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ABSTRACT
This paper introduces a new method to trace cycle-accurately
the temporal behavior of on-chip signals while operating in-field.

Current cycle-accurate schemes incur unacceptable amounts of

data for logging, storage and processing.

Our key idea to enable efficient yet cycle-accurate tracing, is

to bring timing to the front as a main traced artifact. We split the

signal tracing into consecutive (back-to-back) finite trace-cycles.

Within a trace-cycle, a signal’s value-change instance gets assigned

an encoded timestamp. At the end of each trace-cycle, these en-

coded timestamps are aggregated into a logged timeprint, which
summarizes the temporal behavior over the trace-cycle.

To retrieve the accurate timing, we reconstruct the exact in-

stances from a timeprint via a SAT query. The experiments demon-

strate how unprecedented lightweight tracing can be applied, and

how timeprints enable the verification of cycle-accurate properties

and the detection of sporadic temperature effects.
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1 INTRODUCTION
In late May 2018, the National Transportation Safety Board (NTSB)

issued the preliminary report about the first instance of an au-

tonomous car killing a pedestrian [3]. The report included informa-

tion about the timing of when object identifications happened. The

timings provided were very coarse; and if the delay that caused the

crash was dependent on signals exchanged between modules, the

exact timing of the signals’ firings would be crucial. Nowadays, re-

porting such events is carried out by the systems about themselves,

as in space-telemetry or automotive-diagnostics and telematics.

Accurate, independent and non-intrusive tracing of on-chip signals

is needed to determine what happened exactly. This becomes even

more vital for determining liability when signals are exchanged

between systems provided by different suppliers.

In this paper, we target the scenario where a cycle-accurate post-

mortem analysis is performed when an unexpected failure occurs

during in-field deployment. On the cycle-accurate level, variant

forms of Runtime Verification (RV) [9] and monitoring [10], can be

utilized to check a subset of the specified behaviors. Specified
behaviors are those defined at design-time by the system specifica-

tions. Unfortunately, in practice, there are unspecified behaviors,
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Figure 1: Cycle-Accurate Tracing Taxonomy

as the specifications are not always complete. Additionally, there

are specified behaviors that cannot be formalized and synthesized

as on-chip monitors (either due to limited expressiveness of moni-

toring logic or limited on-chip area). This is illustrated on the right

side of Figure 1: during deployment, RV can only cover a subset of

the specified behaviors and none of the unspecified behaviors.

During the development phase, cycle-accurate tracing (CAT) is

heavily applied in Real-Time (RT) embedded software domain using

dedicated debuggers/tracers, such as [1, 4]. This category of tracers

focuses on software operating on a processor or a micro-controller,

where tracing depends on the existence of an instruction set and

program counters that proceeds the execution. For an arbitrary on-

chip signal, other solutions like logic and protocol analyzers and/or

scan-chain-based methods for FPGA/ASIC Systems on Chip (SoC)

such as [5, 17] exist. These provide different forms of functional

and sometimes cycle-accurate tracing. Unspecified behaviors might

be captured during development by such existing CAT (meaning the

circle of CAT might reach to that partition), as shown on the left

of Figure 1. However, for any generic on-chip signal this is limited

to development time. During deployment, none of these CAT
methods can provide continuous cycle-accurate tracing in-field,

due to limited trace-buffer’s area and/or notorious logging and

storage requirements [23], which easily exceed several Gigabytes

per second.

In summary, no existing approach can provide continuous cycle-

accurate tracing that can cover unspecified behaviors during

deployment. This is where the proposed method comes to serve.

Our timeprints are designed to keep an independent, compressed,

cycle-accurate temporal record/trace of what happened on chip.

This is vital given our increasing dependence on digital systems, of

which the executions are conducted on-chip without leaving a trace.

Timeprints’ very low bit-rate suffices for efficient logging, storage

and processing during deployment. Hence, they have the potential

to change how we think about in-field cycle-accurate tracing. Our

contribution can be summarized as:

• a timeprints-based light-weight cycle-accurate tracingmethod,

including a formulation and a reduction to SAT of the timeprint

reconstruction problem, and

• an implementation of the approach using realistic experi-

ments, showing how after-deployment cycle-accurate spo-

radic behavior tracing can be efficiently checked.
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2 OVERVIEW
Timeprints enable efficient tracing by trying not to log the infor-

mation –properties– we already know about the signal. What gets

logged is something that can enable us to check accurately what

happened when doubt is raised. So, we use the properties already
known to be holding, to check the properties we are suspecting, or

even to restore the exact occurrences when we have no clue at all.

Figure 2 presents a clarifying classification of signal’s properties

from cycle-accurate perspective.

After the signal to be traced is identified, properties of that signal

are used in the development phase, to decide about which moni-

tors/checks shall be implemented. The Signal-Analysis label on the

upper left side of Figure 3, shows this step at the design-phase. This
would result in a subset of the describable (definable) properties,

which can be formally defined down to the cycle-accurate level, as

illustrated by the subsets in Figure 2. Among the defined-properties,

some can be checked using hardware synthesized monitors, con-

stituting another subset of the defined properties. Such monitors

verify in run-time that certain properties hold about the traced sig-

nal [10], or reason about combinations/history of them as in [11].

They can also be used in WCET analysis as in [12], and can even

correct/enforce the behavior if the property is violated during run-

time [13]. Due to on-chip space limitation, only a subset of the

synthesizable monitors gets implemented. The darkest area in the

Timeprints set in Figure 2, represents the definable properties which
were undefined at design-time on the cycle-accurate level, and

timeprints can enable tracing them.

In our methodology flow, the defined properties, resulting from
the signal-analysis step do not only result in the run-time verifi-

cation monitors, but are also used to decide the size and encoding

of the timestamps, as shall be seen later in Sections 3.3, 4.3 and

5.1. Like the RV monitors, the timeprints generator (timestamps

aggregation and logging) is implemented in hardware, as in the

middle of Figure 3. Light-weight timeprints are logged all the time

during the execution, with constant rate and transmitted to some

central database, see Figure 3.

The idea of timestamps aggregation was first introduced in [16],

to compress the logged data into footprints. Instructions footprints-

aided analysis was used in [18]. Periodic logging [24], analysis-

based message-selection [8], and selective data capture and com-

paction [25], were all utilized to overcome the unacceptable accu-

rate data logging requirements. These are all development-phase

methods, that require on-chip trace buffers and/or many reruns.

When the system is running, hardware monitors (if used) will

be checking the implemented defined properties satisfaction. Then,

when an un-expected failure happens, or any doubts about certain

point of operation in the past is raised, the respective timeprints

are consulted in a postmortem-phase, as in th right if Figure 3.

To reconstruct the exact instances that can lead to the timeprint

at hand, we encode the possible timestamps’ aggregations and the

timeprint into an All-SAT problem. We then utilize the verified

defined-properties about the execution in the SAT problem encod-

ing to prune the huge search space. The properties already known

to hold because the hardware monitors checking them indicate their

satisfaction, can be encoded into the SAT-solver input. For example:

missing deadlines, as a defined property, would be captured by RV;

while smaller delays that might indicate a security threat [14], can

skip such RV check. This RV check can still be used to prune the

SAT-problem search space; then the reconstructed instances would

show the smaller delays. Dashed lines in Figure 3 indicate optional

usage in the reconstruction step. Failure properties obtained from

analyzing the failure that took place can also be encoded. This

renders the reconstruction effort acceptable, and hence the whole

method very practical.

Going back from a latest traced state, or check-point, using the

formal description of the system, was used in [19]. But this formal

reconstruction is neither time-accurate nor sporadic behavior pre-

serving; because it requires several reruns. Formal reconstruction

of scenarios that can lead to an existing failed state was also intro-

duced in [6]; where a candidate simulation is provided as a possible

failure scenario, but without any guarantee relating this scenario

to what actually took place on-chip.

A timeprints’ trace enables reconstructing the exact instances, in

a way that can show non-monitored delays, and/or give an evidence

of a specific failure scenario or threat hypothesis. By encoding

properties, the reconstruction process can directly check, potential

simulation scenarios for plausibility or likelihood, as in the top-right
of Figure 3. Timeprints can also in many cases prove or disprove

exact properties about specific execution traces. This makes them

serve as a potential witness, which can be consulted when needed,

for transparent liability assignment. Timeprints are not meant to

replace existing methods, rather they are inspected to reason about

the details of cycle-accurate behavior when needed.

In the next section, we clarify by example the timeprints genera-

tion and reconstruction steps.

3 DIDACTIC EXAMPLE
Consider the scenario of autonomous car crash; where the obstacle

was identified, the car slowed down but still hit the obstacle. We

assume that every module exactly behaved according to the logged

diagnostic information, which narrowed the suspicions down to

the exact timing of sending signal St , sent by chip C1 to chip C2.
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Figure 4: Signal Values Changes, Corresponding Timestamps Aggregation and Reconstruction

Our methodology starts with having a designated discrete signal

St to trace. We split the tracing task of St into trace-cycles that
containm clock-cycles each. In our example,m = 16. In Figure 4,

on the left-hand side, a trace-cycle j is depicted, where four changes
in St ’s value V1, . . . ,V4 took place. If St was sent by C1 before a
specified deadline, that lies at the dth clock-cycle in the trace-cycle

j, then C2 is responsible for the overall system’s delayed response.

But if St was sent after the deadline, C1 is responsible.

A common way to record the behavior of a signal like St , is to log
the precise timings. This means we log a number with log(m) bits
each time the value of St changes. In Figure 4, we have 4 changes.

Hence, we log 4·4 = 16 bits. In general, when the number of changes

is denoted by k ∈ N, we need to log k · log(m) bits each trace-cycle.

Thus, the amount of logged information depends linearly on k . As
k varies from one trace-cycle to another, the amount of logged

bits also does. This makes processing or searching through logged

information difficult. Using one pin for logging, during a trace-cycle

of lengthm, the maximum number of bits that can be logged each

trace-cycle is m. If we need log(m) bits for each change, we can

record at mostm/ log(m) of them.

3.1 Timeprint Logging
For the method, we identify clock-cycles by encoded timestamps.

These are bitvectors of a fixed dimension (or size) b, wherem ≥ b ≥
log(m). In Figure 4, we identify the i-th clock-cycle by a timestamp

TS(i ). We use b = 8 bits for the 16 timestamps.

Initially, we use a b-bit hold vector, with all bits set to 0. When

a change in St occurs, a corresponding change-signal S (i ) goes to
1, causing the corresponding timestamp to be aggregated –here

added– to the currently hold vector. At the end of the trace-cycle,

this results in ab-bit vector TP , called the timeprint. Since the vector

is a summary of the traced signal’s behavior, our method logs TP . In
Figure 4, we aggregate/add the timestamps TS(4), TS(5), TS(10), and
TS(11). The resulting timeprint TP is the sum of these timestamps:

TP = (0, 0, 0, 0, 0, 0, 0, 1). TP is shown in the middle of Figure 4, as

an 8-bit vector. Note that modulo 2 addition is just bitwise XOR.

Bitwise XOR function can be implemented easily on hardware

and is bit-width preserving. When we use the XOR as an aggre-

gation function, the number of changes is lost. So, we record the

precise number of changes that happened during a trace-cycle in

a counter k that is increased each time a change shows up. Since

there are at mostm changes, we can encode k into log(m) bits. We

show later, that k plays a central role in the reconstruction problem.

During a trace-cycle, our method always logs b + log(m) bits in
total: b for the timeprint TP , log(m) for the counter k . This enforces
a constant number of logged bits each trace-cycle, irrespective of k .

3.2 Reconstruction Problem
In a trace-cycle, the only information logged by our method are: the

timeprint and the number of changes in the traced signal. This may

create ambiguity: there might be different change-signals leading to

the same timeprint. Finding these is called reconstruction problem.

For the aggregated timeprint (0, 0, 0, 0, 0, 0, 0, 1) in Figure 4, there
are more solutions besides the actual change-signal (we’ll call it for
simplicity signal): TS(4) + TS(5) + TS(10) + TS(11), for example,

TS(1) + TS(5) + TS(9), illustrated at the top middle of Figure 4. In

total, there are 256 signals whose timestamps sum up to TP . The
number of reconstructions (SAT-query solutions) increases with

the decrease in the timeprint size. Until now we have not yet taken

into account all of the logged data. Since we also know that the

actual signal has exactly k changes, we can exclude those violating

this requirement. This leads to a formal problem description:

"Given a timeprint TP and a number k of changes, find all signals
with k changes, whose timestamps add up to TP."

For our example, limiting the number of changes to 4 decreases

the number of candidate signals from 256 to only 8. A list of these

is shown on the right-hand side of Figure 4. It is worth noting

that the reconstruction problem crucially depends on the chosen
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timestamps. Linear independent timestamps would cause no ambi-

guity but the timeprint width would then bem-bit which is too big.

On the otherhand, too compressed timestamps would increase the

degree of ambiguity.

3.3 Temporal Properties
To isolate the actual signal in the reconstruction problem, we utilize

information obtained from the defined and verified properties.

Back to our original scenario, where the traced signal St was
sent from chip C1 to chip C2, we know that these are timings of

writes of new St values; so if we know that such writes always last

for one cycle (by some verified specifications) after which St goes
to zero and remains there until a new value of St is written, we can
conclude that all changes in the signal (represented by ones), has

to occur in two consecutive clock cycles; and hence the last shaded

row is actually the one that happened. In our example, it was not

an accident that we had at the end one possibility and we became

sure of what accurately took place. We utilized the property (of 2

consecutive value’s changes), to choose a set of timestamps that

would, in most cases, result in a unique reconstruction for each

couple of pairs (4.3 and 5.1.2 discuss timestamps encoding). How-

ever, sometimes we cannot exclude all the non-actual traces. For

example, if one more cycle delay was allowed, the second possibility

(2
nd

row, marked with ■) would have been a candidate.

Often, we do not need to find the actual signal, rather it is enough

to check whether all signals that might lead to the logged timeprint,

satisfies or breaks a certain safety property. Consider the case of

meeting a deadline. Assume that the deadline is given by i = 8.

In Figure 4, we can see that all 8 possible reconstructed signals

have a 1-bit already before the 8-th position. This means that all

traces involving 4 changes that aggregate to TP meet the deadline,

no matter which one actually took place. So, it may happen that

the information given by the temporal property does not suffice to

isolate a single signal reconstruction (i.e. a single cycle-accurate

instances). But often, we only want to know whether there is a

trace that satisfies or breaks a certain temporal property.

4 FORMULATION AND ENCODING
We formalize the logging procedure, prove it to be a sound abstrac-

tion, and present a solution for the reconstruction problem. The

underlying domain is F2, the field consisting of 0, 1 with addition

and multiplication modulo 2. Let n ∈ N. We write Fn
2
for the n-

dimensional vector space over F2. This is the set of n-bit vectors
where addition is bitwise XOR.

We trace signals over trace-cycles of lengthm, withm ∈ N. These
are periods containing m clock-cycles. Let such a trace-cycle be

fixed. Formally, a signal is a map S : [1..m]→ {0, 1}, where S (i ) = 1

indicates a change of the traced-signal in the i-th clock-cycle. By

Sig, we denote the set of all such signals.

Fix b ∈ N withm ≥ b ≥ log(m). We define the logging relative

to an encoding. An encoding is an injective map TS : [1..m]→ Fb
2
,

which assigns each clock-cycle a unique timestamp. The logging pro-
cedure abstracts a signal S to a pair (TP,k ), where TP ∈ Fb

2
is called

timeprint and k is the number of changes in S . Such a pair is called

a log entry. The set of all possible log entries is Log = Fb
2
× [1..m].

Formally, for a fixed encoding TS, the logging procedure imple-

ments the function α̃TS : Sig → Log. Given a signal S , the function
returns a log entry α̃TS (S ) = (TP,k ) with TP =

∑
i :S (i )=1 TS(i ) and

k = |{i | S (i ) = 1}|. Note that the timeprint TP is the sum over those

timestamps where the traced signal changes. Moreover, there are

exactly k changes in S .

4.1 Soundness
We show that the logging procedure constitutes a sound abstraction

of signals. To this end, we establish a Galois insertion between the

domain of signals and the domain of log entries.

Formally, the domain we abstract from is the powerset lattice

P (Sig). The abstract domain is the powerset lattice over log en-

tries, P (Log). Fix an encoding TS : [1..m] → Fb
2
. For the ab-

straction function, we apply the logging procedure to sets of sig-

nals. Let αTS : P (Sig) → P (Log) be the lifting of α̃TS , defined by

αTS (F ) =
⋃
S ∈F {α̃TS (S )}, where F ∈ P (Sig).

For the concretization γTS : P (Log) → P (Sig), we first define an
auxiliary function γ̃TS : Log → P (Sig). It maps a log entry (TP,k )
to its preimage under α̃TS , the set {S ∈ Sig | α̃TS (S ) = (TP,k )}. Then
γTS is the lifting of γ̃TS to sets of log entries, defined as above.

Both functions, αTS and γTS are monotonic by definition: We

have that αTS (F ) ⊆ αTS (G ) for F ⊆ G sets of signals, and similar for

γTS . Moreover, the functions establish a Galois insertion as shown

in the next lemma. The proof follows from the above definitions.

Lemma 1. Let TS be an encoding. For each F ∈ P (Sig) we have
F ⊆ γTS (αTS (F )). Moreover, for each V ∈ P (Log) we have the equal-
ity V = αTS (γTS (V )).

4.2 Signal Reconstruction
Since the logging procedure is an abstraction, there might be dif-

ferent signals that result in the same log entry. Finding all signals

that get abstracted to a particular entry is what we refer to as the

signal reconstruction problem. We give a formal definition of the

problem and an idea of an efficient SAT-based solution.

Let (TP,k ) ∈ Log be the output of the logging procedure. Recon-

structing all signals S that get abstracted to (TP,k ) is the task of

computing the preimage of (TP,k ) under the map α̃TS . We define

the Signal Reconstruction problem as follows:

Signal Reconstruction (SR)
Input: Encoding TS : [1..m]→ Fb

2
, timeprint TP ∈ Fb

2
, k ∈ N.

Task: Find all signals S with α̃TS (S ) = (TP,k ).

We can state an equivalent form of SR in terms of linear algebra.

LetA = [TS(1) | · · · | TS(m)] ∈ Fb×m
2

be the matrix consisting of all

timestamps. SR is equivalent to finding all solutions x ∈ Fm
2

of the

systemAx = TP , wherex has exactlyk entries set to 1. Each solution
x represents a signal S with α̃TS (S ) = (TP,k ) and vice versa.

Variants of this problem are well-known in coding theory [22].

Moreover, SR is known to beNP-hard [7] and it is therefore unlikely
that it can be solved in polynomial time.

To solve SR, we suggest a SAT-encoding. Usually, the input to
a SAT solver is a formula in CNF. However, we use an extension

which also allows clauses of XORed variables. Those are particularly

helpful when encoding linear equations. A solver supporting this

input format is Cryptominisat [21].
For the encoding, we introducem variables x1, . . . ,xm . These

are the bits of a solution x in the system Ax = TP . Intuitively,
setting xi to 1 amounts to a signal that has a change in the i-th
clock cycle. This means that timestamp TS(i ) is chosen and summed
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up to arrive at TP . The linear equations Ax = TP are modeled by

b clauses C1, . . . ,Cb . A variable xi occurs in Cj if the j-th bit of

TS(i ) is 1. All the variables in Cj are XORed. If the j-th bit of TP is

0, the clauseCj gets negated, a feature supported by Cryptominisat.
Hence, the clause represents exactly the j-th equation of Ax = TP .

What is left to encode is the cardinality constraint over the

variables. We have to choose exactly k out of them variables and

set them to 1. A naive encoding would use

( m
k+1

)
+
( m
m−k+1

)
clauses,

resulting in an intractable SAT query. We use the efficient and

compact cardinality encoding proposed in [20], which introduces

O (m · k ) additional variables and needs only O (m · k ) clauses to
express the constraint.

4.3 Choice of Timestamps
The choice of the timestamps has influence on the ambiguity oc-

curring within the logging procedure and thus on the time needed

to solve SR. Intuitively, a sparse choice of timestamps allows only

for few possibilities to sum up to the timeprint. It decreases the

number of solutions ofAx = TP , making it easier to find all of them.

However, we can only allow sparsity up to a certain extend as the

number of logged bits would grow.

Ideally, we would choose a timestamp encoding that avoids am-

biguity at all. This can be achieved by constructing an encoding

TS : [1..m]→ Fb
2
, where TS(1), . . . , TS(m) are linearly independent

vectors. Then, the system Ax = TP has a unique solution and SR
can be solved quite fast. For example, a one-hot encoding would

be of this type. However, choosingm linearly independent vectors

requires that the dimension of Fb
2
ism, hence b =m. But then, the

number of bits we need to log depends linearly onm, contradicting

our goal to establish a space-efficient logging procedure.

We can achieve a trade-off in the choice of timestamps by requir-

ing linear independence only up to a depth d . That means each sub-

set of timestamps T ⊆ TS([1..m]) of size d is linearly independent.

Asd grows, the number of solutions to SR decreases, but the number

of logged bits b increases. Currently, we fix d = 4 and approximate

TS and b using a practical heuristic. Computing an encoding with

the smallest possible b is an open problem for future research.

5 APPLICATION
We first discuss timeprint design parameters, and how they affect

the reconstruction time. Then two different experiments, showing

how timeprints can be used, are presented.

5.1 Timeprint Design Parameters
5.1.1 Trace-cycle length m. The choice of m affects directly the

amount of logging. When b is the bit-width of the timeprint, the

bit rate required for logging is: (b + loд(m))/m multiplied by the

maximum clock-rate. Increasing m would decrease the log-rate,

but the average number of changes k , would increase, increasing

the number of solutions, and the reconstruction time. Each row at

Table 1 (to the left) represents the reconstruction time for certain

trace-cycle lengthm and number of changes k . At the end of each

row, the log-rate R required for a signal of 100 MHz is given.

5.1.2 Timestamp Encoding. In Random-constrained timestamp gen-

eration: timestamps are generated randomly, while checking for

Linear Independence of depth 4 (LI-4). We use generic heuristics,

which starts by smallest possible timestamp fulfilling LI-4; then we

increment and check that the condition still holds. This encoding

leads to smaller b and less average reconstruction times than the

random-constrained encoding, see at the right Table 2.

5.1.3 Encoding Temporal Properties. As mentioned earlier, the ad-

ditional encoding of temporal properties of a signal into SR helps

pruning the search space and reduces the SAT solving time. When

the property is a violation (satisfaction) of some safety property,

then we only require one SAT-solution (UNSAT) to prove (disprove)

that a violation has (not) happened. For illustration we consider

two simple properties, P2: 2 consecutive timestamps would appear

at least once, and Dk : at least k changes happens before deadline D.
Columns marked with c-SAT corresponds to solving time of SR

(i.e. only using cardinality constraints c=k). The columns marked

with P2 and Dk show the solving time under additional constraints

imposed by P2 and Dk of k = 3,D = 32, respectively. For each

columns pair, the first gives time until reaching the first candidate,

while the second (c-SAT.10) gives time until the 10
th

satisfying

solution, or until no more solutions is found, if there are already

less than 10. As can be seen, P2 is less efficient than Dk , because it
is also a weaker property. Using P2 and Dk , together, reduces the
solving time even more than Dk alone (column c +Dk +P2). Notice
that, in Tables 1 and 2, we just used some specific timeprints, and

that the time is affected by the timeprint itself, and not only the

properties
1
. We can model properties defined in [15].

5.2 Experiments
5.2.1 CAN Bus Communication. The exact timing of the actual

messages exchange on the bus in Controller Area Network (CAN),

used in automotive for inter-modules communications, is vital in

determining the actual transmission time that took place in the

real-world. A sample of CAN messages log (as usually reported by

the software) is shown here, where timestamps are at the left:

2.257008s GearBoxInfo(1020)d 1 01 size -> 58
2.253552s EngineData(100)d 8 00 00 19 00 00 00 00 00-> 125
2.256312s ABSdata(201) d 6 00 00 00 00 00 00 -> 105
2.260804s Ignition_Info(103) d 2 01 00 -> 67
...

If we name these messages asm1,m2, ...m4, thenm1 would appear

on the CAN bus as (where ones corresponds to the bus’s recessive

state, and zeros to the bus’s dominant state):

00111111110000000100000001000000010110000110111111111111

The CAN bus idle state is 1, hencem1’s first bit 0 is the start bit,

and then comes the ID (1020=01111111100), then the data size,

... etc
2
. To log timeprints during the in-field message exchange

on a 5 Mbps bus, a trace-cycle length of 1000 clock-cycles, and

timestamps width of 24, were chosen. This means 5 timeprints and

their respective number of change k were logged every second, i.e.

170 bps (5*(24+10)). Such available data from CAN messages logs

can be encoded in our SAT-reduction. We built a tool, that directly

takes CAN messages, and other temporal properties as input, and

encodes the corresponding clauses to the SAT solver input.

In our experiment, two modules exchanging the message m2

were involved in a late car response, andm2’s transmission time

would determine who is responsible for the delay. The CAN mes-

sages listing above was from the transmitter. At the receiver,m2,

was received as:

1
Results were obtained on an Intel i7-7500U CPU@ 2.70GHz x 4 with 15.6 GiB memory.

2
Details are in the ISO-11898:2003 Standard. We ignore bit-stuffing here for simplicity.
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m,k b c-SAT.1 c-SAT.10 c+P2.1 c+P2.10 c+Dk.1 c+Dk.10 c+Dk+P2.1 c+Dk+P2.10 R

64/3

b
=
1
3

0m0.010s 0m0.085s 0m0.026s 0m0.092s 0m0.023s 0m0.027s 00m0.049s 0m0.022s

2
0
.9
7
M
H
z

64/4 0m0.048s 0m0.149s 0m0.014s 0m0.192s 0m0.023s 0m0.044s 0m0.032s 0m0.036s

64/8 0m0.019s 0m0.101s 0m0.021s 0m0.175s 0m0.029s 0m0.222s 0m0.045s 0m0.221s

64/32 0m0.032s 0m0.023s 0m0.013s 0m0.058s 0m0.013s 0m0.024s 0m0.041s 0m0.030s

128/3

b
=
1
6

0m0.124s 0m0.709s 0m0.127s 0m0.817s 0m0.108s 0m0.170s 0m0.125s 0m0.131s

1
2
.5
M
H
z

128/4 0m0.116s 0m0.610s 0m0.274s 0m0.928s 0m0.085s 0m0.223s 0m0.157s 0m0.313s

128/8 0m0.118s 0m0.774s 0m1.070s 0m2.122s 0m0.156s 0m0.460s 0m0.259s 0m0.948s

128/16 0m0.087s 0m0.149s 0m0.035s 0m0.228s 0m0.036s 0m0.261s 0m0.102s 0m0.174s

512/3

b
=
2
2

0m1.714s 1m50.343s 0m29.912s 0m33.847s 0m1.479s 0m1.514s 0m0.427s 0m0.393s

4
.3
M
H
z

512/4 0m42.638s 1m50.312s 1m3.351s 2m2.762s 0m1.563s 0m1.551s 0m1.901s 0m1.892s

512/8 0m44.025s 1m57.296s 0m52.319s 2m46.793s 0m4.226s 0m14.590s 0m8.770s 0m21.824s

1024/3

b
=
2
4

1m36.234s 18m29.931s 4m7.147s 4m5.050s 0m2.747s 0m2.624s 0m1.380s 0m1.687s

2
.3
M
H
z

1024/4 3m42.684s 18m0.121s 10m28.096s 24m48.517s 0m4.567s 0m5.443s 0m23.424s 0m21.586s

1024/8 3m33.685s 15m14.368s 7m37.488s 22m10.561s 0m8.891s 1m23.997s 0m4.949s 2m3.061s

TS encoding: Random-Constrained Timestamps

m/k b c-SAT c+P2 c+Dk c+Dk+P2

512/3

b
=
3
1

2m57s 0m0.340s 4m39.727s 0m0.270s

512/4 33m17 13m33.423s 3m26.192s 1m51.532s

1024/3 11m39s 0m1.063s 22m26.209s 0m0.987s

TS encoding: Incremental Timestamps

m/k b c-SAT c+P2 c+Dk c+Dk+P2

512/3 22 0m1.714s 0m29.912s 0m1.479s 0m0.427s

512/4 22 0m42.638s 1m3.351s 0m1.563s 0m1.901s

1024/3 24 1m36.234s 4m7.147s 0m2.747s 0m1.380s

Table 1: Differentm,k reconstruction time (to the left)
Table 2: Different timestamps encoding schemes (above)

2.253596s EngineData(100)d 8 00 00 19 00 00 00 00 00-> 125

The deadline was at the absolute timestamp 2.253580s. The logged

timeprint, corresponding to the trace-cyclewhich started at 2.253400s

was retrieved. The exact whole trace-cycle reconstruction took

38.279s, and showed the message started at the 823
rd

clock-cycle

(corresponds to 2,253,564.6us) and ended after the deadline at 2,-

253,589.6us. Given the actual failure time window (from 2.253533s

to253600s), reconstruction took only 3.082s. Encoding the property

that this message transmission happened on the wire before the

deadline in that window gave UNSAT in 1.597s.

Being that small enables simple and efficient logging and trans-

mission hardware (hence no trace buffers are required) , and allows

saving data of hours in few Gigabytes. We used CANoe CAN-

analyzer Demo9 from Vector to generate a full scenario of ex-

changed CAN messages; over which we applied manual delays.

5.2.2 Temperature Compensated Refresh Effects Detection. In this

experiment, to obtain cycle accurate log of memory access, we

implemented a timeprints-agg-log, (aggregation/logging) hardware,
and connected it to the address-signals of the AHB-AMBA bus.

Timeprints were logged via a simplified USB-UART transmitter.

Our timeprints-agg-log HW was, together with a LEON3 processor,

implemented on a Nexys3 FPGA board. The whole system including

the timeprints-generation was also simulated by Questa-Sim RTL

cycle-accurate simulator.

Comparing the logs from HW to the simulated timeprints, ob-

tained while running the same software image on both, we identi-

fied simulation configuration error, where the memory wait states

were wrong in the SRAM model from the Gaisler simulation li-

brary [2]. After fixing this error, the number of changes k , in all

trace-cycles became exactly the same (in simulation and log). How-

ever, the timeprints themselves started to differ after around 3000

clock-cycles (3 trace-cycles, as we chosem = 1024). Re-running

several times, at different temperatures, the mismatch in timeprints

started from as early as the third trace-cycle, to as late as the 28
th
.

Starting from the trace provided by the simulation, we encoded it

with the property that: one change instance is delayed by one-clock

cycle. Doing this enabled us to identify the exact delay clock-cycle,

each time a mismatch was found. From these exact instances, we no-

ticed that, during the execution, this one clock-cycle delay happens

earlier if temperature is higher. The data-sheet of the memory chip,

mentions a temperature compensated refresh rate, but it does not

specify accurately its dependence of the chip temperature, which

increases on its own by the execution itself; i.e. it even differs for

different instruction sequences being run. This illustrates directly,

how properties undefined at design-time could be traced on the

cycle-accurate level, using timeprints.

6 CONCLUSION
The paper presented a novel Timeprints-based tracing methodology,

which provides cycle-accurate temporal traces of on-chip signals

execution. Being of extreme light-weight, Timeprints open the door

for the first time, to a wide range of deployment-phase accurate

timing-properties verification. Being consistent and cycle-accurate,

provides a reliable transparent evidence for the actual temporal

behaviors taking place on-chip, while operating in-field.
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