
Logic Synthesis for Hybrid CMOS-ReRAM
Sequential Circuits

Saman Froehlich Saeideh Shirinzadeh Rolf Drechsler
Cyber-Physical Systems, DFKI GmbH and Group of Computer Architecture, University of Bremen, Germany

{froehlich,s.shirinzadeh,drechsle}@cs.uni-bremen.de

Abstract—Resistive Random Access Memory (ReRAM) is an
emerging non-volatile technology with high scalability and zero
standby power which allows to perform logic primitives. ReRAM
crossbar arrays combined with a CMOS substrate provide a wide
range of benefits in logic synthesis.

In this paper, we propose to exploit ReRAM in sequential
circuits as it provides both required features as a computational
and memory element. We propose a fully automated synthesis
approach based on graph representations (i.e., BDDs and AIGs)
for synthesis of sequential circuits on hybrid CMOS-ReRAM
architectures. We propose an algorithm to efficiently divide the
target function into two independent computational parts. This
allows to merge part of the computation within a ReRAM unit
and utilize its computational capabilities besides its function as
a sequential element in order to minimize the CMOS overhead.
Experimental results show that ReRAM allows for a significant
reduction in CMOS size of up to 40.9% for BDDs with an average
of 8.7% for BDDs and up to 10.1% with an average of 3.2% for
AIGs.

I. INTRODUCTION

Resistive devices consisting of an oxide insulator layer
placed between two metal electrodes have existed for several
decades [1]. However, their promising properties have recently
brought them into focus for their applications as memory or
programmable computing elements. These devices predomi-
nantly known as Resistive RAM with acronyms RRAM or Re-
RAM allow for an abrupt switching of the electrical resistance
between two high and low values which is maintained until
changed by an appropriate voltage bias.

ReRAM as a memory technology is non-volatile, has a zero
standby power, and is highly scalable. These features besides
compatibility with conventional CMOS makes it possible to
fabricate arrays of resistive memory devices on a CMOS
substrate [1], [2]. Combining classical CMOS circuits with
ReRAM layers in a hybrid structure has been studied be-
fore [2], [3]. However, hybrid architectures have not yet been
utilized for the implementation of sequential logic circuits
where ReRAM could be particularly beneficial because of
possessing both computing and storing abilities. In this paper,
we present the idea of exploiting a ReRAM network as a
computational storage element instead of the conventional
flip-flop used in current sequential circuits. Such a hybrid
architecture allows smaller CMOS circuitry with less area and
power dissipation. It is also possible to speed up the resulting
implementations if the latency caused by computational steps

This work was supported in part by the German Research Foundation (DFG)
within the project MANIAC (DR 287/29-1), by the German Federal Ministry
of Education and Research (BMBF) within the project SELFIE under grant
no. 01IW16001 and by the University of Bremen’s graduate school SyDe,
funded by the German Excellence Initiative.

of the ReRAM unit is less than the sum of the CMOS circuitry
propagation delay and the sequential element clock cycle.

An important distinction of this work with the related work
is the automation of the synthesis process. To the best of our
knowledge, all of the existing hybrid approaches use ReRAM
devices within CMOS circuitries. In this work, we propose
a comprehensive synthesis approach which fully automatizes
the design process for hybrid CMOS-ReRAM logic circuits.
Our approach provides separable CMOS and ReRAM units as
shown in Fig. 1 which allows to use the state-of-the-art auto-
mated synthesis methodologies for both parts. To compute an
arbitrary Boolean function, the proposed approach efficiently
divides the computation between the CMOS circuitry (CMOS
part) and the ReRAM network (ReRAM part) which also
performs as the sequential element.

We propose a node extraction algorithm for graph-based
synthesis, which aims at reducing the size of the CMOS
circuitry. The proposed algorithm uses a modified subgraph
matching algorithm to identify subfunctions. We extract these
subfunctions to be computed within the ReRAM part such
that the CMOS part of the circuit shrinks in size. The
proposed node extraction algorithm is also integrated into
existing tailored graph optimization algorithms. Our synthesis
approach employs Binary Decision Diagrams (BDDs) and
And-Inverter Graphs (AIGs) for efficient representation of
target Booelan functions. Then, it applies the presented node
extraction algorithm to the graphs to divide them into the
CMOS and ReRAM computable parts and integrates graph-
based optimization algorithms to optimize each part. It is
worth noting that the presented approach is also applicable to
combinational circuits. Nevertheless, the focus of this paper is
on the sequential circuits in order to benefit from the memory
aspect of ReRAM.

The main contributions of this paper are as follows:
• We present the general problem formulation for automa-

ted hybrid CMOS-ReRAM synthesis for the first time.
• In this context we present a novel node extraction algo-

rithm, which allows to reduce the CMOS size by utilizing
the ReRAM part for computation. For this algorithm, we
also present tailored modifications for a general subgraph
matching algorithm.

• The proposed approach integrates optimization techni-
ques for BDDs and AIGs with respect to area and latency.

II. RELATED WORK

There are several works which exploit different graph-
based representations due to the higher efficiency for synthesis



using ReRAM. In [4], a BDD-based approach was proposed
for synthesis with memristive devices. The approach presen-
ted in [4] includes two sequential and parallel evaluation
techniques to compute BDD nodes realized by memristive
circuits. BDDs were also utilized in [5], [6] with an improved
design methodology and a multi-criteria optimization scheme
to lower both latency and area of the resulting implementations
simultaneously.

Other representations such as AIG [6], [7] and Or-Inverter
Graph (OIG) [8] have been used by the state-of-the-art using
material implication or the resistive majority operation. In [9],
it was shown that the latter resistive operation is advantageous
with respect to implementation costs in particular with respect
to latency when used in a design procedure based on Majority-
Inverter Graphs (MIGs). MIGs have also been employed for
the representation and manipulation of instructions in logic-in-
memory computer architectures where the tasks are processed
and their results are stored within the same ReRAM array [10],
[11].

In [6], a comprehensive synthesis procedure was presented
which employs BDDs, AIGs and MIGs. This approach com-
putes a graph in a level-by-level methodology, i.e. calculating
all of the graph nodes at each level simultaneously starting
from the bottom of graph. The calculations of each level is
performed in several computational steps equal to the steps
required for the execution of a single node realized with
ReRAM devices. After computation of each level, the ReRAM
devices are updated with the final node values. These values
are directly used as the inputs of the next level. This procedure
is applied recursively until finally the root node of the graph
is computed. As the ReRAM devices can be reused by the
consecutive levels, the total number of the devices required
for computation depends on the most costly level which is
determined by the number of nodes in level to a large extent.
The latency, however, is mainly affected by the depth of the
graph or the number of levels.

In this paper, we use the same approach proposed in [6] to
implement the partial ReRAM circuit realizations of the BDDs
and AIGs representing target functions. The basic operation
enabled by the ReRAM is fixed to material implication.

III. PRELIMINARIES

A. Logic Synthesis with ReRAM

In [12], it was shown that material implication q = p →
q = p̄+ q can be executed by the electrical interaction of two
ReRAM switches (memristors) under appropriate voltage bias.
The implication operation together with a false operation, i.e.
assigning the output to logical zero, form a universal set of
logic primitives which suffice to execute any Boolean function.

Most of the related work on logic synthesis with resistive
memories has been performed using material implication.
However, other basic operations enabled by ReRAM devices
have also been proposed which can be executed within one
device, such as the resistive majority operation [10] or several
devices, such as Memristor-Aided Logic (MAGIC) [13]. In

Combinational
Logic#1 (CMOS)

Combinational
Logic#2 (ReRAM)
Sequential Element

clk

Inputs Outputs

Fig. 1. Exploiting a ReRAM unit as partial combinational logic as well as
sequential element in the proposed synthesis approach.

this paper material implication [12] has been used as the
memristive operation.

B. Graph-Based Representations

For the synthesis of Boolean functions, graph-Based repre-
sentations are widely employed (e.g. [14], [15], [16]).

1) Binary Decision Diagrams (BDDs): Binary Decision
Diagrams (BDDs) are graph-based representations of Boolean
functions and are canonical for a given variable ordering if
they are reduced and ordered. BDDs are based on the Shannon
decomposition:

f = xifxi
+ xifxi

Since Brayton introduced efficient algorithms for BDD con-
struction and manipulation in [17], they have become a state-
of-the-art representation for Boolean functions in logic synthe-
sis and verification. A BDD consists of nodes, which represent
multiplexers and edges, which are the true and the false child
of one such multiplexer. The input to each multiplexer is an
input variable of the function.

In [6] a method to calculate the number of ReRAM de-
vices (RBDD) and the number of operations (OPBDD) for a
BDD-based implementation of a graph is given. The number of
ReRAM devices and operations for the computation of a BDD-
based implementation of a function using material implication
as underlying function can be calculated as follows:

RBDD = max
0≤i<D

(5 ·Ni + CEi) + FO (1)

OPBDD = 6 ·D + LCE

here D is the number of levels in the BDD, Ni is the number
of nodes, CEi the number of incoming complimented edges to
the corresponding level, FO the number of fan outs and LCE

is the number of levels with incoming complemented edges.
2) And Inverter Graphs (AIGs): An And Inverter

Graph (AIG) is a representation of a Boolean network, where
the edges represent wires between gates and the nodes re-
present logic gates (two input ANDs) or primary in- and
outputs. Edges can be complimented to represent inverters.
Eventhough AIGs are not canonical, their scalability makes
them an efficient and popular choice.

To be able to implement AIGs in ReRAM, the authors
of [6] have proposed a method to calculate the number of



ReRAM devices (RAIG) and operations (OPAIG) for an AIG-
based implementation of a graph in ReRAM. RAIG and
OPAIG using material implication as underlying function can
be calculated as follows:

RAIG = max
0≤i<D

(3 ·Ni + REi) (2)

OPAIG = 3 ·D + LRE

here D is the number of levels in the AIG, Ni is the number
of nodes, REi the number of incoming regular edges to the
corresponding level and LRE is the number of levels with
incoming regular edges.

IV. PROPOSED LOGIC SYNTHESIS APPROACH

In this section we present our proposed approach for Logic
Synthesis of Hybrid CMOS-ReRAM Sequential Circuits. The
main goal of our approach is to reduce the size of the CMOS
part as much as possible, given a set of functions for which
an implementation in the ReRAM part is known.

We give a problem formulation in Section IV-A. Succes-
sively, in Section IV-B, we present our proposed algorithm
for the extraction of parts of the function which is to be
synthesized from the CMOS part to the ReRAM part (node
extraction). Finally, in Section IV-C and Section IV-D, we
show how to apply our algorithm to BDDs and AIGs.

A. Problem Formulation

Given a graph-based representation Gf (Vf , Ef ) of a Bool-
ean function f(X) with X = (x1, . . . , xn) ∈ Bn with a
set of vertices Vf , corresponding vertex properties vp(Vf )
and edges Ef , corresponding edge properties ep(Ef ), a set
of m Boolean functions g = {g1, . . . , gm} and an optimization
algorithm opt, which is used to optimize Gf . During the
application of opt extract all nodes, which can be represented
by a concatenation c of gi ∈ g and a corresponding graph
Gc(Vc, Ec) with vertex properties vp(Vc) and edge properties
ep(Ec), such that for each output of Gc there exists a matching
output of Gf and for each edge ec ∈ Ec there exists a
corresponding edge ef ∈ Ef . The terminal vertices of Gc

become the new output vertices of Gf .
For the given application, the Boolean function f is the

function which is to be implemented in CMOS, if no com-
putation is performed in the ReRAM part. The set g is the
set of functions for which an implementation in ReRAM is
known. Thus, we call the set g ReRAM functions. The vertex
properties vp indicate if a node is an output node, input node
or non of the two. Further, for BDDs, vp also includes the
level of the nodes. op is an optimization algorithm for the
given graph-based representation and ep are edge properties.
For the example of BDDs, the edge properties denote if an
edge is a true or a false edge, while for AIGs they denote if
an edge is inverted or not.

B. Proposed Node Extraction Algorithm

In this section we present a novel algorithm for node
extraction of a given graph-based representation.

Algorithm 1 Node Extraction
1: function NODEEXTRACTION(CMOS,ReRAM,memFun,ep,vp)
2: res = CMOS.node count
3: smallerGraphFound=false
4: for all memFun in memFuncts do
5: matches.push back(SubgraphMatching(CMOS,memFun,ep))
6: end for
7: matchesByNodes=GroupMatchesByOuputNodes(matches)
8: for all matches in CartProd(matchesByNodes) do
9: NewCMOS = CMOS

10: NewReRAM = ReRAM;
11: for all match in matches do
12: removedNodes=RemoveNodesFromGraph(NewCMOS,match)
13: AddNodesToToGraph(NewReRAM,removedNodes)
14: end for
15: nodeCount=NodeExtraction(NewCMOS,NewReRAM,memFun,ep)
16: if nodeCount<res then
17: RetCMOS=NewCMOS
18: RetReRAM=NewReRAM
19: res=nodeCount
20: smallerGraphFound=true
21: end if
22: end for
23: if smallerGraphFound then
24: CMOS=RetCMOS
25: ReRAM=RetReRAM
26: end if
27: return res
28: end function

A recursive algorithm is depicted in Algorithm 1. The
parameters are the graph which is to be implemented in CMOS
(parameter CMOS), the graph which is to be implemented in
ReRAM (parameter ReRAM), the set of ReRAM functions
(parameter memFun) and the edge and vertex properties (pa-
rameters ep and vp). The parameter CMOS is initialized with
the graph of the input function f, while the parameter ReRAM
is initialized as an empty graph.

In Line 4-6 a modified subgraph matching for all given
ReRAM functions is performed. It’s purpose is to find all
subgraphs in f, which match a given ReRAM function. Our
implementation is based on Boost Graphs [18] implementation
of the vf2 algorithm (an algorithm form finding of subgraph
isomorphisms, see [19]. We do not detail it here due to page
limitations) with tailored modifications. These modifications
are:

• Subgraph matching is performed with respect to the edge
properties (the edge properties must match exactly)

• Output nodes of the ReRAM function must match with
output nodes

• Edges between terminal nodes are ignored
• For BDDs, if two nodes in a ReRAM function are on the

same level, the matched nodes must be on the same level
as well

Successively, in Line 7, the matches are sorted with
respect to their output nodes, such that the variable
matchesByNodes is a set of vectors, where each vector
contains pointers to all matches of subgraphs which start at the
same output node. In Line 8-22 the Cartesian product of these



vectors is generated. Thus, the Cartesian product is a set of sets
of matches, where each set of matches contains only matches
which start at different output nodes. In Line 11-22 all entries
of the Cartesian product are evaluated. First, in Line 12, the
matched nodes are removed from the CMOS graph and added
to the ReRAM graph in Line 13. Then, the algorithm is called
recursively. Finally, if the final CMOS graph is smaller than the
previously smallest computed graph, the new result is saved.

The algorithm moves as many nodes from the CMOS part to
the ReRAM as possible and returns the corresponding graphs
as output.

C. Design Space Exploration for BDDs

In order to minimize the size of the BDD representation of
the CMOS part for a given function, we extend the method
proposed in [5]. In [5], an Evolutionary Algorithm (EA) is used
to optimize a given BDD with respect to different optimization
objectives by finding an optimal variable ordering. The EA
can be used to minimize the size of the BDD, by setting the
size as the optimization objective. We have adjusted the EA
by setting the size of the CMOS part of a given BDD as
optimization objective. For each variable ordering which is
evaluated by the EA, we generate the corresponding BDD and
apply Algorithm 1. As edge properties, we pass for each edge,
if it is a true or a false edge. Finally, the size of the BDD part,
which is to be implemented in CMOS, is evaluated.

An example for node extraction applied to BDDs is given
in Fig. 2. true edges are solid, while false edges are dashed.
Fig. 2(a) shows the initial configuration, where no node
extraction has been applied. The function f represented as
BDD has to be implemented in CMOS completely (shown
in the box on the left hand side) and ReRAM works as a
regular memory without performing any computations (box on
the right hand side). The set of ReRAM functions g consists
of a single function g1, which implements the AND-function
shown in the dashed box above the arrow. When performing
node extraction, we can see that there is a match between
g1 and the top of f . The output node of g1 matches the
output node of f , true edges match true edges and false edges
match false edges. This is depicted as dashed yellow nodes and
yellow edges. All nodes, which do not match terminal nodes
of g1 can be extracted to the ReRAM part. The nodes, which
match terminal nodes of g1 become the new output nodes of
the CMOS part. The resulting graph is shown in Fig. 2(b). f ′

and f ′′ are the new outputs of the CMOS part. We use the
outputs of the CMOS part as terminal nodes of the function in
the ReRAM part (regardless if the initial graph representation
was a BDD or an AIG).

D. Design Space Exploration for AIGs

In order to minimize the size of the CMOS part of a given
AIG, we extend the algorithm dc2 in ABC. dc2 is a heuristic
which uses a sequence of rewriting, refactoring and balancing
steps, which allow to reduce the size of the graph without
changing the implemented function. We apply Algorithm 1 at
the end of dc2 in order to further reduce the size. As edge

gCMOS Part ReRAM Part

0 1

f

0 1

g1

(a) match

CMOS Part g ReRAM Part

0 1

f‘

0 1

g1

f‘‘

f‘ f‘‘

f

(b) result after node extraction

Fig. 2. Example node extraction

properties, we pass for each edge if it is inverted or not.
Thus, node extraction for AIGs works similar as for BDDs.
Instead of matching true and false edges, we match inverted
and regular edges.

V. EXPERIMENTAL EVALUATION

All experiments have been carried out on an Intel R© Xeon R©

CPU E5-2630 v3 @ 2.40GHz with 64GB memory running
Linux (Fedora release 22). We have used CUDD 3.0.0 [20] as
a library for BDDs and ABC [21] for the construction of AIGs.
For the evaluation we have used benchmarks from the well-
known ISCAS89 benchmark-suite [22] with 13 to 54 input
variables and 13 to 43 output variables and AND and OR as
ReRAM functions.

The results of our experiments are shown in Table I.
The first column shows the name of the benchmark. The
second column denotes how many inputs and outputs the
corresponding circuit has. The Columns 3-6 show the results
for the experiments with BDD as graph representation, while
the Columns 7-10 show the results for the experiments where
AIGs have been employed as representation. In the following



TABLE I
SYNTHESIS RESULTS OF THE PROPOSED HYBRID APPROACH

Circuit Size Reduction for BDDs Size Reduction for AIGs
Name I/Os #Nodes #Nodes #Nodes ReRAM Reduction #Nodes #Nodes #Nodes ReRAM Reduction

Init EA (CMOS/ReRAM) Rate Init dc2 (CMOS/ReRAM) Rate
s208 19/10 1049 59 36/30 40.0% 79 52 48/4 7.7%
s298 17/20 132 87 85/2 2.3% 125 92 87/5 5.4%
s344 24/26 265 131 115/13 12.2% 189 136 135/1 0.7%
s349 24/26 265 124 122/5 1.6% 189 136 135/1 0.7%
s382 24/27 195 122 121/10 0.8% 154 115 110/5 4.3%
s386 13/13 285 114 107/8 6.1% 168 109 98/11 10.1%
s400 24/27 195 122 119/5 2.5% 154 115 110/5 4.3%
s420 35/18 262207 132 78/65 40.9% 167 104 TO TO%
s444 24/27 236 121 121/0 0.0% 159 123 119/4 3.3%
s510 25/13 19096 157 157/0 0.0% 256 225 220/5 2.2%
s526 24/27 258 123 121/4 1.6% 200 144 140/4 2.8%
s641 54/43 1465 560 540/20 3.6% 479 358 346/12 3.4%
s820 23/24 2687 239 229/14 4.2% 351 253 TO TO%
s832 23/24 2687 241 226/14 6.2% 351 251 TO TO%

avg: 8.7% avg: 3.2%

subsections we describe the evaluation of the experiments for
BDDs and AIGs.

A. Evaluation for BDDs

In order to evaluate our approach for BDDs, we have applied
an Evolutionary Algorithm (EA) for the optimization of the
BDD size as proposed in [5]. We have set the population size
to three times the number of primary inputs, but no larger than
120. The algorithm terminates after 200 generations.

First, we have applied the EA to each circuit without node
extraction in three independent runs and have evaluated the
best out of them, i.e. the run which returned the smallest
circuit size. Successively, we have adjusted the size evaluation
such that the node extraction algorithm is applied to the BDD
and the size of the CMOS part is evaluated. Again, we have
evaluated the best out of three independent runs.

The results are shown in Columns 3-6 in Table I. Column 3
presents how many nodes the corresponding BDD has, if the
natural variable order (i.e. x1 < x2 < . . . < xn) is used.
Successively, in Column 4 we present the size of the BDD
returned by the EA, if no node extraction is applied. Finally,
Column 5 shows the results of the EA with node extraction.
The first number represents the number of nodes in the graph
for the CMOS part, while the second number is the size of
the ReRAM part. Column 6 shows the reduction of nodes of
the CMOS part for the result of the EA with node extraction
compared to the result of the EA without node extraction.

It can be seen that the reduction of the graph size obtained
by using node extraction varies a lot (ranging from 0% to
40.9%) with an average of 8.7%. The efficiency of the node
extraction is strongly dependent on the choice of the given
ReRAM functions and the structure of the BDD representation
of the circuit. If the ReRAM functions match the structure of
the BDD representation near the output nodes, node extraction
can be used efficiently. However, if the structure of the BDD
near the output nodes is different from that of the ReRAM
functions, only little node extraction is possible.

B. Evaluation for AIGs

The open-source synthesis tool ABC [21] features the re-
presentation of circuits as AIGs. Since AIGs are not canonical,
optimization is applied in order to reduce the size of AIGs.
Optimization of AIGs with respect to their node count is
implemented as a command in ABC called dc2. dc2 is a
heuristic algorithm, which is based on a sequence of rewriting,
refactoring and balancing steps, which allow to reduce the size
of the graph without changing the implemented function. In
order to apply node extraction to a given AIG, we extend dc2.
We apply Algorithm 1 to the given AIG at the end of dc2 to
further reduce the size. For the experiments we have applied
dc2 with node extraction and without node extraction to each
benchmark.

The results are shown in Columns 7-10 in Table I. The
columns for the AIG results are ordered in the same manner
as for the BDD results.

It can be seen that the reduction of the CMOS part ranges
from 0.0% (due to timeout (TO)) to 10.1% with an average of
3.2%. We had a TO for s420, s820 and s832 after 3 hours.
Again, the efficiency of node extraction is very dependent on
the ReRAM functions, however for AIGs the results are a lot
more consistent than for BDDs. This is because the structure
of the AIG representation of the used ReRAM functions
is very simple (both only include a single non output non
terminal node) and can be applied to all benchmark circuits
to some degree. Eventhough node extraction results in TO
for some benchmarks with AIG representation, while the
algorithm terminated for all benchmarks using BDD-based
representation, it could successfully reduce the complexity
of s444 and s510 for which node extraction yielded no size
reduction when a BDD-based representation is used.

C. ReRAM implementation

Following the design methodology of [6], we have calcu-
lated how many ReRAM devices and operations are needed
to implement the ReRAM part of each benchmark, using



TABLE II
RERAM IMPLEMENTATION

Name RBDD OPBDD RAIG OPAIG

s208 58 54 15 8
s298 6 12 5 17
s344 42 12 3 3
s349 18 12 3 3
s382 33 24 10 10
s386 16 24 15 22
s400 17 30 10 10
s420 171 90 TO TO
s444 NR NR 10 7
s510 NR NR 10 11
s526 15 24 5 14
s641 57 66 25 23
s820 48 24 TO TO
s832 48 24 TO TO

Eq. 1 and Eq. 2. The results are shown in Table II. The first
column denotes the name of the benchmark. The second and
third column show the needed number of ReRAM devices
and operations for a BDD-based implementation, while the
third and fourth column show how many ReRAM devices and
operations are needed for an AIG-based implementation. NR
means that node extraction did not result in any reduction in
size of the CMOS part, while TO denotes a timeout.

We can see that the implementation of the ReRAM part
using an AIG-based approach is smaller for all benchmarks
than an BDD-based approach. Furthermore, less operations
are needed for the AIG-based implementation for all bench-
marks except for s298. Specially for s526 and s400, where
the BDD-based and the AIG-based approach have extracted
the same number of nodes it is remarkable that the AIG-
based implementation needs a significant smaller number of
ReRAM devices and operations compared to the BDD-based
implementation. This leads to the conclusion that an AIG-
based implementation is more suitable if the available ReRAM
is small or low computation times are needed.

VI. CONCLUSION

In this paper we have presented a methodology for
integrating ReRAMs into sequential circuits. To the best
of our knowledge, we are the first to consider optimizing
sequential circuits with ReRAM. We have proposed a
novel node extraction algorithm for a given graph-based
representation, which extracts nodes of the CMOS function to
the ReRAM part, and have shown how to apply our algorithm
to BDDs and AIGs. In the experiments we have applied our
node extraction algorithm to a well known benchmark set and
have shown that the size of the CMOS part can be reduced
by an average of 8.7% for BDD-based optimization while
for AIGs the reduction is about 3.2%. Furthermore, we have
analyzed the complexity (number of needed ReRAM devices
and operations) of the resulting ReRAM implementation.

REFERENCES

[1] H. . P. Wong, H. Lee, S. Yu, Y. Chen, Y. Wu, P. Chen, B. Lee, F. T.
Chen, and M. Tsai, “Metal–oxide RRAM,” Proceedings of the IEEE,
vol. 100, no. 6, pp. 1951–1970, 2012.

[2] D. B. Strukov, D. R. Stewart, J. Borghetti, X. Li, M. Pickett, G. M.
Ribeiro, W. Robinett, G. Snider, J. P. Strachan, W. Wu, Q. Xia, J. J. Yang,
and R. S. Williams, “Hybrid cmos/memristor circuits,” in Proceedings
of IEEE International Symposium on Circuits and Systems, 2010, pp.
1967–1970.

[3] Q. Xia, W. Robinett, M. W. Cumbie, N. Banerjee, T. J. Cardinali,
J. J. Yang, W. Wu, X. Li, W. M. Tong, D. B. Strukov, G. S.
Snider, G. Medeiros-Ribeiro, and R. S. Williams, “Memristor-
cmos hybrid integrated circuits for reconfigurable logic,” Nano
Letters, vol. 9, no. 10, pp. 3640–3645, 2009. [Online]. Available:
https://doi.org/10.1021/nl901874j

[4] S. Chakraborti, P. Chowdhary, K. Datta, and I. Sengupta, “BDD based
synthesis of Boolean functions using memristors,” in IDT, 2014, pp.
136–141.

[5] S. Shirinzadeh, M. Soeken, and R. Drechsler, “Multi-objective BDD
optimization for RRAM based circuit design,” in IEEE International
Symposium on Design and Diagnostics of Electronic Circuits and
Systems, 2016, pp. 46–51.

[6] S. Shirinzadeh, M. Soeken, P. Gaillardon, and R. Drechsler, “Logic
synthesis for rram-based in-memory computing,” IEEE Trans. on CAD
of Integrated Circuits and Systems, vol. 37, no. 7, pp. 1422–1435, 2018.

[7] J. Bürger, C. Teuscher, and M. Perkowski, “Digital logic synthesis for
memristors,” in Reed-Muller workshop, 2013.

[8] A. Chattopadhyay and Z. Rakosi, “Combinational logic synthesis for
material implication,” in IFIP/IEEE International Conference on Very
Large Scale Integration (VLSI-SoC), 2011, pp. 200–203.

[9] S. Shirinzadeh, M. Soeken, P. Gaillardon, and R. Drechsler, “Fast logic
synthesis for rram-based in-memory computing using majority-inverter
graphs,” in 2016 Design, Automation & Test in Europe Conference &
Exhibition, DATE 2016, Dresden, Germany, March 14-18, 2016, 2016,
pp. 948–953.

[10] P.-E. Gaillardon, L. G. Amarù, A. Siemon, E. Linn, R. Waser, A. Chat-
topadhyay, and G. De Micheli, “The programmable logic-in-memory
(PLiM) computer,” in Design, Automation & Test in Europe, 2016, pp.
427–432.

[11] D. Bhattacharjee, R. Devadoss, and A. Chattopadhyay, “ReVAMP:
ReRAM based VLIW architecture for in-memory computing,” in Design,
Automation and Test in Europe, 2017, pp. 782–787.

[12] J. Borghetti, G. Snider, P. Kuekes, J. Yang, D. Stewart, and R. Willi-
ams, “Memristive switches enable stateful logic operations via material
implication,” Nature, vol. 464, no. 7290, pp. 873–876, 2010.

[13] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. Friedman,
A. Kolodny, and U. Weiser, “MAGIC – Memristor-Aided Logic,” IEEE
Trans. Circuits Syst. II, vol. 61, no. 11, pp. 895–899, 2014.

[14] D. Fried, L. M. Tabajara, and M. Y. Vardi, BDD-Based Boolean
Functional Synthesis, ser. Lecture Notes in Computer Science. Springer,
2016, vol. 9780.

[15] N. Li and E. Dubrova, “Aig rewriting using 5-input cuts,” in Int’l Conf.
on Comp. Design, 2011, pp. 429–430.

[16] A. Chakraborty, R. Das, C. Bandopadhyay, and H. Rahaman, “Bdd based
synthesis technique for design of high-speed memristor based circuits,”
in 2016 20th International Symposium on VLSI Design and Test (VDAT),
2016, pp. 1–6.

[17] R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” IEEE Trans. on Comp., 1986.

[18] J. Siek, L. Lee, and A. Lumsdaine, The Boost Graph Library: User
Guide and Reference Manual. Addison-Wesley, 2002.

[19] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (sub)graph
isomorphism algorithm for matching large graphs,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 26, no. 10, pp. 1367–
1372, 2004.

[20] F. Somenzi, “CUDD: CU Decision Diagram package-release 3.0.0,”
University of Colorado at Boulder, 2015.

[21] A. Mischenko, M. Case, R. Brayton, and S. Jang, “Scalable and
scalably-verifiable sequential synthesis,” in International Conference on
Computer-Aided Design, 2008.

[22] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of
sequential benchmark circuits,” in IEEE International Symposium on
Circuits and Systems, 1989, pp. 1929–1934 vol.3.

https://doi.org/10.1021/nl901874j

