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Abstract—Within the last decades, tremendous research work
has been carried out on the development of software-based
algorithms to solve the Boolean Satisfiability Problem. These
SAT-solvers have then been heavily orchestrated for addressing
complex computational tasks like the verification of circuits. In
this field, most of the applied techniques focused only on the
design phase of the circuit. Due to this fact, new approaches have
been published in the literature solely focusing on online verifi-
cation as well as self-verification. These kind of solutions strictly
require Hardware (HW) SAT-solvers that can be integrated into
a system while introducing only low hardware overhead and
still providing high flexibility. By following these observations,
this work presents SAT-Hard: In contrast to the state-of-the-
art, SAT-Hard takes advantage of learning techniques to support
features like clause learning and non-chronological backtracking,
and combines them within a lightweight and standalone HW
device. By this, a run-time speed-up of 2,000x can be achieved.
Furthermore, the experimental evaluation clearly demonstrates
that those complex problems can be solved in less than 20 seconds.
Particularly due to its compactness, SAT-Hard is suitable for
self-verification that enables the continuous verification of an
integrated system during its lifetime.

Index Terms—Hardware SAT-Solver; hardware based conflict-
driven clause learning; online-verification; on-chip self-
verification package

I. INTRODUCTION

The Boolean Satisfiability Problem (SAT-problem) is used
in many areas of computer science such as computer-aided
design, circuit design, automated reasoning as well as formal
verification. The verification of circuit designs is an essential
task and ensures that the functionality of the design meets
its specification. Verification is of uttermost importance for
safety-critical applications. The steadily increasing design
complexity of electronic systems paves the way for the long
process of verification. Due to tight time-to-market constraints,
most of the designs are deployed without being fully verified.
Self-verification has been introduced as a solution in order
to close this verification gap [1], [2], enabling to continue
the design verification tasks on-chip after deployment by
making use of an embedded verification package. Online
verification is a similar approach that verifies produced results
at run-time in order to continuously guarantee the integrity of
the system. Both solutions require fast and powerful solvers
with low costs in terms of area and power. Only if these
criteria are both fulfilled, such a solver can be considered as
part of the verification package. Since there are fundamental
differences in the development of hardware (HW) and software
(SW) solutions for specific problems, the transfer of existing

software SAT-solvers to the hardware domain is a non-trivial
task. In previous work, a basic HW SAT-solver [3] has been
developed as a verification package and been implemented
entirely on hardware in order to solve arbitrary SAT-instances
which are dynamically generated on-chip. However, it suffers
from long run-times when solving highly complex instances
and, hence, turning it inappropriate for several applications.

This work presents SAT-Hard, a learning-based and stan-
dalone HW SAT-solver. SAT-Hard significantly extends the
HW SAT-solver [3] by enabling conflict-driven clause learning
in HW. SAT-Hard is still completely implemented in HW and
allows solving arbitrary instances solely in HW. By this, SAT-
Hard achieves a run-time speed-up of 2,000x while keeping
the required HW costs low. Furthermore, the orchestration of
these learning-based techniques allows solving SAT-instances
which could not be handled by the state-of-the-art approach.
Consequently, SAT-Hard provides the required performance
to tackle the upcoming challenges in the domain of self-
verification.

The remainder of this paper is organized as follows: Sec-
tion II gives the background on SAT-problem and SAT solving
algorithms. Section III reviews and classifies existing hardware
SAT-solvers. Section IV introduces SAT-Hard: A learning-
based HW SAT-solver. The experimental results are evaluated
in Section V. Finally, Section VI concludes this work.

II. BACKGROUND IN SAT SOLVING

This section reviews the general SAT-problem and presents
algorithms that enable SAT solving. In particular, learning-
based approaches are discussed in more details, which form
the basis for this work.

A. SAT-problem

The SAT-problem is one of the central NP-complete prob-
lems. In fact, it was the first knownNP-complete problem [4].
Despite its proven complexity, solving the SAT-problem is a
fundamental aspect of countless optimization methods, many
of them in the field of computer-aided design.

The SAT-problem is defined as follows: Let f be a Boolean
function in Conjunctive Normal Form (CNF), i.e., a product-
of-sum representation. Then, the SAT-problem is to find an
assignment for the variables of f such that f evaluates to ‘1’,
or to prove that no such assignment exists.

The CNF consists of a conjunction of clauses. A clause is
a disjunction of literals and each literal is a Boolean variable
or its negation. A CNF formula is satisfied iff for at least



one variable assignment all clauses are satisfied. A clause is
satisfied if at least one of its literals is satisfied and a literal
is satisfied if it evaluates to ‘1’, which is demonstrated by the
following example.

Example 1: Let f = (x1+x2) ·(x2+x3). Then, x1 = 1 and
x2 = 0 is a satisfying assignment for f , i.e., f is satisfiable.

The Davis-Putnam-Logemann-Loveland (DPLL) algorithm
[5], [6] is a backtracking-based SAT algorithm that acts
as the basis for state-of-the-art SAT-solvers like [5]–[9]. A
fundamental aspect of the DPLL-algorithm concerns the use
of the Unit Propagation, also known as Boolean Constraint
Propagation (BCP) [8]. By definition, a clause is a unit
clause if only one of its literals has no satisfying assignment.
Then, the variable of the literal is implied or forced to a
logic value such that the clause is satisfied. A conflict occurs
if this implication is contradictory to the previous variable
assignment. The DPLL algorithm tries to solve such a conflict
by reverting the assignments from previous decisions, i.e., via
chronological backtracking.

Fig. 1a details the basic flow of DPLL. In general, the SAT-
problem is satisfiable, iff all variables could be assigned to a
valid value (Step II). If there are free variables left (Step I)
a free variable is assigned to a value (Step III), which is
also called Decision. In parallel, the Decision Level, i.e., the
number of decisions during the solving process, is increased.
Next, a value is implied to the variable based on the previous
Unit Propagation (Step IV). If this step does not cause a
conflict (V), then the procedure restarts at (Step I). In case
of a conflict, it is checked whether the decision level is higher
than 0 (Step VI). If this is the case, the algorithm executes a
backtrack to the immediate level and forces an opposite value
to the specific variable of the decision level. If the conflict still
exists at the decision level 0, then the problem is said to be
unsatisfiable, usually denoted as UNSAT (Step VIII).

B. Conflict-Driven Clause Learning

The plain DPLL algorithm only allows chronological back-
tracking might be leading to a state in which the HW SAT-
solver gets trapped in non-solution regions of the search space.
The Conflict-Driven Clause Learning (CDCL) is an extension
of the DPLL algorithm, which tries to prevent this issue by de-
termining the reason for the conflict using implication graphs,
clause learning and non-chronological backtracking [8].

An Implication Graph (IG) is a skew-symmetric directed
graph containing the variable assignments associated with the
corresponding decision level. The vertexes of an IG represent
a variable assignment, while the directed edges indicate the
implications and the related clause. Furthermore, decisions
have no incident edges. The IG is constructed during the
decision and unit propagation phases (see Fig. 1).

A significant share of solving time is spent on the back-
tracking of unsatisfying variable assignments. CDCL allows
learning of new clauses, which help to avoid unfavorable
partial variable assignments and restrict the search space in
areas, where no solutions can be found. The principle flow
of the Clause Learning is depicted in Fig. 1b, which starts

Fig. 1. (a) Basic steps of DPLL flow and (b) enhanced with Conflict-Driven
Clause Learning

after a conflict has been identified. First, the IG is cut into
two partitions such that one side contains the conflict while
the other one holds all decisions and implications leading to
this conflict (2). Next, the partial assignment, formed by all
variable assignments that have an outgoing edge crossing the
cut, is extracted (3). Then, the partial assignment is negated
and added as a newly learned clause to the problem instance
(4). Finally, the backtrack level is determined (5). In contrast
to the plain DPLL algorithm, more than one level can be
returned, which is also called Non-chronological Backtracking.
Here, the appropriate decision level (to be considered for
backtracking) is the highest decision level, except the current
one, in the learned clause. This strategy has an advantage
since the learned clause becomes unit (or assertive) under the
resulting partial assignment [10].

From a functional point of view, a sequence of resolution
operations is performed on clauses during the clause learning
procedure [11]. A new temporary clause is generated at each
step. Let � represents the resolution operator. For two clauses
wj and wk, for which a unique variable x exists such that one
clause has a positive literal x and the other one has negative
literal x, wj�wk contains all the literals of wj and wk with the
exception of x and x. If the current decision level contains just
one variable (in any generated clause), the resolution operation
will terminate with the learned clause as the result. The literals
of the learned clause are the reason for the conflict; the so-
called reason literals.

The following example shall give a more detailed insight
into the CDCL:

Example 2: Fig. 2a depicts a CNF consisting of the five
clauses w1 to w5. In order to represent the decision and
propagation process, the following notation is used: xi = b@n
with xi is the variable, the logic value b is assigned to at



decision level n. For example, x1 = 0@1 means that at
decision level 1 the variable x1 was assigned to the value
’0’. Fig. 2b shows the resulting implication graph. The graph
indicates that the implications on x5 in w1 and x6 in w2 at
decision level 4 and on x7 in w5 at decision level 2 turn
the clause w3 unsatisfied, i.e., all literals evaluate to ‘0’. The
resulting conflict is denoted by C.

The conflict analysis starts with the unsatisfied clause w3.
In the first step, the resolution operation is executed on w3 and
w2, which is one of the clauses at decision level 4 as follows:

(x5 ∨ x6 ∨ x7)︸ ︷︷ ︸
w3

� (x4 ∨ x6)︸ ︷︷ ︸
w2

= (x4 ∨ x5 ∨ x7)︸ ︷︷ ︸
wT

(1)

The resulting temporary clause wT includes all literals of
both clauses, except x6, since x6 occurs negated in w3 and
non-negated in w2. In the next step, the resolution operation
is executed on wT and w1 as follows:

(x4 ∨ x5 ∨ x7)︸ ︷︷ ︸
wT

� (x1 ∨ x4 ∨ x5)︸ ︷︷ ︸
w1

= (x1 ∨ x4 ∨ x7)︸ ︷︷ ︸
wL

(2)

The resulting clause wL contains all literals of both clauses
except x5 and, similarly, x5 occurs negated in wT and non-
negated in w1. The resulting clause is learned clause because
it holds the reason literals and it has just one literal at the
decision level 4. This clause is added to the CNF problem
(see Fig. 2c). The corresponding cut of the implication graph
is depicted in Fig. 2b.

The variable assignments at the decision levels 3 and 4
are invalidated during the final backtracking since x7 has the
highest decision level apart from the current decision level in
the learned clause.

In the remainder of the SAT solving process, x4 is implied
to ‘1’, decisions made on x3 with the assignment ‘0’ and
x5 with the assignment ‘1’ proving that this CNF problem is
satisfiable. The final implication graph is depicted in Fig. 2d.

III. HARDWARE SAT-SOLVERS

This section gives an overview of existing SAT-solvers,
which are implemented in hardware. Furthermore, it classifies
existing approaches and distinguishes these against SAT-Hard.

HW SAT-solvers can be broadly grouped into Instance
Specific and Application Specific solutions [12]. In the case
of the former, each and every instance is contained in the
hardware design in a hard-coded fashion. This means that the
solver has to be recompiled and reconfigured for each problem
individually before the solver can be executed. In contrast to
this, application specific SAT-solvers are configured only once
and allow to process arbitrary problem instances. The solving
process of such a SAT-solver can be solely implemented in
hardware or it is separated in a hardware (HW) as well as in
a software (SW) part.

The authors of [13], [14] present an instance specific
solver implementing an improved DPLL algorithm. Here, the
variables are randomly sorted during the automatic generation
of the HDL code [9]. However, a principal drawback of such
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Fig. 2. Exemplary CNF problem with related implication graphs

a SAT-solver concerns the limitation of the problem size that
can be solved with respect to the available hardware resources.

In the case of application specific SAT-solvers, one can
distinguish between SW-driven solvers that require certain pre-
processing steps that have to be executed in software, and
stand-alone solvers, that execute all tasks solely on hardware.
The authors of [15]–[18] present several SW-driven HW
solvers, which are able to solve arbitrary problems of a large
problem size. However, the solutions are based on incom-
plete search algorithms, like Walk SAT [19], which do not
guarantee to determine whether the problem is unsatisfiable.
This limitation does not apply for the SW-driven HW SAT-
solver as presented in [20], which invokes a complete search
algorithm. During the pre-processing of the CNF problem,
clause literals are transformed into constants by exploiting
the constant propagation optimization capabilities of the HDL
compiler.

The authors of [3] present a stand-alone HW-solver, which
introduces only very low costs in terms of area and power dis-
sipation and, hence, can be easily integrated as a co-processing
unit in complex systems. Besides the classification in instance
and application specific solutions, one can also distinguish
between SAT solvers with and without learning capabilities.
As discussed in the previous section, the orchestration of
learning-based techniques is essential for solving complex
problems while occupying only manageable resources in terms
of time and space. This means that any HW SAT-solver, which
shall also be applied for more difficult problems should, or
even has to, support learning techniques.

In [21], an instance specific solver is presented, which
implements the learning of clauses by reverting the implication
process. Each newly learned clause is then integrated as a
new circuitry into the hardware. The authors of [22], [23]
propose an instance specific solver that uses so-called banks to
store the clauses and the implication graph. Furthermore, non-
chronological backtracking and clause learning are supported



but with considerably high area costs, i.e., an application-
specific integrated circuit with a size of 2.25cm2 using a
100nm technology node. In [24], this solver has been ex-
panded to a SW-driven application specific solver. Here, the
SAT problem is heuristically partitioned into smaller CNFs,
so-called bins, before it is stored into on-chip memory but
again at high area costs. A further instance specific SAT solver
is presented in [25], which uses conflict-directed jumping.
The solver supports non-chronological backtracking and clause
learning but is limited to smaller problems with nearly 500 lit-
erals at maximum.

All reported HW SAT-solvers, with exception of the one
presented in [3], have high costs in terms of area and power
and, consequently, are appropriate candidates for on-chip
accelerators if there are no sharp limitations concerning the
available hardware resources. In the field of self-verification as
well as online verification, tough limitations in terms of hard-
ware resources exist and, thus, the discussed HW SAT-solvers,
again expect [3], are not applicable at all. Furthermore, in-field
applications require fast solutions that are instance-agnostic.
Hence, we propose in this work a lightweight application
specific stand-alone HW SAT-solver, which supports both
clause learning as well as non-chronological backtracking.

IV. SAT-HARD: CDCL-BASED LIGHTWEIGHT HARDWARE
SAT-SOLVER

This section introduces a lightweight application specific
stand-alone HW SAT-solver, named SAT-Hard, which supports
CDCL. In contrast to the state-of-the-art, this solver has
notably low area requirements, and thus, can easily support
self-verification and similar tasks. SAT-Hard is inspired by an
existing basic HW SAT-solver that does not support CDCL and
is introduced in the first part of this section. Next, the memory
model as well as the control of SAT-Hard is presented.

A. Basic HW SAT-solver

A basic application specific and stand-alone HW SAT-solver
has been presented in work [3], which is briefly introduced
in the following. One fundamental component of this basic
SAT-solver is the scalable memory model as used for storing
the SAT-instance, which is formulated as a CNF (see Fig. 3).
As commonly done, the literals are encoded in the DIMACs
scheme, which is introduced in the following example.

Example 3: The DIMACs encoding of the two clauses of
function f of example 1 is as follows:
f = (x1 + x2) · (x2 + x3) → 1 2 0, -2 3 0.
This means that a variable xi is represented by its index i,
which is, in case of negation, multiplied by −1. Furthermore,
a ‘0’ encodes the end of a clause.

The memory model of the basic HW SAT-solver is shown in
Fig. 3a. On the left-hand side, the SAT-instance is given in its
original form. The CNF memory is shown in the middle part
and, finally, the Clause Position Memory (CPM) is presented
on the right-hand side of Fig. 3a. The CNF memory contains
the clauses and their literals, whereat every literal is encoded
following the scheme of Fig. 3b. Furthermore, the clauses
are separated by a wordline, which stores the number of

literals and maximum decision level of the preceding clause,
i.e., max level(xi) with xi ∈ w. The CPM contains the
maximum decision level of the clause, the Clause SAT Status
(CSS), indicating whether the clause is already satisfied or
not. Furthermore, the CPM contains the clause address, i.e.,
the memory address pointing beyond the last literal of the
clause.

The encoding of every literal in the CNF memory is based
on a 32 bit word as illustrated in Fig. 3b. The lower bits 0 to
13 indicate the index of the variable that belongs to the literal,
bit 14 keeps the sign, bits 15 and 16 define whether the literal
is free or assigned to ‘0’ or ‘1’. Bit 17 shows whether the
variable has been assigned already to both values (‘0’ and
‘1’) for conflict resolution, bit 18 contains the information
whether the assignment to the literal results from a decision
of the SAT-solver or an implication. The remaining bits 19 to
31 represent the decision level.

The design of the basic HW SAT-solver employs the DPLL
algorithm and invokes a finite state machine. After initializa-
tion of the solver, a complete SAT-instance is transferred to
the device and stored in the CNF memory. Concurrently, the
literal number of each clause is determined and written to
the location of the wordline separator and, additionally, this
address is also written to the CPM.

When the transfer of the SAT-instance is completed, a literal
is determined from a clause, which is not yet satisfied and
still holds free variables. Then, a decision assignment is made
on this literal such that it evaluates to true and the decision
level is increased by 1. If a clause has just one unassigned
literal and is not yet satisfied, the free literal will be assigned
by a newly derived implication. After an assignment has
been conducted by a decision or an implication, the value
is propagated to all clauses that include the literal and, if so,
the counter for free variables is decreased within the specific
clause. If the current assignment satisfies a clause, the CSS
bit in the CPM is set to 1. If all the clauses are satisfied, the
instance is said to be SAT. If no conflict has occurred and a
clause is found, which holds only one free literal (and not yet
satisfied), an implication is derived after current propagation
has finished. Otherwise, a decision is made for a further literal.
If a clause has no free variables and is not yet satisfied, a
conflict occurs. To resolve the conflict, the SAT-solver flips the
latest decision assignment and invalidates all implications of
the current decision level. The affected clauses are identified
by checking the maximum decision level information. If a
clause has a literal at the current decision level, its number of
free variables will be updated. As long as the conflict has not
yet been resolved, the decision level is repeatedly decreased
by 1 and the chronological backtracking principle is invoked.
If the root level (decision level 0) has been reached and the
conflict remains, the instance is said to be UNSAT.

B. Advanced Memory Model
The advanced memory model is developed to enable the

conflict-driven clause learning, depicted in Fig. 4, and extends
the basic memory model by an Implication Graph Mem-
ory (IGM) as well as a Reason Literal Memory (RLM). The
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Fig. 3. Memory structure and literal encoding of basic HW SAT-solver

IGM represents the implication graph that stores all impli-
cations. This means that each wordline contains a variable
index, a sign (bits 14 to 0) and the clause number, to which
the implied literal belongs to (bits 30 to 15). Furthermore, a
wordline of the IGM stores the decision level such that all
implications of the same decision level are covered.

The RLM stores the literals of the clauses that contain
reason literals causing a conflict. These literals, which follow
the same encoding as shown in Fig. 3b, can be assigned by
an implication or by a decision. During the learning process,
as detailed in Section IV-C, all implied literals at the current
decision level–except one– will be eliminated by the so-called
resolution operation. Especially, the CNF memory is extended
such that it can store learned clauses, whose addresses are then
stored in the CPM.

C. Clause Learning

The solving process is quite similar to the methodology
of [3] provided that no conflict occurs. One deviation con-
cerns the fact that further information is gathered for every
implication, i.e., the implied literal is written to the IGM.
The significant extension of this paper mainly addresses the
conflict resolution of SAT-Hard, which now involves sophis-
ticated learning-based techniques. Fig. 5 presents an activity
diagram, which describes the procedure after a conflict has
been detected as follows: After detection of a conflict (1),
all literals of the clause that contains the conflict, in the
remainder named Conflict Clause, are stored in the RLM (2).
Next, using the clause number, which has been just stored
in the IGM and the address of the clause in the CPM, the
implication clause, in which the literal is implied, is accessed
in the CNF memory (3). This means that all literals of the
implication clause are read from the CNF memory sequentially
(4) and then are compared with all literals stored in the RLM
using the literal index (5). If the literal is not yet stored in
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Fig. 4. Advanced memory model supporting CDCL

the RLM, then it is written to the RLM (7). Furthermore, if
the corresponding decision level of the literal is equal to the
highest decision level, then the counter will be incremented,
which monitors the number of literals of the highest decision
level. If the literal is already included in the RLM, it will be
checked whether it is an implied one and whether its negation
is already stored in the RLM (8). In the positive case, both
literals eliminate each other (9), based upon the principle of the
resolution operations (see also Example 2). Additionally, the
counter for the corresponding decision level is decremented.
If the literal cannot be eliminated but is already part of the
RLM, the algorithm will proceed with the next step (10). The
reading from the implication clause is repeated until all literals
have been processed (11). If after this process more than one
literal of the current decision level remains in the RLM, then
the IGM will be used to access the address of the clause, in
which the next literal of the current decision level is included
and, subsequently, the process is repeated (12). However, if
there is just one literal in the RLM at the current decision
level, then the literals will be stored in the CNF memory as
a newly learned clause. In parallel, the RLM is erased such
that the RLM is prepared for the next conflict that occurs
(13). Next, the backtrack level is identified by checking the
decision level of all literals in the learned clause (14). After
the backtrack level is determined, all literals with a decision
level higher than the backtrack level get unassigned in the CNF
memory, i.e., the free literal number of each affected clause
is updated and, consequently, removed from the IGM (15).
Finally, an implication is made on the learned clause, having
in mind that this is an asserting clause (16). Then, the normal
solving process continues.



Fig. 5. Clause learning procedure

D. Example of Clause Learning in SAT-Hard

In order to demonstrate the newly developed clause learning
procedure of this work, Example 2 is reconsidered. The steps
during the clause learning are detailed below as well as the
linkage to the state numbers (in parenthesis) of the activity
diagram shown in Fig. 5:

Example 4: Fig. 6 shows the symbolic representation of
the literals and clauses in the utilized memories. If a conflict
occurs, the implied literals x7, x10, x5 and x6 with their
corresponding clause numbers and decision levels will already
be stored in the IGM. The arrows and circled numbers show
the steps as follows:

1- The literals x5, x6 and x7 of the unsatisfied clause w3

are written to the RLM (2).
2- The literal x6 is implied in w2, which points to the

CPM and the end of clause address 6, is accessed in
the CNF (3). The index of the literals x4 and x6 in w2

are compared with the ones in RLM (4). x6 is eliminated
because it is implied literal at the current decision level
and its negation is already in the RLM (8). x4, that is not
yet in the RLM, is added to the RLM (7). The literals x5,
x6 and x7 form the temporary clause wT = (x4∨x5∨x7).
This is due to the fact that 2 literals at current decision
level 4 in the RLM (12) exist and the next implied literal
is referenced by the IGM (3).

3- The clause w1 is accessed by IGM due to the location
of literal x5 (3). Similarly, the literals x1, x4 and x5 are
compared one by one with the literals of the temporary
clause (4). Subsequently, x5 is removed (8), x1 is written

TABLE I
RESOURCE UTILIZATION ON ZYNQ

Elements [3] SAT-Hard Increase Rate

Slice LUTS 1479 1894 1.28
Slice Registers 568 765 1.35
Block RAM Tile 79 109 1.38

(7) and x4 has been written before and, hence, it is
skipped at this time (10). This is due to the fact that
there is only one literal at decision level 4 in the RLM,
Consequently, the literals x7, x1, x4 form the learned
clause wL = (x1 ∨ x4 ∨ x7).

4- The literals of the learned clause wL are transferred from
the RLM to the CNF (13).

V. EXPERIMENTAL RESULTS

This section presents the obtained experimental results
by considering different benchmark instances. At first, the
resource usage is shown, which proves the lightweight char-
acteristic of SAT-Hard. Additionally, the solving run-times of
several SAT-instances are presented, which clearly demon-
strate the overall performance of SAT-Hard and the outperform
against state-of-the-art approaches. Especially, detailed statis-
tics are presented to emphasize the benefit of the introduced
learning capabilities.

A. Area Utilization

SAT-Hard has been implemented Verilog HDL. In order to
compare the utilized area against [25] and [24], SAT-Hard has
been implemented on a Xilinx Virtex-II Pro device. Results
indicate that the proposed design utilizes solely 9% of the
Slice LUTs. In comparison, [25] occupies 82% of the LUTs
and, consequently, is roughly 9 times larger than SAT-Hard.
Furthermore, [24] uses 70% of the available LUTs on the same
device, and thus, has nearly 8 times higher costs in terms of
area compared to SAT-Hard.

The Xilinx Zedboard Zynq is used as the evaluation plat-
form for all experiments. This device combines a dual-core
ARM Cortex-A9 processor with the programmable logic unit
(xc7z020clg484 FPGA core). All SAT-instances are trans-
ferred by the host system (Petalinux) –running on ARM
microprocessor– via the Advanced eXtensible Interface (AXI)
to the FPGA core, which implements SAT-Hard.

SAT-Hard is able to solve instances of up to 16,384 clauses
and with the same number of literals in the format of 3-
CNF1. The current implementation occupies 3.56% of the
Slice LUTs, 0.72% of the Slice Registers and 77.86% of the
available Block RAMs.

Table I compares the synthesis results on this FPGA
with [3]. The occupied hardware resources are negligible,
which clearly proves that the lightweight characteristic of SAT-
Hard (over basic HW SAT-solver) remains and, hence, it is
well-suited for an application like self-verification, which has
to deal with strictly limited hardware resources.

1Note that SAT-Hard is not limited to a format that has the same number
of literal in every clause.
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Fig. 6. Exemplary generation of learned clause

B. Run-time Comparison

TABLE II
RESULTS FROM SATLIB

Instance #Var #Cls Status [3][s] SAT-Hard[s] Speed-Up

hole7 56 204 UNSAT 0.61 0.33 1.85
hole8 72 297 UNSAT 7.02 2.27 3.09
hole9 90 415 UNSAT 79.45 15.29 5.20
uf100-10 100 430 SAT 2.80 0.58 4.83
uuf100-2 100 430 SAT 10.81 4.94 2.19
uf125-1 125 538 SAT 5.65 1.16 4.87
uuf125-5 125 538 UNSAT 15.32 4.90 3.13
uf150-8 150 645 SAT 20.08 3.92 5.12
cbs100-1 100 403 SAT 6.71 2.34 2.87
aim-200-3 4 200 680 SAT timeout 1.20 -
aim-200-1 6 200 320 UNSAT timeout 0.01 -
ii16e2 532 7825 SAT 6.10 5.76 1.06
ii32e1 222 1186 SAT 0.02 0.02 1.00

TABLE III
RESULTS FROM BMC

Instance #Var #Cls Status [3][s] SAT-Hard[s] Speed-Up

b4-38 2005 4892 SAT 23.66 3.26 7.26
b4-40 1700 4123 SAT timeout 7.26 -
b4-90 1151 2967 SAT 1692.35 0.89 1901.86
b12-2 9490 14549 SAT timeout 15.59 -
b12-12 2452 5947 UNSAT 1024.44 3.27 313.28
s38584-69 5201 13088 SAT 2100.37 4.90 428.65

TABLE IV
RESULTS FROM SELF VERIFICATION INSTANCES

Instance #Var #Cls Status [3][s] SAT-Hard[s] Speed-Up

simple 161 539 UNSAT 21.08 1.48 14.24
smart-6 163 335 UNSAT 8.28 0.02 414.00
multip-conf 214 429 UNSAT 14.88 0.06 248.00
simple-2 388 777 UNSAT 100.14 0.07 1430.57
mult8-17 583 1549 UNSAT 34.14 2.85 11.98
mult8-66 532 2392 UNSAT 50.59 6.17 8.20
mult-10-2 267 1015 UNSAT 39.43 5.26 7.50

The considered CNF instances have been clustered into
different benchmark sets and been distinguished against [3],
which is presented in the tables as follows:

• Table II presents the solving run-times for different
classes of application specific instances from Satlib [26].

• Table III considers Bounded Model Checking (BMC)
instances, which are used in the field of circuit test [27].

• Table IV illustrates the results of the instances that are
used in the context of self-verification. These instances
are generated by configuring variables leading to a sig-
nificant reduction of the search space [28].

For all experiments, a timeout was assumed if the solver
could not succeed to solve an instance within 5 hours.

The performance is highly dependent on the structure of
the problem. Notwithstanding, all results show that SAT-Hard
successfully solves each and every of the evaluated instances
in less than 20 seconds. In contrast to this, [3] is only capable
to solve those instances, whose conflicts can be resolved by
invoking basic search procedures. Otherwise, [3] fails to solve
instances, which require more sophisticated resolve procedure
to, e.g., avoid being trapped in the non-solution space.

C. Detailed Solving Statistics

To discuss the advantage of the introduced learning capa-
bility in a more extensive way, detailed solving statistics2 for
some SAT-instances are presented in the following.

These numbers have been conducted by recording the total
number of decisions, implications, and conflicts during the
solving process. More precisely, the improvement factor is
determined by dividing each measurement of basic HW SAT-
solver by SAT-Hard, i.e., number of decisions( [3] / SAT-
Hard). For example, the number of decisions of the instance
hole9 when using basic HW SAT-solver is 322,559 and when
using SAT-Hard is 2,547. Consequently, the improvement
factor is 126.6. All improvement factors are shown in Fig. 7
and in Fig. 8 with a logarithmic scale. It can be realized that

2Note that the numbers of instances, which led to a timeout while
applying [3], could not have been determined and, therefore, these instances
are not included in the graphics.



Fig. 7. Statistics of Satlib instances

Fig. 8. Statistics of BMC and self-verification instances

SAT-Hard decreases the number of computations by orders of
magnitude. Moreover, during the solving of instance ii32e1,
no conflict occurs and, hence, the same number of decisions
as well as implications are measured for SAT-Hard and for [3].

VI. CONCLUSIONS

This paper proposed SAT-Hard, a learning-based HW SAT-
solver, i.e., SAT-Hard enables conflict-driven clause learning
(CDCL) completely in HW. To realize CDCL, a sophisticated
memory model has been developed and implemented within
a lightweight and stand-alone HW SAT-solver. As shown in
the experiments, SAT-Hard achieves a speed-up up to 2,000x
compared to the existing state-of-the-art approach. Moreover,
SAT-Hard is able to solve high complex SAT-instances which
are out of reach for the existing HW SAT-solver. Since the
lightweight characteristic in terms of area is clearly met,
SAT-Hard enables new emerging approaches in the domain
of verification and test.
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