
Property-driven Timestamps Encoding for
Timeprints-based Tracing and Monitoring?

Rehab Massoud1, Hoang M. Le1, and Rolf Drechsler1,2

1 University of Bremen, Bremen 28359, Germany
massoud,hle,drechsler@informatik.uni-bremen.de

2 German Research Center of Artificial Intelligence DFKI GmbH, Bremen, Germany

Abstract. Timeprints are temporal regularly-logged signatures, describ-
ing a signal’s temporal behavior. They have been recently used in on-
chip signals tracing and temporal properties checking. Timeprints are
generated by aggregations of encoded timestamps marking where sig-
nal changes took place. This paper describes different timestamps en-
coding mechanisms, and shows how some system’s temporal proper-
ties can be used to create more efficient timestamps. The efficiency of
a timestamps-encoding is introduced in terms of the number of colli-
sions in the timeprints-reconstruction solution space. We show how using
property-based timestamps encoding reduces the number of such colli-
sions, leading to better chances capturing unexpected behaviors.

Keywords: Timeprints · Timestamps-encoding · Trace-cycles.

1 Introduction

In Real-Time (RT) and Cyber-Physical Systems (CPS), non-intrusive cycle-
accurate execution tracing is at the top of designers and operators wish-list
– if it is affordable. The barrier to accurate traces’ logging is: first that these
traces are generally infinite, and generated with very high rates; if we get enough
ports to log them, storing and processing them are still inherently problematic.
Practically, it is always possible to erase old traces that are not needed anymore.
But still, the speed of today’s ICs – reaching several Gigahertz – result in un-
manageably huge logs quickly, making traces very tricky to store, even for few
seconds. Second, the ports’ capabilities are also limited by the number of pins
that can be assigned in a chip and by the pads physical characteristics. Digital
logging speeds can not exceed the maximum on-chip clock, so the amount of
bits that can be logged per clock-cycle is constrained by the available logging
pins. Similarly, it is hard to store useful duration of operation’s data on on-chip
trace buffers, due to their huge amount. Many systems-specific work-around
techniques exist to provide accurate logs with relative efficiency, like [3,2,12,1],
but they are very customized, and hence cannot be extended to any generic on-
chip signal. Except for [12], all these methods are strictly limited to design-time,

? This work is supported by the DAAD, University of Bremen (SyDe graduate school
and CRDF) and the BMBF grant SELFIE (grant no. 01IW16001).

2 R. Massoud, H. M. Le and R. Drechsler

as they require physical tracers and/or debuggers to be attached to the chip,
and still incur huge logs per second, which makes continuously capturing normal
operation periods non-achievable.

Timeprints have been introduced in [8] as a light-weight check-trace, logged
all over the execution for a specific on-chip signal. Timeprints could be gener-
ated for a single or multiple signals, as per the designers/auditors choice. Each
logged timeprint summarizes information about signals temporal behavior dur-
ing a trace-cycle. Although timeprints do not have explicitly all the details, they
still contain enough data to check exactly and accurately what took place on-chip
in many cases. To obtain timeprints, the tracing task is divided into consecutive
trace-cycles; and one timeprint is logged at the end of each cycle. Timeprints
contain information about the exact timings of where the traced signal changed
its value, and are generated by encoded timestamps aggregations at the desig-
nated change instances. The exact timestamps aggregation into a timeprint is a
form of lossy compression, where the exact instances are embedded and need to
be retrieved by a reconstruction process.

The timestamps-encoding used in generating the timeprints, contributes stro-
ngly to the uniqueness/ambiguity of the reconstruction, when retrieving the
original timings from a timeprint. Some details about how they affect the tracing
(trace-size and reconstruction effort) will be presented next in section 2. There
we explain how timeprints are generated and the rule of timestamps encoding in
generating them. Then, we give an overview of how temporal properties are used
in the reconstruction. In this paper, we explore how these properties can be used
to obtain more efficient timestamps’ encoding. So, after the background, we give
a formulation of the problem of timestamps-encoding generation, in section 3.
After the formulation, we present the proposed timestamps-encoding generation
algorithms (with and without properties) in section 4. The efficiency measures
suggested to compare the different timestamps encodings is then introduced in
section 5; and applied to a sample experiment in section 6 for illustrating the
effect of using some properties. Finally the paper is concluded in the last section.

2 Background on Timeprints

Run-time verification and monitoring been thoroughly considered in the litera-
ture; a recent overview can be found in [4], for example. While Run-time Ver-
ification (RV) is capable of checking the temporal properties on-line while the
system is in operation; it is limited to those specifications known and formalized
at design time. Although some parameterized run-time verification techniques
exist, like [10], they are still limited in the sense that they operate on a pre-
configuration that is fixed a priori to the monitoring and tracing task itself.
This means that after the events have already taken place, the trace at hand (if
any) would contain data logged according to a pre-configuration. So, if the trace
did not contain enough data about the root-cause of the encountered problem,
and a new criteria or a specification that is suspected but was not configured
to be traced before hand; there is going to be no way of checking the previous
trace already at hand for those newly suspected properties. Of course the new

Temporal Properties Driven Timestamps Encoding 3

configuration can be implemented in future, where it can capture the suspected
case, but there might be no guarantee that the captured suspected case is actu-
ally the case that took place in the past, and not just another bug/bad-case. In
general if the problem is inconsistent –i.e. sporadic–, there could be no way to
capture it again. The availability of a trace that keeps some evidence about exe-
cutions that took place, and contains non-specified properties would help greatly
in identifying such sporadic problems’ root-cause.

Timeprints aim at providing specification-independent tracing [8], to enable
checking a wide range of temporal properties; including those unknown at design-
time. Despite such independence, timeprints can still make use of the known
traced signal’s temporal properties in the sense described in this paper without
much affecting their capabilities to detect/debug unspecified behaviors.

Specifications of behaviors and temporal execution traces can be expressed
using different available forms of temporal logic. Temporal properties of systems
have been a topic for study from both the perspective of specification efficient
pre-description for monitoring, like in [9,7] and from specifications mining and
learning perspective, as in [6] and [13]. Here, we limit our focus to the temporal
properties over a single trace-cycles for simplicity. Expressing them over generic
periods is a subject of our next upcoming work. This focus is also reasonable
for a first properties-based timestamps codes generation attempt. It also renders
the properties description into a very intuitive and simple task. The drawback of
course is the need for a translation layer between system level properties (over
generic periods) and trace-cycle properties.

In the next subsection, we describe how timeprints are generated. Then,
the temporal properties that could be utilized to obtained better timestamps
encoding are defined.

2.1 Timeprint Generation

T
S
(
14
)

T
S
(
15
)

T
S
(
16
)

T
S
(
1)

T
S
(
2)

T
S
(
3)

T
S
(
4)

T
S
(
5)

T
S
(
6)

T
S
(
7)

T
S
(
8)

T
S
(
9)

T
S
(
10
)

T
S
(
11
)

T
S
(
12
)

T
S
(
13
)

T
S
(
14
)

T
S
(
15
)

T
S
(
16
)

T
S
(
1)

t

Next
Trace− Cycle

Trace− Cycle
Prev.

Trace− Cycle

Sprevn S1 S2 S3 S4 Snext1

⊕

TP
00000001

n = 3
100 11 bits logged

Timestamps Encoding

00010100

00111010

00001111

01000100

00000010

10101110

01100000

11110101

00010111

11100111

10100000

10101000

10011110

10001111

01110000

01101100

TS(1)

TS(2)

TS(3)

TS(4)

TS(5)

TS(6)

TS(7)

TS(8)

TS(9)

TS(10)

TS(11)

TS(12)

TS(13)

TS(14)

TS(15)

TS(16)

Fig. 1: An intermediate trace-cycle, with its respective timeprint

4 R. Massoud, H. M. Le and R. Drechsler

To generate a trace of timeprints of a signal, first: the continuous signal
execution trace is divided into trace-cycles; where the first trace-cycle would
start at reset or at a defined-check point, and the value of the timeprints is
initialized to 0. A trace-cycle lengthm is defined before the system’s deployment;
i.e. before tracing starts. A sample intermediate trace-cycle is depicted in Fig. 1.
Within a trace-cycle, an encoded time-stamp is assigned to every clock-cycle;
for the ith clock-cycle the corresponding code is denoted by TS(i) in the figure.
An example of a possible timestamps encoding is shown at the right of Fig. 1.
A typical timestamps-encoding would contain m timestamps-codes, each of bit-
width bi, that can be fixed as in the figure. As the traced signal changes its
value, a change marker triggers the aggregation of the corresponding timestamp
code to the timeprint TP. In the example the aggregation function is XOR.
So TP at the bottom of Fig. 1, is the result of XORing TS (4),TS (5),TS (10),
and TS (11). At the end of each trace-cycle, the timeprint value that exists
in the timeprint’s register is logged; and the tracing continues: XORing the
codes, where changes happen. The given encoding in the example is generated
by checking some randomly generated codes, for linear independence from each
other. Details of the generation algorithm will be given in section 4.

In this paper we fix the aggregation function to XOR, the trace-cycle length
to m and the timestamps encoding (code) bit-width to b.

Development-Phase Deployment-Phase (In-Field) Postmortem-Phase

Signal Analysis

Defined
Properties

Design and Generation
of RV-Monitors and

Timeprints agg-log HW

RV
monitors

Timeprints
agg-log

SoC

Timeprints
are stored
until they
wear out

Retrieve
Timeprint Reconstruction

Exact instances
or Properties Checks

Simulation

Failure
Analysis

Failure
Properties

Fig. 2: Timeprints Life Cycle, from [8].

The decision about the trace-cycle characteristics (trace-cycle length, time-
prints’s width and timestamps encoding) happens at the the signal analysis
phase, as at the top left of Figure 2. The signal analysis is also expected to
result in the system’s defined properties, from which the decision about which
run-time monitors are going to be implemented is taken. A timeprint is an aggre-
gation of timestamps that summarizes the temporal behavior. That is logged by
aggregation hardware on-chip (within some System on Chip SoC) or attached
to the ports/pins where the tracing is needed. During deployment, a change
in the signal values triggers the corresponding timestamp aggregation into the
timeprints. At the end of each trace-cycle, the fixed size timeprint is logged;
together with the number of changes counted in the trace-cycle. The number of
bits needed to log the number of changes is dlog(m−1)e. This keeps the amount

Temporal Properties Driven Timestamps Encoding 5

of logging small and constant over time (b + dlog(m − 1)e).3 If a problem hap-
pened for which its root-cause need to be analyzed or for which an accurate trace
is required, the relevant timeprints are retrieved. The failure analysis results in
what we call Failure Properties, which expresses the visible problematic behav-
ior of the system. To retrieve the accurate timing, (at postmortem) we retrieve
exact instances of events from the timeprint via a Reconstruction, as in Figure 2.
The reconstruction might use simulation to help aligning the timeprints to the
system’s visible behavior. All the optional paths are marked by dashed lines.

2.2 Temporal Properties
Timeprints are considered abstractions of the exact temporal execution; but the
details lost by a timeprint’s abstraction, are retrievable in most of the cases. We
do not compromise accuracy during the aggregation process, as most traditional
abstractions. Rather, we overlook data that are already known (verified) and
hence can be used in the reconstruction. We describe those in terms of Temporal
Properties, and add them to the reconstruction to decrease the ambiguity. For
example, the details that can be retrieved by simulation and alignment to the
timeprints trace are not considered lost, because simulation’s input can be used
in the reconstruction.

TP

α̃

γ̃

Rreality
Sall

S

S timeprints’ reconstruction solution space

logged
Timeprint TP

Property 1

Property 2

Timeprint TP

S

Rreality is the set of all signals S (all possible changes)
that can happen in reality, one point S actually happened Sall is the set of all possible recontructions from all timeprints

Rreality ⊂ Sall

Fig. 3: Timeprints as Abstractions

Figure 3 shows the idea behind retrieval of the accurate timing via the recon-
struction process; with the help of temporal properties. At the left, the timeprints
reconstruction without properties is depicted. A point S ∈ RReality corresponds
to a specific timing changes in the traced signal that took place on-chip. We
call each such a point Signal S. This signal would cause the aggregation of some
encoded timestamps into the corresponding abstraction, or Timeprint TP . This
3 If the signal change rate is known to be below certain limit the number of bits needed
to describe the number of changes can still be less than log(m− 1). This log(m− 1)
bits already covers the case of m changes as we aggregate timeprints recursively, i.e.
the last timeprint of a trace-cycle is the initial value of the timeprint for the new
trace-cycle; hence, if m=0 and the timeprint value changed, it means m changes
took place, and if m=0 and the timeprint value is the same, then there has been
zero changes in that trace-cycle.

6 R. Massoud, H. M. Le and R. Drechsler

aggregation and logging of the timeprint and the number of changes can be seen
as a function α̃ in a Galois insertion, and the reconstruction as γ̃, see [8] and the
formulation section for more details.

Each point in the timeprints’ reconstruction space (on the right of Fig. 3)
corresponds to a possible accurate timing that could have led to the timeprint
at hand. In the figure, one can see how the ambiguity (many possible accurate
timings that could have led to the same timeprints) resulting from the recon-
struction process is mitigated via properties. The exclusion of non-real solutions
by properties-sets as in the figure corresponds to pruning the search space in
the timeprints reconstruction space, as in Fig. 3. The number of solutions can
be really huge for large trace-cycle sizes, if properties are not used [5]. This is
why the properties usage proposed in [8], is essential to render the whole method
acceptable. Ideally, as in Figure 3, the reconstruction which considers the prop-
erties ends up with a unique signal/timing (the intersection of the 3 sets). But
this of course might not always be guaranteed; and defining metrics to judge the
timeprints efficiency is under development.

In this paper, we suggest using the temporal properties, not only for recon-
struction, but also for the generation of the timestamps encoding itself. For this
purpose, we need to define briefly what do we mean by a property here. As the
focus here is mainly about timing, properties in our context would be temporal
properties that relates the timings of events happening within a trace-cycle. In
general, if relations between events span more than one trace-cycle, they still can
be mapped to some adjacent trace-cycles; so focusing on one trace-cycle does not
limit the results presented here.

3 Formulation

The choice of the timestamps has influence on the ambiguity occurring within
the logging procedure and thus on the time needed to reconstruct the original
signal timings. Intuitively, a sparse choice of timestamps allows only for few
possibilities to sum up to the timeprint. It decreases the number of the recon-
structed solutions, making it easier to find all of them. However, we can only
allow sparsity up to a certain extent as the number of logged bits would grow.

Ideally, we would choose an timestamp encoding that avoids ambiguity at
all. This can be achieved by constructing an encoding TS : [1..m] → Fb

2, where
TS (1), . . . ,TS (m) are linearly independent vectors. Then, reconstructing from
the logged timeprint would have a unique solution and it can be obtained quite
fast. For example, an one-hot encoding would be of this type, and the timeprint
would exactly correspond to the signal-changes themselves; i.e. zero solving time.
However, choosing m linearly independent vectors requires that the dimension
of Fb

2 is m, hence b = m. But this means that the number of bits we need to
log depends linearly on m, contradicting our goal to establish a space-efficient
logging procedure.

The basic idea behind the timestamps encoding, is to achieve a trade-off in
the choice of timestamps by requiring linear independence only up to a depth
d. That means each subset of timestamps T ⊆ TS ([1..m]) of size d is linearly

Temporal Properties Driven Timestamps Encoding 7

independent. As d grows, the number of solutions to the reconstruction problem
decreases, but the number of logged bits b required increases. Computing TS
with smallest b given m and d is still an open problem for future research. In
this paper we give various algorithms, in the case d = 4 and approximate TS
and b using a practical heuristic (see section 4).

In the next subsection, we give a formulation of the timestamps encoding
(generation) problem before listing the algorithms.

3.1 Timestamps Generation Problem

The required timestamps encoding, as a target,is an ordered set of b-wide bitvec-
tors of m elements. We denote this set be TS. An element of this set can
be accessed by an index i, as TS(i), where TS(i) is the ith bitvector, and it
represents the code corresponding to the ith clock-cycle inside the trace-cycle.
Changes happening to the traced signal, over trace-cycles of length m, with
m ∈ N, which we simply call signal. A signal is a map S : [1..m] → {0, 1},
where S(i) = 1 when a change takes place in the i-th clock-cycle. The logged
timeprint TP , is the returned log entry (TP , k) from the aggregation function
TP , where TP =

∑
i:S(i)=1 TS (i) and k = |{i | S(i) = 1}|, representing the

number of changes in the signal. We enumerate all signals that represents all
possible changes can happen in m-long trace-cycle by σm; hence all Si ∈ σ.

Problem: Timestamps Generation 1 (TSG)
Input: trace-cycle length m, bit width b∈N, log[m] < b < m, property P .
Task: Find TS , such that: ∀ signals Si ∈ σm where Si |= P , ∀Sj(j 6=i) |=

P,TP(Sj) 6= TP(Si), where TP(Sk) =
∑

i:Sk(i)=1 TS (i).

Where a property P is a temporal property defined over S. Another variant
of the TSG problem is the one that is limited in the choices of the possible
timestamps to a predefined TS.

Problem: Timestamps Generation 2 (TSG)
Input: trace-cycle length m, bit width b ∈N, log[m] < b < m, property P

and input TS in.
Task: Find TS ′ ⊆ TS , such that: ∀ signals Si ∈ σm where Si |= P ,

∀Sj(j 6=i) |= P,TP(Sj) 6= TP(Si), where TP(Sk) =
∑

i:Sk(i)=1 TS (i).

An example of the properties is linear independence of degree N ; where the
property P can be expressed as: that every signal Si has exactly N ones; or
|Si| = N has a unique timeprint TP . We denote linear independence of degree
N by LI-N.

4 Timestamp Generation Algorithms

In this section, we introduce different practical approaches, which we used to
tackle the timestamps encoding/generation problem.

8 R. Massoud, H. M. Le and R. Drechsler

In the next subsections, five different generation methods are explained using:

1) an SMT solver: we describe the linear independence of degree 4 (LI-4) to the
SMT solver and ask for a set of m encoded timestamps of width b,

2) random generation: starting from a seed, each random integer generated is
checked for LI-4 and the required encoding width is then trimmed,

3) incremental generation: similar to random generation, but starting from 1,
and incrementing by one each time for a new choice that is checked then
for LI4; the result is the minimum (smallest) possible vectors (time-stamped
codes) satisfying a set of conditions,

4) greedy algorithm: here an algorithm is presented for obtaining the set of
fixed width b encoding timestamps, satisfying LI-4, here the full length of
these are obtained irrespective of m, and

5) a composed properties-Based Generation, that takes a set of timestamps as
input, and produces a subset of it that fulfills certain property.

For each of these, after describing the algorithm, we present also how the
properties can be used in within or at the to of it, for properties-aware timestamps-
encoding generation process.

4.1 SMT-based Time-stamps Generation

To describe the problem of TSG using an SMT solver, we used bit vector theory
and array theory to describe the array of encoded timestamps. LI-4, is encoded
as follows: each aggregated 2 entries corresponding to 2 different timestamps-
codes, would result in a different aggregation than that of any other 2 different
array entries.

As an example of how an SMT solver can be used to generate the time-
stamps, the details of the generation for N = 2 is illustrated in this section. The
exact same criteria can be applied to higher N . Z3 [11] was used to apply the
conditions:

For N 6 2 (and using XOR gates to merge the time-stamps), the condition
(besides the time-stamps’ uniqueness) would be:

∀i, j, k, l,[TSi ⊕ TSj 6= TSk ⊕ TSl] (1)

, where (0 < i, j, k, l 6M) ∧ i 6= j ∧ k 6= l

∧(i = k ⇒ j 6= l)

∧(j = l⇒ i 6= k)

∧(i = l⇒ j 6= k)

∧(j = k ⇒ i 6= l)

Similar conditions can be derived for higher N .

Temporal Properties Driven Timestamps Encoding 9

The resultant SMT instance is:
(exists ((ts_var (Array (_BitV ec3)(_BitV ec6))))
(forall ((k (_BitV ec3))
(l (_BitV ec3))(m (_BitV ec3))(n (BitV ec3)))

(let((A1(and (not(= k l)) (not(= n m))

(=> (= k m)(not(= l n)))

(=> (= l n)(not(= k m)))

(=> (= k n)(not(= l m)))

(=> (= l m)(not(= k n)))))

(A2(not(= (bvxor

(select ts_var k)(select ts_var l))

(bvxor

(select ts_var m)(select ts_var n))))))

(=> A1 A2))))

(2)

which reads as: first, we assume the time-stamps are contained in an array
called ts_var, representing a variable array which the SMT solver tries to find
a solution for. In this example, we generate time-stamps of width 6 (i.e. array
elements are 6 bits wide bitvectors). We generate 8 time-stamps for a trace-
cycle of length 8. Hence, this array has an index of length 3 to address it’s
elements. The statement A1 expresses uniqueness of the pair of indexes of each
pair of time-stamps. Namely, for every two different indexes of time-stamps to
be XORed (k, l), k does not equal l and to compare the result to the result of
any other pair of time-stamps of indexes (m,n), where also m 6= n, if k = m,
this implies that l must be 6= n to make (m,n) a different pair, and similarly
goes all the other implications to ensure the uniqueness of pairs of time-stamps.
When this uniqueness (A1) is satisfied, this implies A2, which is that the two
results of XORing those two pairs of time-stamps (indexed by (k, l) and (m,n))
are different (not equal, in the SMT formula 2). This implication should hold for
all k, l,m, n and we assert that there is a time-stamps array ts_var that fulfils
this condition. A solution that the SMT solver finds for this formula gives a list
of 8 time-stamps that are guaranteed to give different timeprints (here results
of XOR’s), for any 2 different time instances.

An alternative encoding of the LI-4 condition, would be to encode all the
XOR results into an array of distinct elements.

Unfortunately, this method does not scale. It becomes very expensive to use
for more than 16 clock-cycles long (array size). While it takes about 10 seconds
for trace length of 16 clock-cycles, it takes around 10 hours for 32 clock-cycles. All
those measurements are taken on a machine with Intel Core i7 CPU@ 2.67GHz
with 8 GiB memory.

4.2 Random-based Time-stamps Generation

Random number generators can be used to generate the time-stamps faster.
Each newly generated time-stamp is checked to be fulfilling the condition in

10 R. Massoud, H. M. Le and R. Drechsler

equation 1. If this is satisfied, the results of XORing the new time-stamp with
all previously existing time-stamps is added into a List XORList, to check the
next randomly generated time-stamp against, and this goes on. The generation
is illustrated in Algorithm 1.

Algorithm 1: Random Time-stamps Generation Algorithm
Data: initialize random− seed
Data: XORList is empty

1 TS0 = rand()
2 for i in 1 −→M − 1 do
3 TSi = rand()
4 while IsThereCollision(TSi) do
5 TSi = rand()

/* where IsThereCollision(TSi) is shown below */

6 IsThereCollision(TSi) {
7 for j in 0 −→ i do
8 if IsRepeated(TSi ⊕ TSj) then

/* where IsRepeated checks whether TSi ⊕ TSj has been
obtained before in the XORList, and TempXORList */

9 BackTrack(Reset TempXORList)
10 return True

11 else
12 AddTo_TempXORList(TSi ⊕ TSj)

13 Confirm Adding TempXORList to XORList
14 return false
15 }

Notice that in line 9, backtracking is needed to the last ensured XORList
content, when a collision is detected; not to add a non-actually-existing XOR
results, from a time-stamp that has become rejected after the collision detection.

This method is much faster than using an SMT solver and the minimal time-
stamps generation, mentioned in the next subsection. Time-stamps for trace-
cycle’s lengths of thousands of clock-cycles can be generated in seconds or few
minutes at most on a machine with Intel Core i7 CPU@ 2.67GHz with 8 GiB
memory. However, this method does not properly detect if there are no possible
solutions to the given constraints; the designer should thus be sure that the
method should eventually terminate.

4.3 Incremental Time-stamps Generation

This method is very similar to the random generation, but instead of randomly
generating the time-stamp, before checking them, the latest time-stamp candi-
date is constantly incremented (by one). Afterwards, the new time-stamp can-
didate is checked whether it fulfills the conditions or not (in which case the

Temporal Properties Driven Timestamps Encoding 11

time-stamp is incremented and checked again). This method takes longer time
than the random generation but remains faster than the SMT solver and can
create time-stamps for trace-cycles of a thousand clock-cycles in less than a day
on the same machine mentioned before.

Although this method seems to be providing the minimal size of time-stamps,
it is still possible to provide the same size with random generation because
we know from the number of possible permutations how many bits are needed
to present them. However, non standard size random generators have to be
manually developed. So this last method turned out to be the preferred solution
for custom bitvector sizes that are not available in the standard C data-types.

After the above-mentioned generation, the time-stamps are utilized to mark
each clock-cycle within the trace-cycle. By the time a a given signal is toggled, the
corresponding time-stamp is XORed into the timeprint, and logged at the end of
the trace-cycle. At a host computer that this logged timeprint is transmitted to,
the exact instances of change, which triggered the corresponding time-stamps
into the XOR-aggregate described earlier, then need to be recovered.

4.4 Greedy Algorithm

This algorithm is similar to the incremental algorithm. It starts from scratch
and iterates over all possile timestamps in increasing order (i.e. treating them
as integer values). Then, it greedly adds a new timestamp to the set of selected
timestamps, if doing so does not violate the property under consideration (e.g.
LI-4). Due to some optimizations such as look-ahead elimination of timestamps
that are guaranted to violate the property, this algorithm is much faster than
the incremental one. It also generates a maximum m timestamps that could be
generated of width b, satisfying the property.

4.5 Properties Based Generation

After obtaining a set of Timestamps by linear, incremental or greedy algorithm, a
filtration of the results by removing those who do not produce a unique timeprint
is possible. The resultant timestamps set would be resilient not only to this
property it was filtered based on but also might perform better when the signal
satisfies other related properties.

5 Assessment

To assess the efficiency of the algorithms presented, we have first to define a
criteria to evaluate the quality of an ordered set of timestamps. One parameter
that can be considered a measure, for example, is the bit width b of the time-
stamp. The smaller b is, the less logs are going to be incurred, and hence the
better a time-stamp encoding is. When a system designer wants to add timeprints
based tracing to their system, the first criteria to define is the length of a trace-
cyclem (or at leastmmin ≤ m ≤ mmax), which represents the target timestamps
set size. Longer trace-cycles result in less logging effort –as one fixed width

12 R. Massoud, H. M. Le and R. Drechsler

timeprint is logged at the end of each trace-cycle–. However, in general, longer
trace-cycles means harder (bigger) reconstruction problem size and may require
bigger b to make the reconstruction process reasonable for the expected number
of changes that could happen within a trace-cycle. A typical range of acceptable
trace-cycle length is in the range of hundreds to thousands. If we can find better
trace reconstruction algorithms than the one we have now, [8], we can further
increase m.

As in the formulation of the algorithms that encode the timestamps in a
trace-cycle, the target is usually to find a maximum trace-cycle length for a
fixed b for efficient logging.

When using a set of timestamps, we can assess its performance based on a
number of measures. For example, the number of collisions they produce when
reconstructing both generic signals; and reconstructing signals related to the
properties similar to those they were generated to accommodate. The measures
we shall cover here are:

- The run time of the timestamps encoding generation algorithm. Although
the algorithm is usually run once, and the result is hard encoded in the
hardware. As the problem is very hard, is still important that the run time
is not prohibitive.

- How good the generated encoding is able to distinguish between different sig-
nals. A perfect encoding (one-bit hot encoding) would be able to distinguish
between all S. But this would lead to b = m, which destroys the basic idea
of timeprints: having compressed logs. The quality of the generated encoding
is measured by the number of collisions in the reconstruction made using it.

- How long the encoded timestamps generated by an algorithm could be. Some
algorithms can generated a maximum encoding (maximum m) for a given b;
while others are limited by a given b and m.

- How a specific encoding affects the reconstruction time.

5.1 Algorithms Run-time

In order to compare algorithms’ run times (in Table 1), we tried all the algorithms
with m = 1024 and b given as 32 when it is passed as input to the algorithm, and
when it is indicated as an output, the value is the one reached by reaching the
required 1024 timestamps. Since the comparison is not fully possible due to how
the different algorithms work, we can still give here a qualitative comparison of
the run-time, and whether they have the b,m parameters as input or output.

In Table 1, first rows gives six direct algorithms run-times. Inc-index in the
first row is just using the index i of a timestamp TS(i) as the coded timestamp.
These codes are not for any practical usage, but they are meant to act as a
reference to judge properties-usage over a generated set of timestamps versus
another. Random in the second row is a trivial generated codes, without any
checks. It is also used a reference to compare other methods, or properties-based
methods to. SMT-LI4 is the SMT based generation of a set of timestamps that
has linear independence of degree 4; which was described in section 4.1. Inc-LI4
is the incremental generation algorithm described in section 4.3. Random-LI4 is

Temporal Properties Driven Timestamps Encoding 13

Algorithm Alg.2 b mmax Run-Time new m

Inc-Index - output input ∼ 0 -
Random - input input ∼ 0 -
SMT-LI4 - input input(limiting) timeout -
Inc-LI4 - output input(limiting) 6h51m6.037s -
Ran-LI4 - input input 59m24.473s -
Greedy-LI4 - input output 17m53.622s -

LI4-to-LI6
min = 1024

Inc-LI4 input output 20m51.181s 79
Ran-LI4 input output 19h33m53.949s 214

Greedy-LI4 input output 9m5.284s 71
Table 1: Comparison between different Timestamps Encoding Algorithms, gen-
erating 1024 timestamps, or for an input of 1024 timestamps (in LI4-to-LI6)

the algorithm described in section 4.2. Greedy-LI4 is the algorithm described in
section 4.4. The part labeled by LI4-to-LI6 shows the run time for generating
a set of linear independent timestamps of degree 6 from a set that is already
generated by any of the three LI4 methods (Inc-LI4, Random-LI4, and Greedy-
LI4). For these sets we have a new length m of the newly generated timestamps
set. The generated sets are of smaller size because the timestamps that do not
fulfill the LI6 condition are removed. Notice that the surviving timestamps from
the Random-LI4 are much more than those surviving from other algorithms; but
they also took much longer time to be generated.

5.2 Encoding with Properties
The tables below shows the number of reduced timestamps in the case of applying
some properties; for example the property that n consecutive changes happened;
we denote them by P3, P4, ... Pn. The reduced timestamps (out of 1000) applying
Pn are shown in table (a). Table (b)4 shows the number of remaining timestamps
after applying the properties in each column. Notice that odd number of changes
in the properties is very useful in both types of properties, as it does not cause
reduction in the number of timestamps even for incremental codes.

P3 P4 P5 P6 P7 P8
Inc-Index 0 791 0 731 0 335
Random 0 0 0 0 0 0
Inc-LI4 - 2 18 0 13 0 11
Ran-LI4 - 0 0 0 0 0 0
Greedy-LI4 - 2 24 0 13 0 9

Comb-LI4-LI6
Inc-LI4 - 0 0 0 0 0
Ran-LI4 - 0 0 0 0 0

Greedy-LI4 - 5 0 7 0 9

(a) Reduction in m for different Pn

D1b2 D2b2 D1b3 D2b3
Inc-Ind-1 15/200 12/200 70/200 81/200
Inc-Ind-3 151/200 114/200 112/200 125/200
Inc-Ind-7 149/200 112/200 149/200 174/200
Random-8 193/200 185/200 143/200 143/200

(b) The number of remaining timestamps
inm after applying properties of different
"constant delays (1,2,1,2) between 2 and
3 changes" consecutively

Table 2: Reduction in timestamps (a) and the number of remaining timestamps
in reference to the original input set (b).

In table 2a, it could be seen how the greedy algorithm results still contains
collisions when it comes to consecutive occurrences of changes.
4 Inc-Ind-k: means the incremental code Inc-Index with increments of weight k.

14 R. Massoud, H. M. Le and R. Drechsler

6 Case-Study

We illustrate the whole process of timeprints based tracing and properties check-
ing to the sensors and braking data of an autonomous driving donkey-car; the
one in Fig. 4. The car was equipped with three ultrasonic sensors and four servo
motors for the brakes, one at each wheel5.

Fig. 4: Donkey Car

1 2 37 38

Arrival time of echo signal of 3 sesors

..........echo1 echo2 echo3 echo1
t

38 ms

100 ms 100 ms 100 ms

if m=1000 clock-cycles, then Trace-Cycle width = 1 sec

Fig. 5: Sensor data in a trace-cycle

The car has been equipped with three ultrasonic sensors, each is configured
to fire every 300 ms, and they were set up to fire in row, separated by 100 ms
each. As can be seen in the Fig. 4, the 3 sensors are considered redundant; they
will either all had an echo for the fired signal, or not. The difference in their
orientation is minimum, and is adjustable in our set-up. The accurate time at
which the echo of the fired signal is received, reflects the time taken for the
signal to be reflected, and hence if it is smaller than certain threshold it would
mean that the car has to start using the brakes to stop enough before it hits the
obstacle. The accurate relative difference between the 3 echo signals received can
also say something about at which direction exactly is the obstacle; especially if
their orientation was different from each other.

To trace accurately the signal’s echo time, we trace the signal at the pin
"echo" of the sensor, which is raised high (i.e. to 1) by the sensor when it sends
the sonic burst, and then goes low when it receives its echo. An echo would
be received anyway, but if it was received before 38 ms, it means there is an
obstacle closer than the range of about 5∼6 meters, and the distance can be
calculated from the delay. If it was received at 38 ms, it means that the obstacle
is relatively far away (more than 6 meters away). In our set-up because the car
is moving slowly and the room is already small, the car considers braking only
when the echo is received before 20 ms. Each sensor receives a fire command
from software each 300 m sec, and replies back raising a pin high and then low
when it receives the echo or when the 38 ms expires. As a designer’s trace-related
5 This set-up was already existing in our research-group within the bachelor’s-project
DRIVE, and the data was obtained upon request from the students.

Temporal Properties Driven Timestamps Encoding 15

choice, we choose to combine all the signals together (3 firing signals + 3 echos
received), as already one pin indicates the firing and the echo reception; and
tracing each pin separately would mean logging three timeprints instead of one.
We also know that the sensors send their signals in an interleaving manner; which
makes it mostly possible to know which echo belongs to which sensor. Possibility
remains, that sometimes due to different shifts in the firing times overlaps may
occur. But even these shifts can be described as properties and used to point
these out in many cases.

To illustrate using properties, we first use the clear example of the basic
property of: 3 changes would occur separated by 100 ms, each followed by another
change within 38 ms; see Fig. 5. Accumulated delays (shifts due to non accurate
firings) also can be modeled, but will not be discussed here to keep the illustration
simple. This property can be used to encode shorter timestamps that performs
better than those who do not consider such property. But first before we delve
into using properties, we show how to decide about the timestamps-set size
(trace-cycle length and timestamps bit-width) in the first place. We clarify this
more in the following.

Trace-cycle length First, we have to decide about a trace-cycle size. Because
the property is going to be described in terms of changes happening (or not
happening) at consecutive clock-cycles within a trace-cycle. An echo transmitted
and received from one sensor would cause 2 changes at the clock-cycles where it
was raised high, and then at where it was made low. Here we assume it is enough
to know when the signal is received within 1 ms resolution. The decision about
tracing-precision should depend mainly on the system needs. Here for example:
it depend on the allowed time to stop and the distance, the car is allowed to drive
before it completely stops, starting from the moment and position it detects an
obstacle. One msec accuracy corresponds to 17 cm error range in the distance of
the obstacle at the moment it was detected. So, a clock-cycle of 1 msec is suitable.
Choice of trace-cycle length of 100∼1000 clock-cycles (i.e. 0.1 to 1 second) is in
the desired range from hundreds to thousand; for small log size and reasonable
timeprint-reconstruction time. What affects the exact choice of the trace-cycle
length is the number of changes encountered inside one cycle; because this affects
hugely both the ambiguity and reconstruction time; so we discuss it next.

Number of changes in a trace-cycle If we choose a 1000 clock-cycles trace-
cycle, we shall have ≤ 20 changes corresponding to firing and receiving the echo
signals of the three sensors over 1 second. If we choose 0.1 seconds trace-cycle’s
length (100 clock-cycles), we’ll have about 2 changes per trace-cycle, which is
very few (makes it for example more efficient to just use the index and not to
use any encoding at all). For a 200 clock-cycles trace-cycle, the index would need
at least 8 bits, and for 4 changes that are expected within such trace-cycle a log
would be 32 bits or even more if shifts lead to more changes. So at 200 clock-
cycles, using encoding starts to make sense. In the following we will use both
lengths: 200 and 1000 to illustrate the choice of the upcoming design options.

16 R. Massoud, H. M. Le and R. Drechsler

Using Properties For example, here because we are getting one pair change
separated by 38 clock-cycles every ∼ 100 ms, we can make the encoding more
robust (produces unique results) for occurrences separated by less than 38 clock-
cycles; like those in table 2(b): D38b2, D37b2, D36b2... etc. Notice that any delay
between 2 changes is already covered by LI-4, but these properties can be applied
to other simple encodings like Index-k and Random-16/24 to make them produce
unique results in these cases. One can choose to encode D100b10, D101b10,
D102b10 and D103b10, for the 1000 trace-cycle. These properties encode the
consecutive 10 firings within such trace cycle, within 100, 101, 102 and 103 msec
distance (of no change, i.e. zeros) between them; as these delays have been seen
frequently in heuristics. Encoding a property over a trace-cycle means modeling
all its possible occurrences within the trace-cycle.

Notice that applying different properties has to be done recursively, until the
set of timestamps saturates, and with keeping in memory removed timestamps-
codes that might be returned back if the base-timestamp –based on which they
were removed— was itself removed. Saturation means that no removals to be
done in the set because of violations of the properties. Of course to return a
timestamp from such state it has to be checked recursively, to make sure it
does not brake any of the previously checked properties. The list of remaining
timestamps is checked at every stage, and is considered fulfilling the properties
when all the properties-checks cannot remove any more timestamps from the list.
An algorithm has been implemented to apply the above properties recursively.
But it shall be published later after being checked for wider range of properties.

Generating timestamps For trace-cycles of lengths from 200 maximum times-
tamps bit-width should be 32, to make more efficient than logging the indexes.
Less than this, we can try Inc-Index-k with applying the above mentioned prop-
erties. Inc-Index-1 would lead to the smallest bit-width if applied correctly. A
faster way to reach the set of timestamps fulfilling these properties is to use a list
of randomly generated timestamps and check them recursively. Random of width
8 would be too small even for 200 clock-cycles. 16 and 24 would be reasonable to
try. An LI4 fulfilling timestamps set (satisfies linear independence of degree 4,
either generated with random, incremental or greedy) would be already fulfilling
all the delay between 2 properties (Dxb2). So to these LI4 fulfilling sets we can
apply to them only the Dxb10 properties to enhance their performance (would
then produce unique results).

7 Conclusion
We presented an overview of how some simple temporal properties can be used in
enhancing the generation of timestamps encoding used in the timeprints-based
monitoring. Using temporal properties in the case study shows the plausibility
and potential of obtaining timestamps that produces more unique results. This
is a new way to look at the timestamps encoding, i.e. before we only focused on
linear independence, which was not easy to extend beyond the 4th degree. Now
by applying properties to existing timestamps-sets, we can obtain timestamps
that are more capable pf producing unique results in the cases that are known to
take place. Here, we simply have made more scattering of the similar solutions
that could co-inside, and avoided having them mapped to the same timeprint.

Temporal Properties Driven Timestamps Encoding 17

References

1. ARM CoreSight and ETM. http://www.arm.com (2018)
2. https://www.ghs.com/products/supertraceprobe.html (2018)
3. www2.lauterbach.com/pdf/main.pdf (2018)
4. Bartocci, E., Deshmukh, J., Donzé, A., Fainekos, G., Maler, O., Ničković, D.,

Sankaranarayanan, S.: Specification-Based Monitoring of Cyber-Physical Systems:
A Survey on Theory, Tools and Applications. Springer International Publishing
(2018)

5. Chini, P., Massoud, R., Meyer, R., Saivasan, P.: Fast witness counting. CoRR
abs/1807.05777 (2018), http://arxiv.org/abs/1807.05777

6. Giantamidis, G., Tripakis, S.: Learning moore machines from input-output traces.
In: FM 2016. Springer (2016)

7. Maler, O., Nickovic, D., Pnueli, A.: Checking Temporal Properties of Discrete,
Timed and Continuous Behaviors, pp. 475–505. Springer Berlin Heidelberg, Berlin,
Heidelberg (2008)

8. Massoud, R., Le, H.M., Chini, P., Saivasan, P., Meyer, R., Drechsler, R.: Tempo-
ral tracing of on-chip signals using timeprints. In: Design Automation Conference
DAC-19 (2019), https://doi.org/10.1145/3316781.3317920

9. Mehrabian, M., Khayatian, M., Shrivastava, A., Eidson, J.C., Derler, P., Andrade,
H.A., Li-Baboud, Y.S., Griffor, E., Weiss, M., Stanton, K.: Timestamp temporal
logic (TTL) for testing the timing of cyber-physical systems. ACM Trans. Embed.
Comput. Syst. 16(5s), 169:1–169:20 (Sep 2017). https://doi.org/10.1145/3126510,
http://doi.acm.org/10.1145/3126510

10. Moosbrugger, P., Rozier, K.Y., Schumann, J.: R 2 u 2 : monitoring and diagnosis
of security threats for unmanned aerial systems (2015)

11. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: TACAS. Lecture Notes
in Computer Science, vol. 4963, pp. 337–340. Springer (2008)

12. Park, S.B., Hong, T., Mitra, S.: Post-silicon bug localization in processors using
instruction footprint recording and analysis (ifra). TCADIC (2009)

13. Vazquez-Chanlatte, M., Deshmukh, J.V., Jin, X., Seshia, S.A.: Logical clustering
and learning for time-series data. In: Majumdar, R., Kunčak, V. (eds.) Computer
Aided Verification. pp. 305–325. Springer International Publishing, Cham (2017)

http://arxiv.org/abs/1807.05777
https://doi.org/10.1145/3316781.3317920
https://doi.org/10.1145/3126510
http://doi.acm.org/10.1145/3126510

	Property-driven Timestamps Encoding for Timeprints-based Tracing and Monitoring
	Introduction
	Background on Timeprints
	Timeprint Generation
	Temporal Properties

	Formulation
	Timestamps Generation Problem

	Timestamp Generation Algorithms
	SMT-based Time-stamps Generation
	Random-based Time-stamps Generation
	Incremental Time-stamps Generation
	Greedy Algorithm
	Properties Based Generation

	Assessment
	Algorithms Run-time
	Encoding with Properties

	Case-Study
	Trace-cycle length
	Number of changes in a trace-cycle
	Using Properties
	Generating timestamps

	Conclusion

