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Abstract—Small embedded devices are highly specialized plat-
forms that integrate several peripherals alongside the CPU
core. Embedded devices extensively rely on Firmware (FW) to
control and access the peripherals as well as other important
functionality. This poses challenges to FW development since
the FW must be adapted to each specific device configuration.
Besides ensuring functional correctness to avoid errors and
security vulnerabilities, an important design factor today is the
control and adaptivity of a system with respect to non-functional
properties, like for example application-specific timing budgets.
Furthermore, optimizations of the FW and HW/SW interface
play a very important role due to the tight resource constraints
of small embedded devices. To satisfy these requirements new
FW design methods are needed targeting FW generation, FW
verification and FW optimization.

This paper presents such new methods to enable an early,
efficient and systematic FW design taking the underlying HW
architecture into account. We use the RISC-V Instruction Set
Architecture (ISA) as a case study to demonstrate our methods.

I. INTRODUCTION

Small embedded devices serve as basis to create Internet-of-
Things (IoT) as well as automotive applications which are preva-
lent nowadays. Embedded devices integrate several peripherals
alongside the CPU core and extensively rely on Firmware (FW)
to configure, control and access the peripherals. Design flows for
small embedded systems build on highly configurable platforms
in order to minimize design costs and satisfy application specific
requirements. This poses challenges to FW development since the
FW must be adapted to each specific configuration. Therefore,
automated FW-based methodologies are on the rise to enable
generation, verification and optimization of FW. An important
design factor today is the control and adaptivity of a system with
respect to non-functional properties, like for example application-
specific timing budgets. This requires appropriate timing models
and needs to be considered by a FW generation approach. Fur-
thermore, optimizations of the FW and HW/SW interface play
a very important role due to the tight resource constraints of
small embedded devices. Finally, FW verification is crucial to
avoid errors and security vulnerabilities as well as to ensure that
optimizations did not introduce any unwanted side effects.
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Fig. 1. Overview on our three approaches and their integration into a FW
design flow.

Contribution: This paper showcases new automated methods
towards enabling an early, efficient and systematic FW design
which also takes the underlying HW architecture into account. In
particular, we discuss three approaches that consider 1) generation,
2) verification and 3) optimization aspects of FW running on
RISC-V based systems1. Fig. 1 shows an overview on how our
approaches contribute to a FW-based design flow. In the following
we discuss our three approaches in more detail.

1) We start in Section II by reviewing an efficient timing model
for RI5CY processor cores implementing the RISC-V instruction
set. An accurate timing model allows to obtain an accurate per-
formance estimation and thus can be used to evaluate the quality
of FW performance optimizations and enable FW generation under
specific timing constraints. The timing model is based on a context-
sensitive pipeline execution graph with integrated value analysis
and considers properties of the underlying micro architecture.
The approach is designed to work with both static and dynamic
timing analysis approaches and is applied to FW timing simulation

1RISC-V is an open and free Instruction Set Architecture (ISA) that recently
gained huge popularity for embedded systems. In particular, for IoT processors
RISC-V is a game changer and meanwhile big companies start to adopt
RISC-V and contribute to its steadily growing ecosystem. RISC-V is designed
in a very modular and extensible way, supporting different register bitwidths
and configurable instruction set extensions. For a comprehensive description
of RISC-V please refer to the official specifications [1], [2].



at source and binary level. Furthermore, the impact of context-
sensitive timing models using pipeline execution graphs is dis-
cussed in the context of an automated FW generation flow.

2) Then, in Section III, we present a novel case study on
FW verification through concolic testing for RISC-V systems
with peripherals and discuss the bugs we have found. Essentially,
concolic testing successively explores new paths through the FW
by solving symbolic constraints that are tracked alongside the
concrete execution. This combination of concrete with symbolic
execution enables an efficient exploration of a large set of different
program paths and hence enables comprehensive testing of the FW.
Based on the results of the FW verification case study, we discuss
the open challenges and provide concrete next steps.

3) Optimization of the FW and HW/SW interface frequently al-
ter the communication between the FW and the peripheral devices.
In Section IV we review a designated HW/SW co-equivalence
checking technique, Access Compatibility Checking via Equivalent
State Subsets (ACCESS), tailored to ensure functional correctness
of the optimized FW. Furthermore, certain FW optimizations can
cause unwanted and subtle side effects in the accessed peripheral
that are not immediately visible to the SW. We present new results
on how to apply ACCESS for verifying correct I/O behavior of
peripherals when both the FW and the HW peripheral are jointly
optimized.
Related Work: Performance models are a fundamental part of
most automated embedded SW generation flows designed to opti-
mize performance or meet real-time requirements. While there are
many performance models for other architectures at source level
[3] [4] or binary level [5], [6] these are currently missing for the
RISC-V architecture. In this paper we present a context-sensitive
performance model for the RISC-V architecture that can be used
for both source and binary code level performance estimations of
firmware code.

Concolic testing has been shown very effective in the SW
domain [7], [8], [9], [10], [11]. In addition, several extensions have
been proposed to enable analysis of complex HW/SW interactions
by integrating peripheral models (e.g. by using QEMU, Verilog or
SystemC models) into the analysis [12], [13], [14]. This extensions
are very important to enable FW verification, since embedded
devices extensively rely on FW to configure, control and access
the peripherals. We present a novel case study on FW verification
through concolic testing for RISC-V systems with peripherals and
discuss our findings.

FW optimizations often result in modifications of the HW/SW
interface which may affect the FW as well as the HW in subtle
and often unexpected ways. These effects may only result from
the interaction between HW and SW. Hence, verification methods
considering only the SW [15], [16] are insufficient. Methods using
abstract HW models derived from RTL code [13], [17] may require
extensive knowledge about the HW peripheral and may still miss
subtle side effects.

II. A CONTEXT-SENSITIVE TIMING MODEL FOR
AUTOMATED FIRMWARE GENERATION ONTO

RISC-V-BASED MICROPROCESSOR PLATFORMS

In this section we present an accurate timing model that allows
to obtain an accurate performance estimation and thus can be
used to evaluate the quality of FW performance optimizations and
enable FW generation under specific timing constraints.

This section is structured as follows. In Section II-A we give
an introduction in our context sensitive timing and value analysis.
Section II-B describes the application of our timing model to

performance analysis of embedded FW, and in Section II-C we
discuss the integration of the timing models in an automated FW
design flow. Section II-D discusses the limitations of the current
model and gives an overview of our current work.

A. Timing Model Generation
Our static timing analysis models a RISC-V system based on

the RI5CY open source processor core integrated in a Pulpino
based System-on-a-Chip (SoC) design [18]. This system has the
following properties:

• 4-stage inorder pipeline
• 3-entry instruction fetch buffer
• 32-bit instruction set architecture
• static branch prediction
• data dependent instruction runtimes e.g. division and remain-

der operations take 2-32 cycles.
• single-cycle memory access
The timing model is based on a pipeline execution graph model.

In Fig. 2 we show an example of a pipeline execution graph for
four instructions on the RI5CY pipeline. In the pipeline execution
graph based model the flow of each instruction through the 4-
stage pipeline is represented, by the four nodes of the pipeline
execution graph on the vertical axis. The latencies inherent to the
pipelined execution of each instruction on the pipeline are shown
by black edges. As the first instruction in the instruction flow is
a variable latency instruction the pipeline analysis would assume
a pessimistic timing, which is a 32 cycle delay from between the
start of execute and the start of writeback. All other instructions
have a single cycle delay between the pipeline stages (for brevity
we omit +1 labels in Fig. 2).

Resource dependencies between instructions are modeled by the
vertical grey edges in Fig. 2. As RI5CY uses an inorder pipeline,
these edges are always to the node of the next instruction in
program order, and have a delay of one cycle. As the pipeline
employs forwarding of operation results from the output of execute
stage to the decode stage, true data dependencies are modeled by
the red edges from the execute stage to the decode stage of the
dependent instruction. The latencies are reduced by one compared
to the actual latencies, to account for the time spent processing in
instruction decode.

The green edges are used to model the limited size of the
instruction fetch buffer and mispredicted branches are modeled
by the blue edges from the execute stage of a taken branch to
instruction at the branch target.

Timing analysis is then carried out on the binary level control
flow graph, of the application under investigation. The analysis
builds pipeline execution graphs for each pair of basic blocks,
and initializes each start time of each node to zero. To obtain the
final execution time the model then iterates over each state in the
pipeline execution graph and calculates the earliest start times for
each node by the maximum over the start times of the predecessors
added with the latencies on the corresponding edges. The fixpoint
iteration is finished when the start times for each state do not
change anymore.

To better cover value dependent instruction timings we inte-
grated a context sensitive value analysis into our timing model.
The analysis is based on abstract interpretation of the binary
code. The analysis uses an interval abstract domain implementation
[19] and calculates value ranges for the RISC-V architecture, by
implementing the semantics of the RISC-V integer instructions
on abstract intervals instead of concrete values. The results of the
timing analysis can then be used during the analysis of the pipeline
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Fig. 2. Example of the pipeline execution graph based analysis (default
latencies/value constrained latencies)

execution graphs to generate tighter bounds for the execute nodes
if the analysis found a bound for the register used as divisor, as
shown by the numbers in bold font in Fig. 2. Memory accesses are
currently analysed using a fixed delay per memory region.

B. Performance Analysis

The performance models can then be used to evaluate the per-
formance of embedded FW designs at multiple abstraction levels.
We currently support two analysis types.

• Binary-Level Dynamic Analysis: As the performance model
provides context sensitive timings for each binary level basic
block the integration of timing models in a functional In-
struction Set Simulator (ISS) is straight forward. The timing
simulator simply needs to simulate the current callstack and
query the timing model at each basic block boundary to
accumulate the basic block timings to the final execution time
of a program or SW component.

• Source-Level Dynamic Analysis: As the performance model
provides context-sensitive timings at the binary level the
performance estimation at the source level needs to relate
source level execution paths with the binary level execution
paths. For this purpose we implemented a source to binary
matching heuristic according to [20] and use it for our source
level dynamic analysis of the target specific execution times.
The structure of the source level performance simulation is as
follows:

1) The source code of an application is first translated by a
compiler for the RISC-V architecture.

2) Then we construct a control flow graph from the source
code as well as from the binary code.

3) Both control flow graphs are used to match the corre-
sponding basic blocks at source and binary level.

4) The results of the binary to source matching and the
timing model from the previous section are used to cre-
ate a version of the original source code, that contains
additional function calls to simulate the paths through
the binary level CFG. These annotations enable a fast
simulation of the performance behavior of an embedded
application, through execution of annotated source code
on an arbitrary host machine.

We evaluated the results of the binary- and source-level dynamic
analyses on benchmarks from the malardalen benchmark suite
[21].

All benchmarks were compiled with the official GCC compiler
toolchain for RISC-V version 5.2 with optimization level -Os. As

TABLE I
EXPERIMENTAL RESULTS: DEVIATION OF ESTIMATED EXECUTION TIMES

FROM THE RTL SIMULATION (NV=NO VALUE ANALYSIS, V=VALUE
ANALYSIS)

Binary Level Source Level
Benchmark nv v nv v
insertsort 00.13% 00.13% 00.13% 00.13%
fdct < 00.01% < 00.01% < 00.01% < 00.01%
bsort100 < 00.01% < 00.01% < 00.01% < 00.01%
jfdctint 32.92% < 00.01% 32.92% < 00.01%
cnt 24.70% < 00.01% 32.75% 08.75%
matmult 07.85% 00.22% 09.19% 01.22%

reference timings, we used the execution times of the applica-
tion binaries on a Register-Transfer-Level (RTL) simulation of a
Pulpino-SoC. Table I shows a comparison of the execution time
estimates of on the source and binary performance analyses, to
the actual exection times from the RTL simulations. The results
without a value analysis are shown in Column 2 for the binary
level performance analysis and Column 4 for the source level
performance analysis. Columns 3 and 5 show the corresponding
results with value analysis.

The benchmarks in the upper half (insertsort, fdct, bsort100)
of the table do not contain any instructions with data dependent
execution timings. On these benchmarks we achieve nearly cycle
accurate performance estimations in all analyses. While the bench-
marks in the lower half of the table (jfdctint, cnt, matmult) contain
variable instruction latencies. In these cases the pipeline execution
graph based performance model benefits from our value analysis.
In the binary level analysis we also achieve nearly cycle accurate
performance estimations, while the performance estimations using
source level analysis contain still higher errors in case of cnt and
matmult. These errors can be attributed to an incomplete source to
binary matching.

C. Firmware Generation under Timing Constraints

Our timing model and dynamic analysis is currently integrated
in an automated FW design workflow similar to [22]. The auto-
mated design flow performs four major steps.

First a data-flow-graph based model of the SW is transformed to
C source code, of the embedded FW.

Next, an analysis step is executed. This step consists of timing
simulation of the executed FW using the presented timing model
as well as power simulation. The timing analysis interfaces with
the ISS to get the binary basic block execution order. Hence,
the start address of each executed basic block is passed to the
analysis for an online context-sensitive timing analysis. In addition
to the obligatory total simulated execution time of the FW, timing
analysis optionally yields a report, containing an evaluation of
specified timing constraints.

The analysis results are then passed to an optimizer to optimize
the mapping of data to memory banks and to insert transitions to
low-power memory modes for specific memory banks.

In the final step, the resulting, optimized binary is executed
using the dynamic binary instrumentation to re-run the power and
timing simulation. The resulting timing and power information
could then be used to further improve the design in another
iteration of generation and optimization steps or for further manual
optimizations of the resulting FW.



D. Next Steps: Context-Sensitive Timing Model

We have presented a context sensitive timing model for RI5CY
based SoCs. The timing model reaches high accuracies when com-
bined with a binary level functional simulation and can also reach
high accuracies when using source level simulations, although the
reconstruction of binary paths on the source level might introduce
some divergencies from the actual timing. Our future steps are:

1) Since the RISC-V architecture can be easily extended, we
also want to increase the extensibility of our performance
model. In particular, we want to create possibilities for sim-
ple modeling of domain-specific instruction set extensions.

2) We would like to further improve, the implementation of
our source level timing annotation to make the source level
performance estimations to reduce the remaining gap with
the binary level performance estimations.

3) Improve the integration of the timing models in the FW
generation flow to directly guide optimized code generation
and optimizations.

4) Additionally, we intend to use our timing models in a case
study on FW generation for a RISC-V based low power
smart speaker application.

III. FW VERIFICATION TROUGH CONCOLIC TESTING FOR
RISC-V SYSTEMS

In this section we present a case study on FW verification
through concolic testing for RISC-V systems with peripherals.
We employ the concolic testing approach from [14] which we
briefly review in Section III-A. Then, we present the results of
our case study (Section III-B) and discuss limitations and possible
extensions (Section III-C and Section III-D).

A. Approach Overview: Review on Concolic Testing for
RISC-V based Systems with Peripherals

Fig. 3 shows an overview. The approach is centered around a
Concolic Testing Engine (CTE) that enables concolic testing of
RISC-V binaries (middle of Fig. 3). The RISC-V binary is obtained
by compiling and linking the SW/FW application together with a
designated CTE-interface library (left side of Fig. 3). Variables,
representing input data, are marked to be symbolic (using the CTE-
interface – by leveraging RISC-V system calls). The exploration
engine starts by assigning each symbolic variable a random value
(first input) and then successively generates new inputs (based
on the observed execution constraints) to explore different paths
through the RISC-V binary (right side of Fig. 3). For each input
the RISC-V binary is executed on a Virtual Prototype (VP). The
VP tracks symbolic constraints (i.e. branch conditions, assump-
tions and assertions) alongside the concrete execution in order to
generate new inputs in the exploration engine. The VP essentially
consists of an Instruction Set Simulator (ISS), a memory, and a
bus system. Additional peripherals are integrated through a SW
library (that is compiled alongside the SW/FW application and also
executed on the VP). Essentially, peripherals are registered by their
address range on the VPs bus and hence the VP can automatically
route memory access operations accordingly. To call a function in a
SW model the VP sets the program counter to the functions address
and restores it again after the function has finished. Arguments
and results are passed through registers and designated memory
regions.

The exploration engine continues until all inputs have been
processed (i.e. all feasible paths through the RISC-V binary have
been explored) or a runtime check fails (e.g. SW assertion violation
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Fig. 3. Overview on Concolic Testing of Embedded RISC-V Binaries with
Virtual Prototypes as shown in [14]

or generic memory error). Symbolic constraints are solved using an
SMT solver.

B. Case Study on FW Verification using Concolic Testing:
Description and Results

We have implemented the concolic testing approach for RISC-V
binaries in a tool called CTE and used CTE for testing different
FW. CTE is based on our open-source RISC-V VP2. All experi-
ments are performed on an Ubuntu 16.04 Linux system with an
Intel Core i5-7200U processor with 2.5 GHz. We use KLEE [7]
v1.4.0 with STP [27] solver v2.3.1 as symbolic backend in CTE.
As a case study we consider three different scenarios:

1) FW that copies data from one device to another (uart-copy).
2) FW that logs a warning on specific sensor values to an output

device (sensor-log).
3) FW that periodically queries a sensor to control a fan (fan-

control).
We found a bug in each FW using CTE and then fixed the bug.
Table II shows a summary of the verification results. The columns
show: the scenario (i.e. application FW), the number of executed
instructions (#instr), lines of code in C and assembly (ASM),
overall execution time (time in seconds), solver time (s-time in sec-
onds), number of concolic execution paths (#paths), and number of
solver queries (#s-queries). For each scenario we report results for
the buggy (name: *bug) and fixed FW (name: *ok) version. In case
of a bug, CTE stops and reports a counterexample (i.e. concrete
inputs for the symbolic variables) to reproduce the bug. Otherwise
(i.e. no bug is detected), CTE performs a comprehensive state
space exploration based on the symbolic inputs. It can be observed
that CTE is very effective for both use cases, bug finding as well as
exhaustive exploration. In the following we provide more details
on the three scenarios that we consider and the bugs we have found
in the FW.
Scenario 1) uart-copy: In the first scenario we consider a FW
driver that copies data from one device to another through an
internal ring buffer (size=32). In particular, we consider two UART
devices, one as the source and the other as target, respectively.
The FW code can be triggered by an interrupt when new data
is available for copying. The FW iterates until all data has been
copied, i.e. the source UART returns that no more elements are
available. In each step the ring buffer of the FW is filled by
querying the source UART and then the ring buffer content is
transferred to the target UART. The FW also supports the copy size

2The VP is implemented in standard-compliant SystemC and TLM-2.0 [23],
[24], is designed as extensible and configurable platform with a generic bus
system [25], and the ISS has been verified thoroughly [26]. The VP is available
under MIT licence. Visit http://www.systemc-verification.org for our most
recent VP-based approaches.

http://www.systemc-verification.org


TABLE II
EXPERIMENT RESULTS - USING CTE TO ANALYZE FW OF RISC-V SYSTEMS. IN CASE OF A BUG (*BUG) CTE STOPS THE ANALYSIS AND REPORTS A

COUNTEREXAMPLE. OTHERWISE (*OK), CTE PERFORMS AN EXHAUSTIVE CONCOLIC EXECUTION BASED ON THE SYMBOLIC INPUTS TO THE FW.

Scenario (App. FW) #instr C ASM time (sec.) s-time (sec.) #paths #s-queries

1) uart-copy bug 1,541,315 269 949 72.34 65.26 34 8721
1) uart-copy ok 1,529,477 269 950 74.85 67.74 32 8713
2) sensor-log bug 4,490 261 869 0.59 0.43 15 28
2) sensor-log ok 616,404 261 869 78.47 62.51 1021 1787
3) fan-control bug 2,638 295 1019 0.28 0.15 12 16
3) fan-control ok 63,070,763 295 1019 1196.12 616.98 37666 73486

options to configure the maximum number of elements copied in
each step.

We use a testbench that checks that the data received at the target
UART corresponds to the data from the source UART (same data
received in the same order). The source UART returns elements
from an input array with 256 symbolic elements one after another
when queried. Afterwards, the source UART stops returning data.
Once the target UART has received all 256 elements, the testbench
terminates the execution.

We found a bug in the ring buffer implementation of the FW.
The function that checks if the buffer is full did not work correctly
for the case when the writing position of the ring buffer is set on
the last element. Thus, the FW did erroneously overwrite active
elements in the ring buffer in this case.
Scenario 2) sensor-log: The second scenario considers a FW that
logs specific sensor data to an output device. The sensor generates
periodic interrupts to notify the FW that a new data frame is
available. A data frame consists of new 8 values representing the
measurements for the last time interval. The FW reads the sensor
frame into an internal buffer and then computes the maximum
of the values. In case the maximum value is above a pre-defined
treshold, then the FW writes the maximum value alongside a
warning to the output device. The output device buffer is flushed by
the FW after the write process finished and when the device buffer
is full. The size of the device buffer is obtained by the FW during
initialization.

We have created a testbench that simulates a single time interval
and returns a symbolic data frame, constrained to valid sensor
values, when the sensor is queried. We have added assertions that
check that the sum and maximum value of the data frame elements
is within a valid range. By applying CTE, we detected a bug where
the FW writes beyond the output device buffer, hence causing a
memory error in the device. The reason is that the FW initialization
code obtained the device buffer size not correctly (the size is
encoded in the lower 8 bit of the 32 bit result, but the FW used
the upper 8 bit). Depending on the selected threshold only a very
specific combination of sensor values triggers the bug. Concolic
testing (or symbolic execution in general) is very well suited to
detect such bugs.
Scenario 3) fan-control: The third scenario considers a FW that
controls a fan based on a sensor temperature value. Similar to
Scenario 2, the sensor works by periodically triggering an interrupt
and providing a new data frame in each step. The FW is triggered
at each sensor interrupt. It first copies the sensor data frame
(i.e. temperature values observed in the last time interval) into
an internal buffer. Then, the FW computes the average value of
the values stored in the buffer. The fan speed (3=high to 0=off)
is adjusted based on the current average temperature value in
combination with the two last observed values. The high speed
setting is immediately selected in case a high temperature value is

observed. Lower speed settings (off in particular) require that the
last two observed temperature values were also within the lower
range.

We created a testbench and added assertions to check that the
average value stays within a valid range (between the minimum
and maximum sensor temperature value) and we capture the last
sensor frame in the testbench to assert that the FW computed fan
speed setting does not violate the last sensor measurement (i.e. a
high speed setting is selected for a large value and the off setting is
not used in case the value is above a certain threshold). The sensor
is configured to return a data frame of symbolic elements with each
element constrained to stay within a valid temperature range. In
addition, the last and second last observed average temperature
values are also set to symbolic values. We have set the number
of simulated time intervals to four to ensure that the execution
terminates and enough time intervals are executed (since the fan
control depends on multiple time intervals).

We found a bug in the FW. The loop that computes the average
temperature value reads one element beyond the internal buffer
(due to an off-by-one loop condition). This results in a read of an
uninitialized variable on the stack after the buffer. Hence, our CTE
assumes that the uninitialized stack variable can have an arbitrary
value. This results in a temperature value overflow (i.e. even though
the sensor returned a high value, the FW computes a negative
value) and thus the fan is erroneously not activated.

C. Discussion: Buffer Overflow Detection
Please note, that in Scenario 3 CTE did not report the buffer

overflow immediately in the FW but only found the error because
the assertion failed in the testbench checking code. The reason is
that we perform a binary analysis, which albeit being precise (the
binary is the final code that will be deployed) lacks information that
the actual source code provides. At the source level a buffer and a
subsequent variable are placed on the stack. At the binary level
the stack pointer is simply adjusted to allocate stack space, hence
the information what objects are allocated are lost. Therefore, the
buffer overflow is not immediately detected because it is a valid
access inside the allocated stack space.

One possible solution to detect buffer overflows at binary level is
to instrument the binary with source level information during com-
pilation. GCC and LLVM provide several sanitizer to perform such
an instrumentation in order to e.g. detect memory leaks and buffer
overflows. Sanitzers are complementary to concolic testing (for
example we can run CTE to generate a comprehensive testset and
then re-run every test with different sanitizers). However, sanitizers
are not always available for every architecture (e.g. RISC-V is not
yet supported), in particular for new architectures or architectures
targeting embedded systems.

Another possible solution that is particularly suited for heap
buffer overflow detection and works without extensive compiler



support is to wrap existing memory allocation functions (i.e. mal-
loc and free). Many embedded systems do not rely on the standard
C library implementation but provide custom memory manage-
ment functions instead. GCC for example provides linker flags
that allow to automatically redirect calls to existing functions to a
custom user defined function (Wl,–wrap flag). The custom malloc
function allocates a larger memory block than has been requested
by adding extra bytes (protected zones) before and after the actual
requested memory block. These protected zones are then registered
in the verifier, as supported by CTE, which will monitor every
memory access and report a buffer overflow error in case of a read
or write access into a protected zone. The custom free function
unregisters the protected zones and calls the real free function
afterwards. In addition, it checks for double free and non-allocated
blocks.

D. Next Steps: Improve Concolic Testing of FW
CTE is already very effective for testing RISC-V based FW. To

further improve it we plan to consider three different directions:
1) Add support for the 64 bit RISC-V ISA and additional

ISA extensions (e.g. floating point instructions) to support
a broader range of RISC-V systems.

2) Incorporate further state-of-the-art symbolic exploration
techniques to speed-up the verification process. In particular,
we plan to integrate sophisticated state space exploration
heuristics which are very important to speed up the bug find-
ing proces in very large state spaces. In addition, we want to
integrate dynamic state merging techniques to alleviate the
state space explosion problem.

3) Integrate the RISC-V processor timing model (see Sec-
tion II) to obtain accurate timing results for systems with
peripherals and enable checking timing related properties
alongside the concolic testing.

4) Incorporate dynamic binary translation techniques to signif-
icantly boost the execution performance with native execu-
tion [28] and consider advanced symbolic state subsumption
techniques to detect re-exploration of symbolic states [29].

IV. CHECKING FOR PERIPHERAL DEVICE SIDE EFFECTS
IN FIRMWARE VARIANTS

In this section we present a case study on formal verification of
FW variants resulting from optimizations of the HW/SW interface.
The case study extends the application of ACCESS over [30] to
cases where not only the FW but also the HW peripherals are
modified by the optimization process.

A. Optimizations of the HW/SW Interface
Load/store instructions are, compared with arithmetic instruc-

tions, expensive in terms of energy and execution time. They
always involve some action by secondary HW (e.g. bus systems)
contributing to latency and power consumption. Additionally, a
large portion of an embedded system’s chip area is occupied by
memory.

Optimizations that change the layout of bit fields and registers
in the system’s HW/SW interface may lead to fewer accesses
and reduce the FW’s memory footprint. This may have noticeable
impact on the system’s HW cost and power consumption. We can
increase code sharing between API functions by unifying device
access patterns. However, this may change the I/O behavior of
the FW w.r.t. a particular peripheral device because the new API
function uses a different number and/or ordering of load/store
accesses.

In general, a compiler is unable to perform such optimizations,
due to its lack of detailed knowledge about the system’s HW.
In FW, accesses to HW are usually done via volatile pointers.
These are excluded from compiler optimization. Instead, the FW
developer or HW designer makes such adjustments manually when
customizing the platform, or by additional tools such as code
generators.

Such optimizations are typically restricted to local modifications
of the I/O behavior of the program but do not change its global
control flow. Yet, they pose significant challenges to designers
and SW developers. They may easily compromise the functional
correctness of the I/O behavior of the embedded system, e.g., by
triggering unanticipated side effects in the HW.

B. ACCESS Verification Method
The goal of ACCESS is to formally prove functional equivalence

between two variants of a HW/SW system, i.e., certify that both
variants exhibit equivalent I/O behavior w.r.t. the system environ-
ment.

Common notions of equivalence like sequential HW equiva-
lence or (unrestricted) HW/SW co-equivalence modulo latency are
either too restrictive, or computationally too complex for the opti-
mizations set out in Section IV-A. In order to make computational
complexity tractable, ACCESS partitions the FW variants into
segments such that a bijective mapping between segments exists
and each pair of corresponding segments is expected to produce
equivalent I/O behavior. This allows us to prove the equivalence
between two mapped segments within a relatively small number
clock cycles using the miter structure shown in Fig. 4. It is, essen-
tially, an unrolling of the peripheral device logic into a number of
time frames (similar as in Bounded Model Checking (BMC)) such
that different access patterns can be applied and evaluated.

Each FW variant is modeled by an instance of a Program
Netlist (PN) [31], i.e., a combinational circuit representing all
possible execution paths in the FW. For each pair of mapped
segments the accessed peripheral is unrolled from an arbitrary, but
identical, initial state. The length of the unrolling depends on the
number of accesses in the mapped segments, the maximum time
interval allowed between accesses and a “grace period” allowed
for reaching an equivalent state. Equivalence of two mapped seg-
ments is shown if both unrollings lead to identical HW states at
some point within the grace period while producing identical I/O
behavior with the environment at all considered time points.

The key idea of ACCESS lies in how the HW/SW segments
are created: by over-approximating the initial state of the HW we
ensure that each proof is independent of prior HW/SW interactions
outside a considered segment. Every HW state resulting from such
an interaction is already contained in the over-approximation. At
the same time, each unrolled HW segment is conjoined with the
complete PN. This ensures that the proof for each cycle-accurate
HW segment is performed for the right access sequences and takes
into account the precise context of the executing FW. In this way,
the HW/SW equivalence of the entire system can be proven step by
step by proving HW/SW equivalence for the individual segments.
In the following case study the method is applied to a system in
which both sides of the HW/SW interface have been modified.

C. Case Study: HW/SW optimized Soft-SPI Implementation
We present results of a case study in checking HW/SW co-

equivalence between variants of an interrupt driven Software-
implemented Serial Peripheral Interface (Soft-SPI) slave for the
RISC-V based PULPino platform. All experiments were run on an
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Fig. 5. SPI Protocol Timing Diagram. Colors highlight different phases as
used in the Soft-SPI.

Intel R© CoreTM i7 @ 3.40 GHz × 8 with 32 GB of RAM, running
an Ubuntu 16.04 Linux system and the OneSpin R© 360 Design
Verification tool.

The Soft-SPI emulates a SPI slave peripheral via “bit banging”
on the PULPino General Purpose Input/Output (GPIO) periph-
eral. The protocol requires four dedicated I/O pins: Synchronous
Clock (SCK), Slave Select (SS), Master-In-Slave-Out (MISO) and
Master-Out-Slave-In (MOSI). Fig. 5 shows the timing diagram of
the protocol for an 8-bit duplex transmission as well as the three
phases defined by the Soft-SPI slave: Idle (I), Prepare-for-Read (R)
and Prepare-for-Write (W).

The functions of the GPIO pads are defined by four control reg-
isters. Each control register holds four bits that are each associated
with one of the four GPIO pads. Each pad can be configured inde-
pendently by setting the bits associated with it in the four registers.
Register PADDIR sets a pad’s function as input or output, register
INTEN enables interrupts, and registers INTTYPE0 and INTTYPE1
control the interrupt triggering behavior. A GPIO pad needs to be
initialized after reset and/or reconfigured according to the current
phase of the Soft-SPI. Table III shows the configurations for each
pad in each protocol phase.

TABLE III
GPIO PAD CONFIGURATIONS FOR THE SOFT-SPI PHASES

Phase Pad PADDIR INTEN Trigger*

Idle (I) SCK IN disabled high
SS IN enabled low

MISO IN disabled -
MOSI IN disabled -

Prepare-for-Read (R) SCK IN enabled high
SS IN enabled high

MISO OUT disabled -
MOSI IN disabled -

Prepare-for-Write (W) SCK IN enabled low
SS IN enabled high

MISO OUT disabled -
MOSI IN disabled -

*high: INTTYPE0=0, INTTYPE1=1, low: INTTYPE0=1, INTTYPE1=1

ISRIdle ISRR ISRW

reset

SSINT
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SCKINT

SCKINT

Fig. 6. Soft-SPI call graph
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Fig. 7. Optional GPIO control register addressing scheme after HW
modification.

The Soft-SPI defines one Interrupt Service Routine (ISR) for
each phase, ISRidle, ISRR and ISRW . Besides servicing interrupts,
ISRidle is also used for initialization of the peripheral. ISRR is
called for two different interrupt events, depending on the driver
state. Fig. 6 shows the resulting FW call graph.

We examined three variants of the Soft-SPI: unpacked, SW-
packed and HW/SW-packed. All use the same set of GPIO pads.
Because the software uses only a subset of the available pads,
each write access to a register must be preceded by a read access
and by creation of an appropriate bit-mask for selecting the used
pads. This prevents the write accesses from affecting pads that are
possibly used by other applications. In the sequel, we will refer to
these two steps as a joined Read-Modify-Write (RMW) operation.
All variants require one RMW to write data to MISO in ISRR, a
normal read access to MOSI in ISRW as well as a read access of
the interrupt status register at each interrupt. These are not included
in the following descriptions.

The first variant, unpacked, uses the GPIO driver provided with
the PULPino platform, in which each bit in a GPIO register must
be set by its own RMW. This requires at least 12 RMW operations
in ISRidle, three in ISRR and one in ISRW .

The next variant SW-packed exploits the fact that the FW can
simultaneously configure the same control parameter for multiple
pads in a single RMW operation. Hence, the RMW operations in
ISRidle are reduced to 4 (one for each control register). ISRR and
ISRW remain unaffected because the accesses are all distributed
over different registers, leaving no room for optimizations.

While in variant SW-packed only the FW was optimized, both
the FW and the HW are modified in variant HW/SW-packed.
The optimization achieved in variant HW/SW-packed is possible
due to changes in the GPIO’s addressing scheme. In the original
addressing scheme the two least significant address bits are not
used. We utilized these to introduce a new optional addressing
mode in the peripheral’s HW. It is without effect when both bits
are 0, but otherwise allows to simultaneously access one byte of
each of the four control registers. The accessed byte is defined by
the values of the address bits. The new scheme is conceptually
presented in Fig. 7. Due to the new addressing scheme, all pads
of the same byte can be completely configured using only a single
RMW. Hence, only one RMW is required by this variant in each
ISR.

Fig. 8 shows the normalized effect of the optimization on the
amount of accesses required to reconfigure the GPIO in order to
transmit a certain number of bits. We can see that both optimized
variants have a significant effect on the number of required I/O
accesses, especially for a low number of transmitted bits.

In order to verify the equivalence of the variants with ACCESS,
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TABLE IV
EXPERIMENT RESULTS USING THE ACCESS VERIFICATION METHOD

PROVING EQUIVALENCE BETWEEN SOFT-SPI VARIANTS

variant combination segment time memory result

unpacked ISRidle 21 min 28 sec 2881 MB hold
⇔ ISRR 3 min 07 sec 2148 MB hold
SW-packed ISRW 2 min 08 sec 1347 MB hold
unpacked ISRidle 12 min 07 sec 2539 MB hold
⇔ ISRR 1 min 58 sec 1794 MB hold
HW/SW-packed ISRW 35 sec 1357 MB hold
SW-packed ISRidle 3 min 15 sec 1939 MB hold
⇔ ISRR 2 min 14 sec 1793 MB hold
HW/SW-packed ISRW 33 sec 1357 MB hold

the division of the code into ISRs provides a natural segment
mapping. During PN generation the maximum number of bits
per transmission was set to one. This is sufficient to exhaustively
explore all transitions in the FW call graph. The HW modifications
to the GPIO do not add or remove any of HW ports or registers.
Hence, no additional action has to be taken to map HW states.

All variants could be proven to be equivalent to each other
under the equivalence notion of ACCESS. Proofs were performed
assuming a maximum delay of 4 cycles per access and a grace
period of 5 cycles. Table IV shows more detailed data on the
individual proofs.

Our results show the potential of application-specific optimiza-
tions of the HW/SW interface of peripherals. Low-level FW op-
timizations such as re-structuring the register interfaces and the
access patterns of FW, as they are often practiced by FW develop-
ers and HW designers, typically involve only local modifications
of FW code and HW structures. At the same time, however, they
require a global understanding of the FW behavior. The ACCESS
approach provides a new instrument for encouraging and system-
atically verifying such optimizations.

V. CONCLUSION

Automated FW-based methodologies are very important to cope
with the rising complexity of the design flow for embedded
systems. In this paper we showcased new automated methods
towards enabling an early, efficient and systematic FW design
which also takes the underlying HW architecture into account. In
particular, we discussed three approaches that consider generation,
verification and optimization aspects of FW. Our evaluations, using
the RISC-V ISA as a case study, demonstrated the efficiency and
applicability of our methods.
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