;
7 endproperty
8

9 property d e t e c t _ e r r o r ;
10 d i s a b l e i f f (r s t) (
11 t ##0 (c n t ==TIMEOUT and R P _ a c t i v e)
12 i m p l i e s
13 t ##1 (e r r o r)
14) ;
15 endproperty

Listing 2: Example properties for timer

control of the reconfiguration-based counter-measures is untrusted
and what will be the resulting action in that case. Typically, a
ReCoFuse observes the communication over several clock cycles
and finally reaches a “bad” state.

B. Case Study

This section demonstrates the proposed encapsulation-scheme
for the PRC. As a case study we selected an encryption system
using AES. The system implements the moving target principle via
reconfiguration by switching between different implementations of
the AES. By this, the attacker is not faced with static logic in the
FPGA, but permanently changing one, and hence physical attacks
become much harder.

In the following, we first describe two major attack vectors. Then,
we present the ReCoFuse Container and the two ReCoFuses. Finally,
we consider their verification.

1) Attack Vectors: Breaking the reconfiguration-based moving-
target characteristic of a cryptographic system, allows attackers to
extract secret information via side-channel leakage. In order to attack
a specific area (e.g. the PRC) in a FPGA, electromagnetism- and
fault-injection-based attacks have both been reported to be effec-
tive [14] and are viable methods for disturbing the reconfiguration
procedure. We identified two major attack vectors on the PRC:

1) Time-out attack: Forcing the PRC to keep the same reconfigu-
ration active for a too long time, would result in no protection.
It removes the moving-target characteristic of the design and
makes it vulnerable to side-channel attacks.

2) Replay attack: Forcing the PRC to chose a single reconfigura-
tion continuously (or more often) removes the moving-target
characteristic as well.

This list, however, is not exhaustive and can be extended by the
respective adopters needs.

2) ReCoFuse Container: We encapsulated the PRC in a Re-
CoFuse Container. It instantiates the PRC and provides connection
to the configuration memory via AXI and the ICAP primitive as
described in Section III-A. ReCoFuses are integrated inside the
ReCoFuse Container to achieve countermeasures against the time-
out and replay attack. The concrete ReCoFuse are presented in the
following two sections.

3) Timeout ReCoFuse: Functionality: The timeout ReCoFuse
(RCF0) basically keeps track of the time between two consecutive
reconfigurations. Hence, after a successful reconfiguration, a timer
is started. If this timer expires before a new reconfiguration proce-
dure is initiated, the timeout ReCoFuse signals an error. Keeping
a specific reconfiguration active for an extended period of time –
rendering the moving target principle ineffective – can be detected
reliably by this ReCoFuse.

Verification: In Listing 2, a subset of the properties for veri-
fying the timeout ReCoFuse RCF0 are shown. The first property
advance_timer (Line 1 – Line 7) states that the counter (which
realizes the timer) advances with each time step after the previous re-
configuration is done. Here, TIMEOUT (Line 3) defines the allowed
active duration of one Reconfiguration Module (RM), i.e. a concrete
AES implementation. The RP_active (Line 3) signal is derived
from multiple signals from the reconfiguration infrastructure and
captures whether the Reconfigurable Partition (RP) is active, i.e. no
reconfiguration is currently performed. In Line 5, the $past()
statement is used to refer to the previous time-point.

The second verification property detect_error (Line 9 – Line
15 in Listing 2) ensures that RCF0 enters the “bad” state (i.e. raising
error), when the respective RM was not reconfigured in time
(i.e. before cnt reaching TIMEOUT) (Line 11). For the replay
ReCoFuse we refer to [9].

C. Evaluation

All experiments have been conducted on a Xilinx Zync-7000
Series FPGA, more precisely our evaluation platform is a Zed-
board featuring a XC7Z020-CLG484-1 FPGA component. More
recent FPGA generations feature the same reconfiguration interface,
thus our approach maintains applicability in the future. Enhanced
capabilities, such as better encryption and authentication however
can help to increase the difficulty of attacks further. Our encryp-
tion system implements the moving target principle by switch-
ing between different implementations of the AES core (based
on tiny_AES IP-core from OpenCores.org) via reconfiguration. A
dedicated controller in the FPGA (called MOVECTRL) initiates the
random (i.e. uniform) replacement of a Reconfiguration Module
(RM), i.e. between the different AES implementations.

To run the experiments, we attacked the reconfiguration process
by injecting faults in the encryption system in order to disturb the
operation of the PRC. The experiments detailed in [9] showed that
the implemented measures – leveraging the proposed scheme –
realize an effective and cost efficient protection for reconfiguration-
based secured designs. Our flexible architecture allows adding more
ReCoFuses (e.g. CRC, additional encryption, hash-based finger
printing etc.) easily.

IV. CHALLENGES

In the following we provide a list of challenges in the context of
verification. The list is not complete in the sense that all difficulties
are covered, but many pressing ones have been identified. By this, a
better understanding of the current problems in verification of the
next generation electronic systems becomes possible and directions
for future research are suggested.

Formal verification: Formal verification is inevitable for the next
generation devices to guarantee correctness. If due to the
complexity reasons formal verification cannot be applied,
simulation should be augmented or guided using formal
techniques leading to semi-formal verification. Moreover,
formal/semi-formal verification has to be considered at dif-
ferent levels of abstractions, i.e. for hardware up to virtual
prototypes which include to execute the software.
Further reading: [15]–[30]

Heterogeneous systems: The separation of a system into analog and
digital parts is not sufficient anymore. New integrated verifi-
cation solutions are necessary in particular due to increasing

sensor information available in IoT or CPSs.
Further reading: [31]–[37]

Extra-functional properties: Besides functional behavior also extra-
functional behavior, like timing/power but also security, has
to be considered during the design of a new system. Often
power and timing is controlled by firmware. Hence, these
properties have to be captured and verified as early as pos-
sible. On the other hand, security was always afterthought
and therefore new security verification techniques for hard-
ware and software have to be developed. More recently, the
perspective of ensuring morality settings and proving the
compliance with ethical guidelines has been considered. In
terms of autonomous systems, this will become an important
aspect.
Further reading: [38]–[53]

Arithmetic: Proof techniques like BDDs and SAT/SMT suffer from
limitations when applied to complex arithmetic. Recently,
methods based on Symbolic Computer Algebra (SCA) have
been used very successfully to prove the correctness of
multipliers.
Further reading: [54]–[62]

Self verification: Closing the always widening verification gap is
a major problem. A promising approach aims in continu-
ing verification tasks after fabrication of a chip during its
lifetime. Several challenges arise here to be solved on the
software level as well as on the hardware level.
Further reading: [63]–[68]

Learning systems, especially self-adapting and -learning: Driven
by the enormous advances in computing power, learning for
instance in the form of neural networks can now be easily
integrated into these systems. Verifying their correctness and
robustness however is extremely challenging.
Further reading: [69]–[72]

ACKNOWLEDGMENTS

The work has (partially) been supported by the German Re-
search Foundation (DFG), as part of Collaborative Research Center
(Sonderforschungsbereich) 1320 EASE – Everyday Activity Science
and Engineering, University of Bremen (http://www.ease-crc.org/;
the research was conducted in subproject P04) by the German Fed-
eral Ministry of Education and Research (BMBF) within the project
SELFIE under grant no. 01IW16001, within the project CONFIRM
under contract no. 16ES0565, within the project SATiSFy under
contract no. 16KIS0821K, within the project CONVERS under
contract no. 16ES0656, and by the University of Bremen’s graduate
school SyDe, funded by the German Excellence Initiative.

Finally, we would like to thank Vladimir Herdt, Tim Meywerk,
Kenneth Schmitz, Buse Ustaoglu, and Marcel Walter for their con-
tributions.

REFERENCES
[1] B. Drabble, “EXCALIBUR: a program for planning and reasoning with processes,”

Artif. Intell., vol. 62, no. 1, pp. 1–40, 1993.
[2] B. C. Williams, M. D. Ingham, S. H. Chung, and P. H. Elliott, “Model-based

programming of intelligent embedded systems and robotic space explorers,” Proc.
of the IEEE, vol. 91, no. 1, pp. 212–237, 2003.

[3] M. Beetz, L. Mösenlechner, and M. Tenorth, “Cram—a cognitive robot abstract
machine for everyday manipulation in human environments,” in IROS. IEEE, 2010,
pp. 1012–1017.

[4] T. Meywerk, M. Walter, V. Herdt, D. Große, and R. Drechsler, “Towards formal
verification of plans for cognition-enabled autonomous robotic agents,” in DSD,
2019.

[5] J. C. King, “Symbolic execution and program testing,” Commun. ACM, vol. 19,
no. 7, pp. 385–394, Jul. 1976.

[6] C. Cadar and K. Sen, “Symbolic execution for software testing: Three decades
later,” Commun. ACM, vol. 56, no. 2, pp. 82–90, Feb. 2013.

[7] S. J. Russell and P. Norvig, Artificial Intelligence: a modern approach. Malaysia;
Pearson Education Limited, 2016.

[8] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in TACAS, 2008, pp.
337–340, available at https://github.com/Z3Prover/z3.

[9] K. Schmitz, B. Ustaoglu, D. Große, and R. Drechsler, “(ReCo)Fuse your PRC or
lose security: Finally reliable reconfiguration-based countermeasures on FPGAs,”
in ARC, 2019, pp. 112–126.

[10] R. Drechsler and U. Kühne, “Safe ip integration using container modules,” in ISED,
2014, pp. 1–4.

[11] A. Chandrasekharan, K. Schmitz, U. Kühne, and R. Drechsler, “Ensuring safety
and reliability of ip-based system design – a container approach,” in RSP, 2015, pp.
76–82.

[12] K. Schmitz, A. Chandrasekharan, J. G. Filho, D. Große, and R. Drechsler, “Trust
is good, control is better: Hardware-based instruction-replacement for reliable
processor-IPs,” in ASP-DAC, 2017, pp. 57–62.

[13] Xilinx, “User guide – 7 series fpgas configuration,” Mar. 2018, https://www.xilinx.
com/support/documentation/user_guides/ug470_7Series_Config.pdf.

[14] H. Li, G. Du, C. Shao, L. Dai, G. Xu, and J. Guo, “Heavy-ion microbeam fault
injection into sram-based fpga implementations of cryptographic circuits,” IEEE
Transactions on Nuclear Science, vol. 62, no. 3, pp. 1341–1348, 2015.

[15] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic model checking without
BDDs,” in TACAS, 1999, pp. 193–207.

[16] M. Sheeran, S. Singh, and G. Stålmarck, “Checking safety properties using induc-
tion and a SAT-solver,” in FMCAD, 2000, pp. 108–125.

[17] A. R. Bradley, “SAT-based model checking without unrolling,” in International
Conference on Verification, Model Checking, and Abstract Interpretation, 2011, pp.
70–87.

[18] N. Een, A. Mishchenko, and R. Brayton, “Efficient implementation of property
directed reachability,” in FMCAD, 2011, pp. 125–134.

[19] D. Große, H. M. Le, and R. Drechsler, “Proving transaction and system-level
properties of untimed SystemC TLM designs,” in MEMOCODE, 2010, pp. 113–
122.

[20] C.-N. Chou, Y.-S. Ho, C. Hsieh, and C.-Y. Huang, “Symbolic model checking on
SystemC designs,” in DAC, 2012, pp. 327–333.

[21] A. Cimatti, I. Narasamdya, and M. Roveri, “Software model checking SystemC,”
TCAD, vol. 32, no. 5, pp. 774–787, 2013.

[22] H. M. Le, D. Große, V. Herdt, and R. Drechsler, “Verifying SystemC using an
intermediate verification language and symbolic simulation,” in DAC, 2013, pp.
116:1–116:6.

[23] V. Herdt, H. M. Le, and R. Drechsler, “Verifying SystemC using stateful symbolic
simulation,” in DAC, 2015, pp. 49:1–49:6.

[24] V. Herdt, H. M. Le, D. Große, and R. Drechsler, “Boosting sequentialization-
based verification of multi-threaded C programs via symbolic pruning of redundant
schedules,” in ATVA, 2015, pp. 228–233.

[25] H. M. Le, V. Herdt, D. Große, and R. Drechsler, “Towards formal verification of
real-world SystemC TLM peripheral models – a case study,” in DATE, 2016, pp.
1160–1163.

[26] V. Herdt, H. M. Le, D. Große, and R. Drechsler, “ParCoSS: efficient parallelized
compiled symbolic simulation,” in CAV, 2016, pp. 177–183.

[27] V. Herdt, H. M. Le, D. Große, and R. Drechsler, “Compiled symbolic simulation for
SystemC,” in ICCAD, 2016, pp. 52:1–52:8.

[28] V. Herdt, H. M. Le, D. Große, and R. Drechsler, “Towards fully automated TLM-
to-RTL property refinement,” in DATE, 2018, pp. 1508–1511.

[29] V. Herdt, H. M. Le, D. Große, and R. Drechsler, “Verifying SystemC using interme-
diate verification language and stateful symbolic simulation,” TCAD, vol. 38, no. 7,
pp. 1359–1372, July 2019.

[30] V. Herdt, D. Große, H. M. Le, and R. Drechsler, “Early concolic testing of embedded
binaries with virtual prototypes: A RISC-V case study,” in DAC, 2019, pp. 188:1–
188:6.

[31] S. Steinhorst and L. Hedrich, “Trajectory-directed discrete state space modeling for
formal verification of nonlinear analog circuits,” in ICCAD, 2012, pp. 202–209.

[32] C. Radojicic, C. Grimm, F. Schupfer, and M. Rathmair, “Verification of mixed-
signal systems with affine arithmetic assertions,” VLSI Design, vol. 2013, pp.
239 064:1–239 064:14, 2013.

[33] M. Barnasconi, M. Dietrich, K. Einwich, T. Vörtler, J. Chaput, M. Louërat,
F. Pêcheux, Z. Wang, P. Cuenot, I. Neumann, T. Nguyen, R. Lucas, and E. Vaumorin,
“UVM-SystemC-AMS framework for system-level verification and validation of
automotive use cases,” IEEE Design & Test, vol. 32, no. 6, pp. 76–86, 2015.

[34] M. Hassan, D. Große, H. M. Le, T. Vörtler, K. Einwich, and R. Drechsler,
“Testbench qualification for SystemC-AMS timed data flow models,” in DATE,
2018, pp. 857–860.

[35] T. Vörtler, K. Einwich, M. Hassan, and D. Große, “Using constraints for SystemC
AMS design and verification,” in DVCon Europe, 2018.

[36] M. Hassan, D. Große, H. M. Le, and R. Drechsler, “Data flow testing for SystemC-
AMS timed data flow models,” in DATE, 2019, pp. 366–371.

[37] M. Hassan, D. Große, T. Vörtler, K. Einwich, and R. Drechsler, “Functional
coverage-driven characterization of RF amplifiers,” in FDL, 2019.

[38] K. Grüttner, P. A. Hartmann, K. Hylla, S. Rosinger, W. Nebel, F. Herrera, E. Villar,
C. Brandolese, W. Fornaciari, G. Palermo, C. Ykman-Couvreur, D. Quaglia, F. Fer-
rero, and R. Valencia, “The COMPLEX reference framework for HW/SW co-design
and power management supporting platform-based design-space exploration,” Mi-
croprocessors and Microsystems, vol. 37, no. 8, Part C, pp. 966 – 980, 2013.

[39] G. Onnebrink, R. Leupers, G. Ascheid, and S. Schürmans, “Black box ESL power
estimation for loosely-timed TLM models,” in SAMOS, 2016, pp. 366–371.

[40] V. Herdt, H. M. Le, D. Große, and R. Drechsler, “Towards early validation of
firmware-based power management using virtual prototypes: A constrained random
approach,” in FDL, 2017, pp. 1–8.

[41] D. Lemma, D. Große, and R. Drechsler, “Natural language based power domain
partitioning,” in DDECS, 2018, pp. 101–106.

[42] D. Lemma, M. Goli, D. Große, and R. Drechsler, “Power intent from initial ESL
prototypes: Extracting power management parameters,” in NORCAS, 2018, pp. 1–
6.

[43] V. Herdt, H. M. Le, D. Große, and R. Drechsler, “Maximizing power state cross
coverage in firmware-based power management,” in ASP-DAC, 2019, pp. 335–340.

[44] M. Schwarz, R. Stahl, D. Müller-Gritschneder, U. Schlichtmann, D. Stoffel, and
W. Kunz, “ACCESS: HW/SW co-equivalence checking for firmware optimization,”
in DAC, 2019, p. 187.

[45] W. Hu, J. Oberg, A. Irturk, M. Tiwari, T. Sherwood, D. Mu, and R. Kastner,
“Theoretical fundamentals of gate level information flow tracking,” TCAD, vol. 30,
no. 8, pp. 1128–1140, Aug 2011.

[46] P. Schaumont, M. O’Neill, and T. Güneysu, “Introduction for embedded platforms
for cryptography in the coming decade,” ACM Trans. Embedded Comput. Syst.,
vol. 14, no. 3, pp. 40:1–40:3, 2015.

[47] P. Subramanyan, S. Malik, H. Khattri, A. Maiti, and J. Fung, “Verifying information
flow properties of firmware using symbolic execution,” in DATE, 2016, pp. 337–
342.

[48] A. Ardeshiricham, W. Hu, J. Marxen, and R. Kastner, “Register transfer level
information flow tracking for provably secure hardware design,” in DATE, 2017,
pp. 1691–1696.

[49] M. Hassan, V. Herdt, H. M. Le, D. Große, and R. Drechsler, “Early SoC security
validation by VP-based static information flow analysis,” in ICCAD, 2017, pp. 400–
407.

[50] H. M. Le, D. Große, N. Bruns, and R. Drechsler, “Detection of hardware trojans in
SystemC HLS designs via coverage-guided fuzzing,” in DATE, 2019, pp. 602–605.

[51] M. Goli, M. Hassan, D. Große, and R. Drechsler, “Security validation of VP-based
SoCs using dynamic information flow tracking,” it-Information Technology, vol. 61,
no. 1, pp. 45–58, 2019.

[52] M. R. Fadiheh, D. Stoffel, C. W. Barrett, S. Mitra, and W. Kunz, “Processor
hardware security vulnerabilities and their detection by unique program execution
checking,” in DATE, 2019, pp. 994–999.

[53] R. Drechsler and C. Lüth, “Code is ethics – formal techniques for a better world,”
in DSD, 2019.

[54] J. Lv, P. Kalla, and F. Enescu, “Efficient Gröbner basis reductions for formal
verification of Galois field arithmetic circuits,” TCAD, vol. 32, no. 9, pp. 1409–
1420, Sept 2013.

[55] F. Farahmandi and B. Alizadeh, “Gröbner basis based formal verification of large
arithmetic circuits using gaussian elimination and cone-based polynomial extrac-
tion,” MICPRO, vol. 39, no. 2, pp. 83–96, 2015.

[56] A. Sayed-Ahmed, D. Große, U. Kühne, M. Soeken, and R. Drechsler, “Formal
verification of integer multipliers by combining Gröbner basis with logic reduction,”
in DATE, 2016, pp. 1048–1053.

[57] A. Sayed-Ahmed, D. Große, M. Soeken, and R. Drechsler, “Equivalence checking
using Gröbner bases,” in FMCAD, 2016, pp. 169–176.

[58] D. Ritirc, A. Biere, and M. Kauers, “Column-wise verification of multipliers using
computer algebra,” in FMCAD, 2017.

[59] A. Mahzoon, D. Große, and R. Drechsler, “Combining symbolic computer algebra
and boolean satisfiability for automatic debugging and fixing of complex multipli-
ers,” in ISVLSI, 2018, pp. 351–356.

[60] A. Mahzoon, D. Große, and R. Drechsler, “PolyCleaner: clean your polynomials
before backward rewriting to verify million-gate multipliers,” in ICCAD, 2018, pp.
129:1–129:8.

[61] A. Mahzoon, D. Große, and R. Drechsler, “RevSCA: Using reverse engineering to
bring light into backward rewriting for big and dirty multipliers,” in DAC, 2019, pp.
185:1–185:6.

[62] D. Kaufmann, A. Biere, and M. Kauers, “Verifying large multipliers by combining
SAT and computer algebra,” in FMCAD, 2019.

[63] R. Drechsler, H. M. Le, and M. Soeken, “Self-verification as the key technology
for next generation electronic systems,” in Symposium on Integrated Circuits and
System Design, 2014, invited Talk.

[64] R. Drechsler, M. Fränzle, and R. Wille, “Envisioning self-verification of electronic
systems,” in Int’l Symp. on Reconfigurable Communication-centric Systems-on-
Chip, 2015.

[65] F. Bornebusch, R. Wille, and R. Drechsler, “Towards lightweight satisfiability
solvers for self-verification,” in International Symposium on Embedded Computing
and System Design, 2017.

[66] B. Ustaoglu, S. Huhn, D. Große, and R. Drechsler, “SAT-Lancer: a hardware SAT-
solver for self-verification,” in GLSVLSI, 2018, pp. 479–482.

[67] M. Ring, F. Bornebusch, C. Lüth, R. Wille, and R. Drechsler, “Better late than never
: Verification of embedded systems after deployment,” in DATE, 2019, pp. 890–895.

[68] B. Ustaoglu, S. Huhn, F. S. Torres, D. Große, and R. Drechsler, “SAT-Hard: A
learning-based hardware SAT-solver,” in DSD, 2019.

[69] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, “Safety verification of deep
neural networks,” in CAV, 2017, pp. 3–29.

[70] G. Katz, C. W. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer, “Reluplex: An
efficient SMT solver for verifying deep neural networks,” in CAV, 2017, pp. 97–117.

[71] M. Wicker, X. Huang, and M. Kwiatkowska, “Feature-guided black-box safety
testing of deep neural networks,” in TACAS, 2018, pp. 408–426.

[72] W. Ruan, M. Wu, Y. Sun, X. Huang, D. Kroening, and M. Kwiatkowska, “Global
robustness evaluation of deep neural networks with provable guarantees for the
hamming distance,” in IJCAI, 2019, pp. 5944–5952.

