
Better Late Than Never
Verification of Embedded Systems After Deployment

Martin Ring∗, Fritjof Bornebusch∗, Christoph Lüth∗†, Robert Wille∗‡, Rolf Drechsler∗†
∗Cyber-Physical Systems, DFKI GmbH, Bremen, Germany

†Mathematics and Computer Science, University of Bremen, Germany
‡Institute for Integrated Circuits, Johannes Kepler University Linz, Austria

Abstract—This paper investigates the benefits of verifying
embedded systems after deployment. We argue that one reason
for the huge state spaces of contemporary embedded and cyber-
physical systems is the large variety of operating contexts, which
are unknown during design. Once the system is deployed, these
contexts become observable, confining several variables. By this,
the search space is dramatically reduced, making verification pos-
sible even on the limited resources of a deployed system. In this
paper, we propose a design and verification flow which exploits
this observation. We show how specifications are transferred to
the deployed system and verified there. Evaluations on a number
of case studies demonstrate the reduction of the search space,
and we sketch how the proposed approach can be employed in
practice.

I. INTRODUCTION

In the past decades, the verification of embedded and
cyber-physical systems has become a pressing, complex and
elaborate problem for which a number of high-end tools are
available [1], [2], [3], [4]. Designers and verification engineers
have access to an enormous amount of computational power,
e.g. in terms of high-end design and compute servers. How-
ever, time-to-market constraints are putting increasing pressure
on releasing products earlier and, hence, most of today’s
systems get deployed without being fully verified.

This is obviously caused by the exponential complexity
of the problem. Each year, more complex systems are being
designed and need to be verified. Iterative improvements have
been proposed in the past years, e.g. the introduction of higher
levels of abstractions for design such as the Formal Specifica-
tion Level [5] and the Electronic System Level [6], or the lifting
of SAT solvers to solvers for SAT Modulo Theory (SMT) [7],
[8], [9], [10], [11], but these cannot and will not be able to
cope with the complexity. The consequences are evident today:
While several years back, the actual implementation process
was the core activity in any design flow, verification dominates
today. In fact, more than 40% of the time and costs within the
design are devoted to prove the correctness of a system [12].

Because of this situation, we are convinced that verification
cannot solely be addressed by incremental improvements of
existing approaches anymore, but rather a shift in the ex-
isting verification paradigm. In this work, we are proposing
a methodology towards such a paradigm shift. To this end,
we start with the observation that contemporary systems are
designed to operate in a variety of operating contexts. In

Research supported by BMBF grant SELFIE, grant no. 01IW16001.

order to do so, configurations are used, i.e. parameters which
are set post-deployment by the particular environment of the
individual system. While these parameters may not change
frequently, they are not fixed and hence verification, which is
conducted prior to deployment, has to consider all possible
configurations. Consequently, designers and verification en-
gineers are faced with verifying systems with huge possible
search spaces, while after deployment just a fraction is used.

Motivated by this observation, this work proposes a design
and verification methodology which conducts verification after
deployment, i.e. in the field and once the actual configuration
is observable. By this, this paper proposes a first realization of
the concept of self-verification envisioned in [13]. Even though
it results in continuous verification tasks as the environment
keeps changing, the drastic reduction of the search space out-
weigh this. As a result, embedded systems can be verified even
on a much weaker machine and with much less sophisticated
tools, while prior to deployment verification failed due to
the exponential complexity. Our approach of post-deployment
verification guarantees safety with maximum availability —
the system will never refuse to operate when it is actually
safe to run.

In order to assess the feasibility of the proposed method-
ology, we have implemented the proposed design and verifi-
cation flow and used a lightweight version of the SAT solver
MiniSat [7], [14] to solve the resulting verification conditions
after deployment. The evaluation of a number of case studies
showed that, following the proposed methodology, verification
problems which failed prior to deployment (using high-end
verification tools and machines) could be completed after
deployment using the lightweight solver on reduced hardware.

In the following, we present the proposed methodology
as follows: First, we motivate and illustrate the proposed
verification methodology using a small case study. Section III
then describes the implementation of this methodology us-
ing the same case study and, by this, provides a detailed
description for the entire flow. Section IV summarizes the
results of evaluating further, more sophisticated case studies
conducted by us — confirming the applicability and benefits
of the proposed methodology. Besides that, this section also
discusses the consequences of the proposed methodology to
the established design flow. Finally, Section V summarizes
and concludes this work.

Controller

Light switch

Luminosity
sensor

e l

Fig. 1. Bringing light into darkness: The light controller is connected to a
luminosity sensor, and switches a light on or off when it becomes too dark
or bright.

II. PROPOSED IDEA: VERIFICATION AFTER DEPLOYMENT

The key idea of the proposed approach presented here is to
defer part of the verification until after deployment. At first
sight, this seems like a rather strange idea. A system deployed
in the field is likely to have far less computational power,
memory and network resources available than a design server.
However, it has a main advantage which, we argue, outweigh
theses deficiencies: after deployment, there is generally more
information about the operating context available.

In order to enjoy this benefit, the design needs to be geared
towards verification after deployment. At an abstract level, the
general idea is to partition the system state space into one part
which changes frequently post-deployment and thus has to be
explored symbolically, and one part (preferably as large as pos-
sible) which only changes infrequently. This part is called the
configuration. Marking a variable as a configuration variable
means that its value rarely changes, and entails that we can
substitute actual values before verification post-deployment.
By marking variables of n bits as configuration variables, we
reduce the search space we need to explore for verification
by 2n — turning the exponential growth into an exponential
reduction. The idea and its benefits are illustrated by the
following (running) example1.

Example 1. The simple light controller system sketched in
Fig. 1 works as the running example in the following. This
system connects a controller to a luminosity sensor and a
light switch. The controller should turn on the light if the
sensor e drops below a given level elo, and turn it off if it
exceeds a given level ehi. To avoid a flickering effect when
the luminosity varies close to a given threshold, the lower
and upper threshold levels are not equal (hysteresis), and the
system should switch off the light only with a certain delay d.
The threshold levels elo, ehi and the delay d are configuration
variables, and can be changed post-deployment.

Systems like these are designed in a flexible fashion, so
that they can be applied in various contexts. For the light
controller, the threshold levels and delay are not fixed at design
or production time but will be set post-deployment. Hence,
in order to verify the correctness of the system, we need to
take into account all possible configurations, which increases
the search space exponentially. It also means that a lot of

1Note that the example has been deliberately kept simple – both for
expository and space reasons.

possible configurations are checked during verification which
may never be applied during the system’s lifetime. Hence, if
we instantiate the configuration variables after deployment and
keep only the variables of the system which change frequently
arbitrary, we get a much smaller search space to explore.

Example 1 (Continued). Consider again the running example.
If we assume a width of 8 bit for the input values (the
luminosity sensor and subsequently for the upper and lower
bounds) and the time delay, and one bit for the light switch
status (these are lower bounds for a realistic system), we get
the following search space (where cnt is a variable counting
up to delay):

elo ehi d e cnt status total
8 8 8 8 8 1 = 41︸ ︷︷ ︸
configuration

(1)

Thus, we need to check an overall search space of 241 states
to verify the system, a huge search space for a very simple
example.

In contrast, once the system is deployed and applied in the
field, the values for elo, ehi and d rarely change (once when
the system is deployed, and afterwards only if the user actively
changes the configuration), as opposed to the values of e, cnt
and status which vary constantly. Thus, we can mark elo,
ehi and d as configuration variables, and verify the system
only when the configuration is changed. By keeping the values
of elo, ehi and d fixed for the verification, the search space
reduces to 217 states.

The reduced search space can be handled comfortably by a
lightweight solver after deployment, even under the prevailing
conditions of limited computational resources. But note that
this verification is only valid for the particular configuration
(i.e., the supplied values for elo, ehi and d) and, thus, can
principally not be done prior to deployment without severely
reducing the flexibility and versatility of the system.

III. IMPLEMENTING THE PROPOSED APPROACH

The previous section illustrated the potential of conducting
verification after deployment. Based on that, we now describe
in detail a possible implementation of this methodology. We
first describe the design process in more detail, and then
demonstrate it at work with a formal development of the
running example considered in the previous section.

A. The Design Process
The design flow starts with a modelling phase, where

the structure and behaviour of the system is modelled at
an abstract level without referring to any implementation
details (see Fig. 2). In our case, we use SysML [15] and
OCL [16] to specify the structure and formalize constraints
on its behaviour as well as the functional hardware description
language CLaSH [17] for a uniform, executable and synthe-
sizeable model of the system.2

2The actual specification and implementation languages are of no particular
relevance and could be replaced by others (e.g. we could use UML instead of
SysML, or SystemC instead of CLaSH), but serve here to point out the level
of abstraction in the corresponding part of the design process.

SysML + OCL

bdd [package] controller [Controller]

«block»

Controller

operations

tick()

«block»

Sensor

values

value: Int

«block»

Light

values

status: Boolean

«block»

Configuration

values

e_lo: Int
e_hi: Int
delay: Int

1
1

11 1 1

ClaSH

Bitvector logic

Instantiated
CNF

Lightweight
SAT-Solver

D
es

ig
n

tim
e

In
 th

e
fie

ld

CNF SAT solver
(e.g. MiniSat, zChaff)

SMT prover
(e.g. Yices, Z3)

Instantiated configuration variables

State space to be verified

Verilog, VHDL

FPGA

Model

Implementation

Verification

Specification

Deployment

Fig. 2. Design flow for verification after deployment. We start with modelling
the system behaviour, then derive an implementation and verification condi-
tions. By proving the verification conditions we make sure the system behaves
as specified. Due to the large search space, the proofs are not possible pre-
deployment. But instantiation of the configuration variables reduces the size
of the search space significantly and makes proofs possible post-deployment.

From the model, we can synthesize an implementation of the
system by generating a representation in a low-level hardware
modelling language such as VHDL or Verilog, which is used
to program an FPGA – constituting the actual implementa-
tion. Moreover, we want to verify that the generated system
behaves as specified. In order to do so, we generate a list of
verification conditions from the executable system model and
the specification which have to be shown in order to guarantee
this. Specifically, we translate both the CLaSH model and the
constraints from the OCL specification into bit-vector logic
(i.e. first-order logic with bit-vectors). Trying to show these
in an SMT prover such as Yices [10] or Z3 [11] fails for
non-trivial examples, as does trying to show the properties
translated into conjunctive normal form (CNF) with a SAT
solver such as MiniSat. This is where verification usually fails.

However, post-deployment after we have instantiated the
configuration variables, the search space is small enough to
allow verification of the corresponding properties even by a
lightweight solver [14]. By this, verification of all properties
becomes possible. Recall that this instantiation cannot be done
at the design time, because at that point the instantiating values
are still unknown. Therefore, the proofs must be rerun if the
values of the configuration variables are changed.

B. The Design Process At Work

Specification (top of Fig. 2): The specification of the
system is provided in terms of a SysML block definition
diagram as shown in Fig. 3. The structure is composed of the
controller as the central block, with one luminosity sensor, and
one light switch (actuator) connected. The variables specifying
the lower and upper threshold of luminosity and the delay
when switching off are in a separate block marking them as
configuration variables.

bdd [package] controller [Controller]

«block»
Controller

operations
tick()

«block»
Sensor

values
value: Int

«block»
Light

values
status: Boolean

«block»
Configuration

values
e_lo: Int
e_hi: Int
delay: Int

1
1

11 1 1

Fig. 3. SysML specification of the light controller

context Controller
def e: sensor.value
def off: e > config.e hi
def on: e < config.e lo
def off s: cnt≥ config.delay

context Controller::tick()
post a1: not off implies cnt= 0
post a2: off implies cnt= cnt@pre+ 1
post a3: on implies light.status
post a4: off s implies not light.status
post a5: not (on or off s) implies

light.status= light.status@pre

Fig. 4. OCL specification of the behaviour of the light controller

The behaviour is provided in OCL as shown in Fig. 4. We
model state transitions by an explicit operation tick(); The pre-
and postcondition of the state transition are denoted as pre-
and postconditions of this operation.

Model (middle of Fig. 2): Based on the specification, a
CLaSH model is derived. CLaSH is a strongly typed domain-
specific language to model hardware. It is embedded into the
functional programming language Haskell, and describes the
hardware as functions of the language. The strong type system
guarantees that everything we can describe in CLaSH is still
synthesizeable, and allows us to model the hardware at an
abstract but still executable level. The model describes the
hardware by combinators (higher-order functions), building up
complicated circuits by composing elementary ones. Fig. 5
shows a brief excerpt of the model, essentially a finite-state
machine (a Mealy automaton) with the luminosity values
(Unsigned 8) and the configuration as input, the light switch
(Bool) as output, and an internal state (ControllerState) which
keeps track of the light switch and a counter to implement the
delay when switching off. The function controllerT (definition
omitted for brevity) is the state transition function of the
automation, taking the state and the input, and returning a
tuple of new state and output.

type ControllerState = (Bool , Unsigned 8)

controllerT :: ControllerState
→ (Configuration , Unsigned 8)
→ (ControllerState , Bool)

control ler :: Signal (Configuration , Unsigned 8)
→ Signal Bool
control ler = mealy controllerT (False ,0)

Fig. 5. CLaSH model of the light controller (excerpt)

Implementation (left-hand side of Fig. 2): From the
CLaSH model, we generate Verilog, which is then compiled
onto the FPGA by the proprietary tool chain of the FPGA
vendor (in our case, Xilinx). Thus, the CLaSH model is the
foundation of the verification after deployment.

Verification (right-hand side of Fig. 2): To prove the
verification conditions, we translate them into CNF, which is
suitable as input for reasoning engines such as SAT solvers.
This translation proceeds in two steps. We first translate both
the CLaSH model and the specification into bit-vector logic,
which in the second step can be translated into CNF by Yices.
The translation from CLaSH is done with an extension of
the CLaSH compiler we have developed for this work; the
translation of OCL is done by a tool provided in previous
work [18].

Fig. 6 shows a small excerpt of the bit-vector representation
of the model from Fig. 5. We are modelling the state transition
explicitly, so for each state variable (e.g. switch, cnt) we have a
variable to model the pre-state (here, preSwitch, preCnt). Fig. 6
asserts that the state switches to true if the luminosity value
drops below e lo and it switches to false if the luminosity is
above the threshold and cnt is larger or equal to the configured
delay.

To verify the implementation, we translate the specification
from OCL into bit-vector logic; for example, the two clauses
a4 and a5 from Fig. 4 become:

(=> off s (not switch))))
(=> (not (or on off s)) (= switch preSwitch))))

We generate a CNF formula from the negated conjunction
of all five clauses (and the invariants) in Fig. 4, together
with the model from Fig. 6. This formula is satisfiable iff
the specification is violated (because we assert the negated

(define preSwitch :: bool) ; light switch before
(define switch :: bool) ; light switch after
(assert

(= switch
(i t e (bv−lt e e lo)

true
(i t e (and (bv−gt e e hi) (bv−ge preCnt delay))

fa lse
preSwitch

))))

Fig. 6. Implementation modelled in bit-vector logic (excerpt)

specification). Because we explore the complete search space
(there is no state abstraction involved), this procedure is not
only sound but also complete; if we cannot find a counter-
example, the verification condition holds.

Instantiation after Deployment (bottom of Fig. 2): Fi-
nally, the configuration variables are instantiated in order to
reduce the search space. This is directly conducted in the
obtained CNF. In order to give an impression of the generated
CNF, we just consider the very simple assertion e ≤ e hi,
which translates into bit-vector logic as the assertion:

(assert (not (bv−lt e e hi))) .

Using only two bits for e and ehi, Yices generates a CNF that
represents these bit-vectors as variables, which corresponds to
the formula3:

(¬e1 ∨ x) ∧ (e2 ∨ ¬ehi,2) ∧ (e2 ∨ x)∧
(ehi,1 ∨ x) ∧ (¬ehi,2 ∨ x) ∧ (e1 ∨ ¬ehi,1 ∨ ¬x).

(2)

Yices keeps track of the encoding of the variables, i.e. to in-
stantiate the configuration variables corresponding unit clauses
are added.

The instantiations now significantly reduce the search space.
This can be exploited to solve the resulting instance after
deployment using a lightweight solver.

IV. EVALUATION AND DISCUSSION

So far, the proposed methodology has been illustrated by
means of an intentionally rather limited example. Moving
on from that, we have applied the idea of verification after
deployment, and the proposed verification as described in
Section III, to more sophisticated home automation controller
in order to demonstrate its applicability. The home controller
has been realized on top of a ZedBoard, which comprises
an ARMv7 core running Linux to control a Xilinx FPGA,
and which for the purposes of verification has been equipped
with a lightweight SAT solver [14]. The obtained results are
summarized in this section. Furthermore, we also discuss
possible ramifications which have to be considered when
utilizing the proposed methodology in practice.

A. Evaluation
The proposed methodology has been evaluated on a set of

systems which are natural extensions of the light controller
considered above to highly versatile home automation con-
trollers as follows:

• simple: The simple light controller with one light and one
luminosity sensor (as considered in the running example).

• average: An extended version of the controller which
includes up to 16 sensors to be connected and controls
one actuator by averaging the values obtained by those
sensors. Input and output are generic, i.e. we can control
any kind of actuator and read from any kind of sensor as
long as it gives us integer values.

• weighted avg: A similar version with 32 sensors that
allows to add a configurable weight to each sensor when
computing the average.

3Here, x is an auxiliary variable. e1 and e2 denotes the first respectively
the second bit of the bit-vector e. The same notation applies to ehi.

TABLE I
EVALUATION RESULTS

Established Verification Flow Proposed Verification Flow
(on Intel Xeon (E3-1270 v3) compute server) (on ARMv7 target system)

System Search space Variables Clauses Time Search space Variables Clauses Time

simple 241 161 539 < 0.1 s 217 131 255 < 0.1 s

average 2177 11807 40086 131.0 s 2137 8181 13010 1.4 s

weighted avg 2545 43569 146642 > 24 h∗ 2265 31374 37559 28.5 s

smart 29504 1421153 4761633 > 24 h∗ 2544 1421153 2704606 1.5 s

multiplier 232 1177 6096 > 24 h∗ 216 809 2467 418.0 s
∗ = timeout

This table compares the established verification flow (verifying all properties in full generality at design time, left) with the proposed verification flow
(verifying instantiated properties after deployment, right).

• smart: A smart home controller, which allows up to 32
sensor inputs to be connected to up to 32 actuator outputs.
Each input can be connected with each output, making
the controller very versatile and resulting in a huge search
space. The smart home controller can be used e.g. to
control lights, heating and blinds for a number of rooms
in an office setting.

• multiplier: A 16 bit multiplier component, used to apply
the weights in weighted avg and smart. Can be verified
with a constant factor once the configuration is set.

For all these systems, we have specified their intended be-
haviour in OCL, similar to the specification of the simple light
controller in Fig. 4, and have verified that the implementation
satisfies this specification. Table I lists the results. Column Sys-
tem gives the name of the considered system. The remaining
columns summarize the results in two groups: the first group
for verification according to the established verification flow
(i.e. verifying all properties at design time) and the second
group for the verification methodology proposed here (using
the lightweight solver on the target system). For each group,
we give the size of the search space (i.e. the number of possible
solutions to be checked); the number of variables; the number
of clauses of the resulting CNF; and the runtime (in seconds).
The runtime is measured on systems which would typically be
used for verification, so they are directly comparable: for the
established verification flow, a compute server (Intel Xeon E3-
1270 v3, eight cores, 16 GB memory) and, for the proposed
verification flow, the ZedBoard (ARMv7, 1GB memory).

The obtained results clearly show the benefits of the
proposed approach. Typical embedded systems (as the ones
considered here) allow for a huge variety of configurations.
As shown in Table I, this results in a rather large search
space and SAT instance for the verification, which takes
a significant amount of time to solve (in some cases, the
corresponding verification task could not be solved within the
given time-limit of one day). In contrast, after deployment,
configuration variables can be instantiated with their actual
values, as discussed in Section II. This substantially reduces
the search space and allows to solve the verification task even
on the limited resources of an embedded system. Of course,
the search space is only one complexity indicator: as the
multiplier system shows, even a comparatively small search
space may require a long time to be verified, because of its

inherent complexity. However, the proposed verification flow
reduces the runtime significantly in this example as well, and
thus allows us to verify a system which was previously out of
reach for established tools.

B. Practical Exploitation

Our approach may be applied in various ways. In the
following we illustrate a possible practical application to the
design of a smart home controller as described above.

Requirements and properties are established during design
time, and checked with contemporary verification tools. All
properties which cannot be automatically checked during de-
sign time are prepared for self-verification using our approach.

In the deployed system, a verification controller is con-
stantly watching the values of the configuration variables and
triggers a proof if a value change is requested. For example,
if a light is connected to the smart home controller, the
configuration is updated and the proofs have to be re-run.
Since the system would now be in an unverified state, it will
either stop operating or defer the value change until the proofs
have successfully finished; this way, it continues operating
with guaranteed safety. (If the risk is considered acceptable,
the system might instantly change the value and continue to
operate while the proofs are running.)

If a proof fails for the resulting configuration, the system in-
forms the user about the failed proof. The user can disconnect
the sensor again or try a different configuration until the proof
succeeds and the change result in a safe state. This especially
means that the system can still operate safely even though
some functionality is missing. Furthermore, the manufacturer
is informed about the failed configuration, and can use this
information to take appropriate measures.

C. Discussion

The results obtained by the conducted cases studies sum-
marized above clearly show the promises of the proposed ver-
ification methodology. However, some obvious ramifications
have to be discussed when evaluating the general applicability
of this methodology.

The proposed methodology obviously requires the embed-
ded system to be equipped with on-board verification tools to
conduct the verification tasks. Since the considered systems
are substantially less powerful than usual desktop systems

or verification servers, this requires lightweight but still ef-
ficient versions of those tools. Here, recent developments
on lightweight methods [14], [19] as well as endeavours
towards efficient hardware solvers [20], [21] provide promising
platforms for this purpose. Besides, the proposed verification
methodology yields an exponential reduction in the search
space, so even less powerful verification tools might be able
to cope.

Our approach differs from runtime verification, which is
concerned with “checking whether a run of a system under
scrutiny satisfies or violates a given correctness property” [22].
The central notion of runtime verification is the trace (or run)
of a system, and central questions are how to derive monitors
checking a concrete run against an abstract specification. The
logics employed are typically temporal or modal logics. In
our work, we are not concerned with monitoring the system
at all, we instead specialize given variables in an abstract
specifications if they do not change often.

V. CONCLUSIONS

In this paper, we presented a novel verification methodology
based on verification after deployment. We partition the sys-
tem search space into one part which changes infrequently (the
configuration variables), and one which does. By conducting
the verification with the configuration variables set to their
actual values, the search space is reduced drastically, making
verification feasible even on the limited resources of an
embedded system.

We have used specific modelling languages (SysML, OCL,
CLaSH) and prover tools (Yices, MiniSat) in our evaluation,
but the basic idea is independent of these. As long as we can
translate the verification conditions into a format where we
can track the variables to be instantiated, and which is suitable
to automatic proof (CNF in our case), the approach is viable
and competitive, because of the exponential reduction of the
search space. For example, on a more powerful system, we
might be able to prove the instantiated verification conditions
in bit-vector logic rather than CNF. This will enable the
verification of even more sophisticated systems.

Note that the verification flow proposed here does not
replace the existing verification flow, it enhances it. We may
use all well-known powerful tools at design time to prove
verification conditions as before, and still use verification after
deployment to tackle the verification conditions we could not
prove during design — giving us the best of both worlds.

Overall, the evaluations and discussions show that, fol-
lowing the proposed idea, allows for a novel verification
methodology which does not rely on incremental improvement
of existing tools and methods but tackles complexity from a
completely different, and more successful, angle.

REFERENCES

[1] J. Yuan, C. Pixley, and A. Aziz, Constraint-Based Verification. Springer,
2006.

[2] R. Wille, D. Große, F. Haedicke, and R. Drechsler, “SMT-based stimuli
generation in the SystemC verification library,” in Forum on Specifica-
tion and Design Languages (FDL). IEEE, 2009, pp. 1–6.

[3] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled, Model Checking. MIT
Press, 1999.

[4] A. Koczor, L. Matoga, P. Penkala, and A. Pawlak, “Verification approach
based on emulation technology,” in Int. Symp. on Design and Diagnos-
tics of Electronic Circuits & Systems (DDECS), 2016, pp. 169–174.

[5] R. Drechsler, M. Soeken, and R. Wille, “Formal Specification Level:
Towards verification-driven design based on natural language process-
ing,” in Forum on Specification and Design Languages (FDL). IEEE,
2012, pp. 53–58.

[6] G. Martin, B. Bailey, and A. Piziali, ESL Design and Verification:
A Prescription for Electronic System Level Methodology. Morgan
Kaufmann Publishers Inc., 2007.

[7] N. Eén and N. Sörensson, “An extensible SAT-solver,” in Theory
and Applications of Satisfiability Testing (SAT), ser. Lecture Notes in
Computer Science (LNCS), vol. 2919. Springer, 2003, pp. 502–518.

[8] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. Rossum,
S. Schulz, and R. Sebastiani, “The MathSAT 3 System,” in International
Conference on Automated Deduction (CADE), ser. Lecture Notes in
Computer Science (LNCS), R. Niewenhuis, Ed., vol. 3632. Springer,
2005.

[9] R. Wille, G. Fey, D. Große, S. Eggersglüß, and R. Drechsler, “Sword:
A SAT like prover using word level information,” in IFIP International
Conference on Very Large Scale Integration (IFIP VLSI-SOC). IEEE,
2007.

[10] B. Dutertre, “Yices 2.2,” in International Conference on Computer-Aided
Verification (CAV), ser. Lecture Notes in Computer Science (LNCS), vol.
8559. Springer, July 2014, pp. 737–744.

[11] L. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Tools and
Algorithms for the Construction and Analysis of Systems, ser. Lecture
Notes in Computer Science (LNCS), C. R. Ramakrishnan and J. Rehof,
Eds. Springer, 2008, pp. 337–340.

[12] H. Foster, “Why the design productivity gap never happened,” in Int’l
Conf. on Computer-Aided Design, 2013, pp. 581–584.

[13] R. Drechsler, M. Fränzle, and R. Wille, “Envisioning Self-Verification
of Electronic Systems,” in International Symposium on Reconfigurable
Communication-centric Systems-on-Chip (ReCoSoC), 2015.

[14] F. Bornebusch, R. Wille, and R. Drechsler, “Towards lightweight satis-
fiability solvers for self-verification,” 2017 7th International Symposium
on Embedded Computing and System Design (ISED), pp. 1–5, 2017.

[15] Object Management Group, “OMG Systems Modeling Language (OMG
SysML),” OMG, Tech. Rep. formal/2015-06-04, 2015.

[16] M. Richters and M. Gogolla, “OCL: Syntax, Semantics, and Tools,” in
Object Modeling with the OCL, ser. LNCS, T. Clark and J. Warmer,
Eds. Springer, 2002, vol. 2263, pp. 42–68.

[17] C. Baaij, M. Kooijman, J. Kuper, W. Boeijink, and M. Gerards, CLaSH:
Structural Descriptions of Synchronous Hardware using Haskell. IEEE
Computer Society, 9 2010, pp. 714–721, eemcs-eprint-18376.

[18] M. Ring, J. U. Stoppe, C. Lüth, and R. Drechsler, “Change impact
analysis for hardware designs,” in Forum on Specification and Design
Languages (FDL). IEEE, 2016.

[19] A. Balint and U. Schöning, “Engineering a lightweight and efficient local
search SAT solver,” in Algorithm Engineering — Selected Results and
Surveys, ser. Lecture Notes in Computer Science (LNCS). Springer,
2016, vol. 9220, pp. 1–18.

[20] T. Ivan and E. M. Aboulhamid, “An efficient hardware implementation
of a SAT problem solver on FPGA,” in Euromicro Conference on Digital
System Design (DSD). IEEE, 2013, pp. 209–216.

[21] B. Ustaoglu, S. Huhn, D. Große, and R. Drechsler, “SAT-lancer: A
hardware SAT-solver for self-verification,” in 28th ACM Great Lakes
Symposium on VLSI (GLVLSI). ACM, 2018.

[22] M. Leucker and C. Schallhart, “A brief account of runtime verification,”
The Journal of Logic and Algebraic Programming, vol. 78, no. 5, pp.
293–303, May 2009.

