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Abstract—High-level Synthesis (HLS) is being increasingly
adopted as a mean to raise design productivity. HLS designs,
which can be automatically translated into RTL, are typi-
cally written in SystemC at a more abstract level. Hardware
Trojan attacks and countermeasures, while well-known and
well-researched for RTL and below, have been only recently
considered for HLS. The paper makes a contribution to this
emerging research area by proposing a novel detection approach
for Hardware Trojans in SystemC HLS designs. The proposed
approach is based on coverage-guided fuzzing, a new promising
idea from software (security) testing research. The efficiency of
the approach in identifying stealthy behavior is demonstrated on
a set of open-source benchmarks.

I. INTRODUCTION

The increasing adoption of third-party IPs (3PIPs) has made
embedded systems more vulnerable to Hardware Trojan (HT)
attacks. In such attacks, adversaries deliberately insert hidden
malicious behavior into an IP before it leaves the vendor. The
activation of this malicious behavior during system operation
might harm the functionality or leak secret information, thus
seriously affect the safety and security of the system.

The threat of HTs as well as their countermeasures have
been actively researched in the last decade [1]. For HTs
in 3PIPs, the detection should ideally be performed before
production/manufacturing. A number of presilicon detection
approaches (survey [1], recent work e.g. [2], [3]) have been
proposed considering the abstraction levels of RTL and below
(e.g. gate or transistor-level), as 3PIPs are commonly shipped
to the IP consumer at these levels.

On the other hand, to raise design productivity, High-
level Synthesis (HLS) has recently emerged as an alternative
design entry to RTL. HLS designs, often developed using an
synthesizable subset [4], [5] of SystemC [6] at a more abstract
level, can be automatically synthesized into RTL. The quality
of these generated RTLs is mostly comparable to hand-written
RTL for the same functionality with much shorter development
time [7]. Due to the flexibility in generating multiple variants
of the same design , more and more 3PIPs are expected to be
delivered as SystemC HLS designs.

This new abstraction level is also susceptible to HTs. A
malicious behavior can be coded in SystemC and if undetected,
will be synthesized together with normal functionality into
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RTL. Thus, we refer to HT at this level as (High-level) Synthe-
sizable Hardware Trojan (SHT). Since the malicious behavior
is preserved by synthesis, it could possibly be detected at
RTL or lower levels by existing solutions. However, detection
approaches tailored to SHT are still desired, since the detection
at the level where a SHT is created should be much less
challenging.

Related Work: To the best of our knowledge, the design
and detection of SHT has been only recently discussed in [8].
The paper demonstrated the ease of SHT creation using C++
control flow constructs and proposed to use SystemC HLS
property checking to detect suspicious control flows that are
not exercised by the vendor-supplied verification testbench.
A subsequent effort [9] has created the open-source SHT
benchmark suite S3CBench to complement the popular Trust-
Hub benchmarks for RTL and below. One issue with the
detection approach in [8] is that, despite the recent advance-
ments (e.g. [10]–[12]) and the availability of commercial tools
(e.g. NEC CyberWorkBench, Calypto SLEC), SystemC formal
verification is still not yet mature (i.e. scalability and usability
issues exist).

Coverage-guided fuzzing (CGF) is a new promising idea
from the software (security) testing community. Popular
CGF engines such as AFL or LLVM’s LibFuzzer have de-
tected countless hidden vulnerabilities in well-tested software.
Thanks to a light-weight coverage-collecting instrumentation,
a set of simple but carefully selected input mutations and the
integration of a feedback loop, a CGF engine is capable to
reach many corners of the Program-Under-Test (PUT), that
are not possible with conventional testing techniques or even
symbolic approaches (due to scalability).

Paper Contribution: Inspired by the success of CGF,
we investigate its application in revealing malicious behavior
within a SystemC HLS design. The contribution of this paper
is multi-fold:

1) For the first time, CGF is applied to SystemC and for
HT detection;

2) A new set of mutations tailored for SHT has been
developed that increases the effectiveness of CGF sig-
nificantly;

3) An extensive evaluation on S3CBench including com-
parison to formal verification is provided.

II. SYNTHESIZABLE HARDWARE TROJANS

Generally, the malicious behavior of a HT consists of two
parts: a trigger and a payload. The trigger monitors a logic



1 counter += (value == 0x42424242) ? 1 : 0;
2 // some lines later ...
3 sum = (counter > 3) ? (sum += var) : 0;

Fig. 1. Example of Hardware Trojan in SystemC HLS design

condition depending on various signals/events of a design.
Once this triggering condition of a HT is satisfied, the payload
is activated to perform actual malicious behavior. The trigger is
designed to be only activated under extremely rare conditions,
otherwise an infested design behaves exactly like a HT-free
one. For digital HTs, which are in the focus of this paper,
the triggering condition can be sequential, i.e. evaluated on a
sequence of signals/events, or combinational. Counter-based
is one popular technique of creating sequential HTs.

SHT can be easily inserted into a SystemC HLS design by
modifying its control flow. For example, an additional if-else
with malicious behavior in the if-branch can be inserted. A
stealthier way, as proposed in [8], is to leverage conditional
assignments, such that all SHT-related statements will be
easily covered by a verification testbench without triggering
the SHT payload. A simple example of a sequential SHT is
shown in Fig. 1. Once a specific value is observed, a counter
is incremented. Later in the execution flow, this counter is
checked against a threshold value and the payload is activated
accordingly, i.e. instead of summing up, the result of the
computation is set to zero. Even stealthier SHTs are to be
developed in the future.

III. COVERAGE-GUIDED FUZZING FOR SHT DETECTION

A. Problem Formulation
Presilicon HT detection approaches can only flag suspicious

behavior whose (malicious) intent has to be manually ana-
lyzed. One of the central issues here is the availability of a
golden model. If such a model is available, HT detection can
look for a functional deviation. Otherwise, it normally tries
to flag code/circuit regions that have very low controllability
and/or observability. In the context of 3PIPs, a verification
testbench and inputs must be supplied together with the IP. So
any code/circuit region that is not covered by this testbench is
also suspicious.

Previous work on SHT detection [8] assumes there is no
golden model. It flattens the SystemC HLS Design-Under-
Test (DUT) first, to reveal hidden control flows caused by
e.g. conditional assignments as described earlier. Then, it tries
to reach every branch that is not covered by the supplied
testbench. The SHT detection problem is thus reduced to
maximization of branch coverage in the flattened SystemC
HLS DUT.

While using the same problem formulation, we argue that
for an SystemC HLS 3PIP, the IP consumer can opt to develop
a golden model. Note that this golden model does not need
to be synthesizable but only functionally correct. Thus, its
development should not be very time-consuming.

It is worth mentioning that in practice, the inputs from the
supplied testbench are mostly provided as files. The testbench
parses these files to get raw stimuli to feed the DUT. This
practical issue requires adaptations in CGF which will be
addressed in the following.

B. Approach Overview
As mentioned in the introduction, CGF consists of three

main ingredients: a compiler pass to instrument the PUT with
additional code to collect coverage with minimum execution
overhead, a set of fuzzing mutations and a feedback loop.
This loop, starting with a (possibly empty) set of inputs I,
performs the following steps: 1. Select an input I from I; 2.
Apply a set of mutations to I to obtain Im; 3. Execute the
instrumented PUT on Im; 4. If the execution increases the
overall coverage, add Im to I. These steps are repeated until
a given time limit is reached or CGF concludes that it cannot
improve the coverage. For more details we refer to [13].

The overall flow of the proposed CGF-based SHT detection
is shown in Fig. 2. We leverage the instrumentation pass of
CGF to also flatten all control flow constructs (CF-Flattening)
and obtain the instrumented DUT-Instr. The execution of PUT
is substituted with a SystemC simulation of DUT-Instr with
the supplied testbench. In the initialization step, DUT-Instr is
simulated with the supplied file inputs (TB Inputs) to generate
the initial set of CGF inputs and its coverage. Then, the
feedback loop with file input selection and mutation is applied.
After CGF stops, a set of control flows that are not in the initial
coverage together with inputs reaching them are reported as
suspicious. Optionally, if a golden model is available, the
suspicious set can be further reduced by removing inputs and
control flows that do not show any deviation when comparing
DUT with the golden model. A reduction of the suspicious set
results in a reduced detection time because fewer cases must be
checked. CGF engines interpret the content of the input files
(included in the testbench) as a byte array, but many times
a special format is expected by the testbench. This potential
mismatch causes difficulties for the mutation step as will be
explained in the next section together with our proposed SHT-
oriented mutations.

IV. MUTATIONS FOR SHT DETECTION

We first describe the conventional software-oriented mu-
tations geared towards finding security vulnerabilities. Then,
we discuss their limitations in the context of SHT detection.
Finally, we present a new set of SHT-oriented mutations to
overcome these limitations.

A. SW-oriented Mutations
We describe the basic ideas of the mutations employed by

AFL [13]. An input is interpreted as a byte array. To maximize
the execution speed, AFL applies a trim mutation that tries to
reduce the size of this array without changing the coverage
of the input. For the discovery of new behavior (and thus
new coverage), AFL uses a family of bitflip mutations that
flip a different number of bits in an input at the same time.
The arithmetic mutations take a portion of bytes from the
input, interpret these bytes as an integer value and subtract/add
a small integer from/to this value. The interesting value
mutations try to overwrite a portion of bytes with the byte
representation of some special value (e.g. 0,−1, INT MAX ,
etc.). The havoc mutation is a combined mutation that apply
between 2 and 128 individual mutations to an input at random
positions. The splice mutation is only used when the other
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Fig. 2. Coverage-guided Fuzzing for SHT detection

mutations could not help to discover new coverage. It chooses
an input, applies the well-known genetic crossover operator
cut-and-splice, then invokes the havoc mutation.

B. Limitations of SW-oriented Mutations for SHT Detection

Format unawareness: The SW-oriented mutations work
at the byte level and do not have any knowledge about the input
format. As a result, most mutated inputs are invalid or only
“almost” valid. This is very useful for robustness/vulnerability
testing, but inadequate for the SHT detection. SHTs are
already hard to trigger with valid inputs and thus much harder
for CGF to detect if the testbench aborts the simulation already
at the format checking stage.

Strong bias for small inputs: Most of the AFL mutations
have minimal impact on the size of the inputs. Among the few
exceptions, the trim mutation only reduces the size. Both, the
havoc mutation and the splice mutation can shorten or expand
an input, but shortening is much more likely.The reason for
this bias towards reducing the size of inputs is to optimize
the speed of each individual execution of CGF. However, this
bias of the mutations makes it very hard to trigger sequential
counter-based SHTs, which require bigger inputs (i.e. long
sequences of stimuli).

Difficulty with tight comparisons: Well-hidden hard-to-
trigger SHTs, both combinational and sequential, often include
in their trigger conditions tight comparisons, i.e. comparisons
to a single value or a small set of values such as if (value
== 0x42 && ...). CGF is known to have difficulties in
generating values satisfying these comparisons. This difficulty
is even more amplified in our context considering the direct
relationship between SHTs and tight comparisons.

Too optimistic byte exclusion: The 8-bit bitflip (byteflip)
mutation is used additionally as a heuristic. If a byteflip at a
position does not change the coverage, no other deterministic
mutation will be used again at that position. In combination
with the format unawareness, this often leads to the exclusion
of all or too many byte positions from the search space.

C. SHT-oriented Mutations

To overcome these limitations we have devised a set of new
mutations that are tailored for SHT detection.

Pump mutation: Targeting (counter-based) sequential
SHTs, the pump mutation is designed such that it increases
the size of the to-be-mutated input I stepwise. In this process,
a new input is obtained by appending I multiple times to itself.
By doing so, the mutated input will also have a valid format
most of the time if I is also valid.

Format-aware trim mutations: A new family of format-
aware trim mutation aims to prevent the corruption of the input
format through trimming. When the input is expected in a
line-based format (e.g. one integer per line), in contrast to
the conventional trim mutation, the new trim mutation does
not trim arbitrary parts but only whole lines. As a result, a
corruption of the input structure can be avoided. For SystemC
HLS designs targeting multimedia or imaging applications, the
testbench requires the input to be in some specific format,
e.g. bitmap. For such format, a repair pass is applied on the
mutated input to avoid format corruption. Otherwise, the raw
data part is either trimmed or filled with new random bytes to
match the bitmap size.

Design-based interesting number mutation: As men-
tioned earlier, SHTs often use tight comparisons with “magic
numbers” as triggers. These magic numbers must be also
somehow encoded into the SystemC HLS code of a design. We
leverage the Clang compiler front-end to extract the numbers
from the source code. Furthermore, these numbers are inserted
into an input in the mutation stage in a manner that does not
corrupt the input format.

V. EXPERIMENTAL EVALUATION

We have implemented the proposed approach based on AFL
version 2.52b and evaluated our implementation on the open-
source benchmark suite S3CBench [9]. We have compared our
approach AFL-SHT to the unmodified version of AFL as well
as to SHT detection approaches based on formal verification.
The obtained results are shown in Table I, which is divided
into three parts. In the following, we describe the benchmarks
and both comparisons in more detail.

A. Benchmark Description

The first column shows the name of each benchmark. The
type of the inserted SHT is encoded as the last component of
the name (more details in [9]). The second column ST shows
the stealthiness of each SHT as defined in [9]: the probability
that 10,000 random inputs can trigger the SHT. The majority
of the inserted SHTs is apparently very hard to detect with
random stimuli. As reported in [9], the supplied testbenches
do not trigger inserted SHTs but have a very high statement
coverage (100% in most cases, not shown in the table).

B. Effectiveness of SHT-oriented Mutations

The purpose of this comparison of AFL-SHT and AFL is
to assess the effectiveness of the SHT-oriented mutations. The
results have been obtained in a KVM-virtualized environment
on an AMD A10 Series A10-7890K host using a time limit of



TABLE I
SHT DETECTION RESULTS ON S3CBENCH USING COVERAGE-GUIDED FUZZING AND FORMAL VERIFICATION

Benchmark Coverage-guided Fuzzing Formal Verification
AFL AFL-SHT PropCheck EqCheck

Name ST BCOV #INP Result BCOV #INP Result Result Result
adpcm-swm 0.05% 97.1% 451563 T.O. 7 100% 423 1.71s 3 T.O. 7 12s 3
adpcm-swom 0.05% 97.1% 450839 T.O. 7 100% 414 1.67s 3 19s 3 19s 3
aes-cwom 0.00% 100% 50544 888.29s 3 100% 22 0.04s 3 105s 3 1294s 3
bubble-sort-cwom 0.02% 100% 118 4.82s 3 100% 39 0.05s 3 36s 3 283s 3
bubble-sort-swm 0.02% 100% 19826 337.36s 3 100% 108 0.11s 3 105s 3 554s 3
disparity-cwm 0.06% 37.1% 36391 T.O. 7 93.2% 327 63.70s 3 T.O. 7 T.O. 7
disparity-cwom 0.10% 38.3% 36736 T.O. 7 93.8% 327 65.97s 3 T.O. 7 T.O. 7
filter FIR-cwom 0.01% 93.8% 207 8.51s 3 93.8% 41 0.07s 3 7s 3 16s 3
interpolation-cwom 0.02% 68.8% 1706325 3731.07s 7 68.8% 2325402 4569.27s 7 ERR 7 ERR 7
interpolation-swm 0.00% 100% 89 0.16s 3 100% 47 0.90s 3 ERR 7 ERR 7
interpolation-swom 0.00% 100% 89 0.16s 3 100% 47 0.89s 3 ERR 7 ERR 7
kasumi-cwom 0.00% 100% 910 3.08s 3 100% 316 1.32s 3 93s 3 98s 3
kasumi-swm 0.00% 100% 918 3.01s 3 100% 345 1.32s 3 8s 3 103s 3
sobel-swm 0.00% 95.2% 1191 457.35s 3 95.2% 182 58.65s 3 ERR 7 ERR 7
sobel-cwm 0.02% 94.2% 11362 4504.25s 3 94.2% 10330 4154.07s 3 ERR 7 ERR 7
sobel-cwom 0.07% 98.1% 1217 464.58s 3 98.1% 190 64.02s 3 ERR 7 ERR 7
uart-swm 0.00% 85.4% 172 8.82s 3 85.4% 51 0.18s 3 ERR 7 ERR 7

2 hours each. The column BCOV presents the branch coverage
value achieved by AFL(-SHT). The column #INP shows
the number of inputs tried by AFL(-SHT) upon completion.
The column Result includes the computation time used by
each approach and a 3 if malicious behavior detected, a
7 otherwise. T.O. denotes that the time limit is reached.

As can be seen, AFL-SHT outperforms AFL significantly.
AFL-SHT can cover more behavior (higher BCOV) by gen-
erating a remarkably smaller number of inputs and thus in
much shorter time. Consequently, the SHT detection rate of
AFL-SHT is also superior: 16/17 vs. 12/17.

C. Comparison to SHT Detection with Formal Verification

For this comparison, we have used an anonymized com-
mercial formal verification tool with SystemC HLS support.
Unfortunately, due to license restrictions, the results have been
obtained on a different machine (Intel Xeon E3-1240 V2 @
3.40GHz). Although this machine is more powerful than the
one used in the last comparison, we still apply a time limit of
2 hours for each run.

We have employed the tool in two different modes. In
PropCheck mode, we try to reproduce the results from [8].
We invoke the available SystemC HLS property checking
engine to detect SHT with a single assertion at the inserted
SHT location. Unfortunately, [8] reported no performance
data. In EqCheck mode, we use the available SystemC HLS
equivalence checking engine to detect SHT as a difference
of the design with SHT and the golden design. The results
for PropCheck and EqCheck are reported using the same
format as for AFL-SHT: computation time and 3 if malicious
behavior detected, otherwise 7. Both PropCheck and EqCheck
perform worse than AFL-SHT w.r.t. computation time and
SHT detection rate (7/17 and 8/17, respectively). The earlier
mentioned usability issue of SystemC formal verification tools
can be observed as three designs interpolation, sobel and uart
have caused internal errors (denoted as ERR).

VI. DISCUSSION AND FUTURE WORK

We have demonstrated the applicability of Coverage-guided
Fuzzing for Hardware Trojan detection in SystemC HLS
designs. By developing a new set of fuzzing mutations tailored
to the problem at hand, all Trojans but one from the only
currently known benchmark suite S3CBench can be detected.
Compared to detection approaches based on SystemC formal
verificaion, fuzzing with the new mutations performs sig-
nificantly better. Nevertheless, the potential is not yet fully
realized as there is still much room for improvement in other
fuzzing components. Further research should focus on these
components as well as on the development of new kinds of
Trojans for HLS that are even harder to detect. Moreoever, we
expect that hybrid techniques combining fuzzing with formal
verification, symbolic execution and/or constrained random
verification (e.g. [14]) will be needed for these next-generation
HLS Trojans.
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